Update modeling_zeranker.py
Browse files- modeling_zeranker.py +39 -13
modeling_zeranker.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
from sentence_transformers import CrossEncoder as _CE
|
| 2 |
|
| 3 |
import math
|
| 4 |
-
from typing import cast
|
| 5 |
import types
|
| 6 |
|
| 7 |
import torch
|
|
@@ -21,8 +21,11 @@ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
|
| 21 |
# pyright: reportUnknownMemberType=false
|
| 22 |
# pyright: reportUnknownVariableType=false
|
| 23 |
|
| 24 |
-
MODEL_PATH = "zeroentropy/
|
| 25 |
PER_DEVICE_BATCH_SIZE_TOKENS = 15_000
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
def format_pointwise_datapoints(
|
|
@@ -67,7 +70,7 @@ def load_model(
|
|
| 67 |
| Qwen3ForCausalLM,
|
| 68 |
]:
|
| 69 |
if device is None:
|
| 70 |
-
device =
|
| 71 |
|
| 72 |
config = AutoConfig.from_pretrained(MODEL_PATH)
|
| 73 |
assert isinstance(config, PretrainedConfig)
|
|
@@ -80,7 +83,6 @@ def load_model(
|
|
| 80 |
)
|
| 81 |
if config.model_type == "llama":
|
| 82 |
model.config.attn_implementation = "flash_attention_2"
|
| 83 |
-
print(f"Model Type: {config.model_type}")
|
| 84 |
assert isinstance(
|
| 85 |
model,
|
| 86 |
LlamaForCausalLM
|
|
@@ -104,13 +106,30 @@ def load_model(
|
|
| 104 |
return tokenizer, model
|
| 105 |
|
| 106 |
|
| 107 |
-
def predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
if not hasattr(self, "inner_model"):
|
| 109 |
-
self.inner_tokenizer, self.inner_model = load_model(
|
| 110 |
self.inner_model.gradient_checkpointing_enable()
|
| 111 |
self.inner_model.eval()
|
| 112 |
-
self.inner_yes_token_id = self.inner_tokenizer.encode(
|
| 113 |
-
|
|
|
|
| 114 |
|
| 115 |
model = self.inner_model
|
| 116 |
tokenizer = self.inner_tokenizer
|
|
@@ -120,11 +139,11 @@ def predict(self, query_documents: list[tuple[str, str]]) -> list[float]:
|
|
| 120 |
]
|
| 121 |
# Sort
|
| 122 |
permutation = list(range(len(query_documents)))
|
| 123 |
-
permutation.sort(
|
|
|
|
|
|
|
| 124 |
query_documents = [query_documents[i] for i in permutation]
|
| 125 |
|
| 126 |
-
device = torch.device("cuda")
|
| 127 |
-
|
| 128 |
# Extract document batches from this line of datapoints
|
| 129 |
max_length = 0
|
| 130 |
batches: list[list[tuple[str, str]]] = []
|
|
@@ -148,7 +167,7 @@ def predict(self, query_documents: list[tuple[str, str]]) -> list[float]:
|
|
| 148 |
batch,
|
| 149 |
)
|
| 150 |
|
| 151 |
-
batch_inputs = batch_inputs.to(
|
| 152 |
|
| 153 |
try:
|
| 154 |
outputs = model(**batch_inputs, use_cache=False)
|
|
@@ -164,7 +183,7 @@ def predict(self, query_documents: list[tuple[str, str]]) -> list[float]:
|
|
| 164 |
last_positions = attention_mask.sum(dim=1) - 1
|
| 165 |
|
| 166 |
batch_size = logits.shape[0]
|
| 167 |
-
batch_indices = torch.arange(batch_size, device=
|
| 168 |
last_logits = logits[batch_indices, last_positions]
|
| 169 |
|
| 170 |
yes_logits = last_logits[:, self.inner_yes_token_id]
|
|
@@ -181,8 +200,15 @@ def predict(self, query_documents: list[tuple[str, str]]) -> list[float]:
|
|
| 181 |
return scores
|
| 182 |
|
| 183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
_CE.predict = predict
|
| 185 |
|
| 186 |
from transformers import Qwen3Config
|
| 187 |
|
| 188 |
ZEConfig = Qwen3Config
|
|
|
|
|
|
|
|
|
| 1 |
from sentence_transformers import CrossEncoder as _CE
|
| 2 |
|
| 3 |
import math
|
| 4 |
+
from typing import cast, Any
|
| 5 |
