DIMI Arabic OCR
Accurate Arabic OCR model for extracting printed Arabic text from images
🧠 Overview
DIMI-Arabic-OCR is a fine-tuned vision-language model (VLM) specialized for Arabic Optical Character Recognition (OCR).
It extracts printed Arabic text from images with high accuracy — including diacritics (tashkeel) and punctuation.
- 🔤 Language: Arabic
- 🧩 Base Model: Qwen2.5-VL-7B (via Unsloth 4-bit)
- ⚙️ Task: Image-to-Text / OCR
- 🪶 Quantization: 4-bit LoRA for efficient inference
- 👨💻 Author: Ahmed Zaky
🚀 Quick Start
# IMPORTANT: Import unsloth first!
import unsloth
from unsloth import FastVisionModel
from PIL import Image
import torch
# Load the model
model, tokenizer = FastVisionModel.from_pretrained(
"AhmedZaky1/DIMI-Arabic-OCR",
load_in_4bit=True,
use_gradient_checkpointing="unsloth",
)
FastVisionModel.for_inference(model)
# Prepare your image
image = Image.open("/content/2.jpg")
# Arabic instruction
instruction = "استخرج النص العربي والأرقام الموجودة في هذه الصورة بدقة عالية جدًا، مع الحفاظ الكامل على الترتيب الأصلي والتنسيق."
# Prepare messages
messages = [
{"role": "user", "content": [
{"type": "image", "image": image}, # Include image here
{"type": "text", "text": instruction}
]}
]
# Apply chat template
input_text = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
)
# Tokenize with proper parameters to avoid truncation
inputs = tokenizer(
text=input_text,
images=image,
return_tensors="pt",
padding=True,
truncation=False,
max_length=None,
).to("cuda")
# Generate
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=2048,
do_sample=False,
temperature=None,
top_p=None,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
# Decode the prediction
generated_ids = outputs[0][inputs['input_ids'].shape[1]:]
prediction = tokenizer.decode(generated_ids, skip_special_tokens=True).strip()
print("Extracted Arabic Text:")
print(prediction)
🧩 Model Architecture
- Base: Qwen2.5-VL-7B-Instruct
- Fine-tuning: LoRA (rank 16)
- Quantization: 4-bit (bnb)
- Framework: Unsloth for efficient training/inference
📊 Evaluation
| Metric | Description | Score (↓ better) |
|---|---|---|
| CER | Character Error Rate | 0.22 |
| WER | Word Error Rate | 0.40 |
Evaluation performed on a 2.6K image test set from combined Arabic OCR datasets (news + diacritics).
🧾 Training Data
Fine-tuned on 26,000 Arabic text images combining:
The dataset covers modern standard Arabic with and without diacritics.
📚 Citation
If you use this model, please cite:
@misc{dimi-arabic-ocr-2025,
author = {Ahmed Zaky},
title = {DIMI-Arabic-OCR: Fine-tuned Qwen2.5-VL for Arabic Text Recognition},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/AhmedZaky1/DIMI-Arabic-OCR}}
}
🔗 Related Projects
- DIMI Models Series — Arabic Vision & Language Models
Built with ❤️ by Ahmed Zaky
Advancing Arabic NLP through state-of-the-art embedding models
Model tree for AhmedZaky1/