import types
|
| 6 |
|
| 7 |
import torch
|
|
|
|
| 21 |
# pyright: reportUnknownMemberType=false
|
| 22 |
# pyright: reportUnknownVariableType=false
|
| 23 |
|
| 24 |
+
MODEL_PATH = "zeroentropy/zerank-1"
|
| 25 |
PER_DEVICE_BATCH_SIZE_TOKENS = 15_000
|
| 26 |
+
global_device = (
|
| 27 |
+
torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 28 |
+
)
|
| 29 |
|
| 30 |
|
| 31 |
def format_pointwise_datapoints(
|
|
|
|
| 70 |
| Qwen3ForCausalLM,
|
| 71 |
]:
|
| 72 |
if device is None:
|
| 73 |
+
device = global_device
|
| 74 |
|
| 75 |
config = AutoConfig.from_pretrained(MODEL_PATH)
|
| 76 |
assert isinstance(config, PretrainedConfig)
|
|
|
|
| 83 |
)
|
| 84 |
if config.model_type == "llama":
|
| 85 |
model.config.attn_implementation = "flash_attention_2"
|
|
|
|
| 86 |
assert isinstance(
|
| 87 |
model,
|
| 88 |
LlamaForCausalLM
|
|
|
|
| 106 |
return tokenizer, model
|
| 107 |
|
| 108 |
|
| 109 |
+
def predict(
|
| 110 |
+
self,
|
| 111 |
+
query_documents: list[tuple[str, str]] | None = None,
|
| 112 |
+
*,
|
| 113 |
+
sentences: Any = None,
|
| 114 |
+
batch_size: Any = None,
|
| 115 |
+
show_progress_bar: Any = None,
|
| 116 |
+
activation_fn: Any = None,
|
| 117 |
+
apply_softmax: Any = None,
|
| 118 |
+
convert_to_numpy: Any = None,
|
| 119 |
+
convert_to_tensor: Any = None,
|
| 120 |
+
) -> list[float]:
|
| 121 |
+
if query_documents is None:
|
| 122 |
+
if sentences is None:
|
| 123 |
+
raise ValueError("query_documents or sentences must be provided")
|
| 124 |
+
query_documents = [[sentence[0], sentence[1]] for sentence in sentences]
|
| 125 |
+
|
| 126 |
if not hasattr(self, "inner_model"):
|
| 127 |
+
self.inner_tokenizer, self.inner_model = load_model(global_device)
|
| 128 |
self.inner_model.gradient_checkpointing_enable()
|
| 129 |
self.inner_model.eval()
|
| 130 |
+
self.inner_yes_token_id = self.inner_tokenizer.encode(
|
| 131 |
+
"Yes", add_special_tokens=False
|
| 132 |
+
)[0]
|
| 133 |
|
| 134 |
model = self.inner_model
|
| 135 |
tokenizer = self.inner_tokenizer
|
|
|
|
| 139 |
]
|
| 140 |
# Sort
|
| 141 |
permutation = list(range(len(query_documents)))
|
| 142 |
+
permutation.sort(
|
| 143 |
+
key=lambda i: -len(query_documents[i][0]) - len(query_documents[i][1])
|
| 144 |
+
)
|
| 145 |
query_documents = [query_documents[i] for i in permutation]
|
| 146 |
|
|
|
|
|
|
|
| 147 |
# Extract document batches from this line of datapoints
|
| 148 |
max_length = 0
|
| 149 |
batches: list[list[tuple[str, str]]] = []
|
|
|
|
| 167 |
batch,
|
| 168 |
)
|
| 169 |
|
| 170 |
+
batch_inputs = batch_inputs.to(global_device)
|
| 171 |
|
| 172 |
try:
|
| 173 |
outputs = model(**batch_inputs, use_cache=False)
|
|
|
|
| 183 |
last_positions = attention_mask.sum(dim=1) - 1
|
| 184 |
|
| 185 |
batch_size = logits.shape[0]
|
| 186 |
+
batch_indices = torch.arange(batch_size, device=global_device)
|
| 187 |
last_logits = logits[batch_indices, last_positions]
|
| 188 |
|
| 189 |
yes_logits = last_logits[:, self.inner_yes_token_id]
|
|
|
|
| 200 |
return scores
|
| 201 |
|
| 202 |
|
| 203 |
+
def to_device(self: _CE, new_device: torch.device) -> None:
|
| 204 |
+
global global_device
|
| 205 |
+
global_device = new_device
|
| 206 |
+
|
| 207 |
+
|
| 208 |
_CE.predict = predict
|
| 209 |
|
| 210 |
from transformers import Qwen3Config
|
| 211 |
|
| 212 |
ZEConfig = Qwen3Config
|
| 213 |
+
|
| 214 |
+
_CE.to = to_device
|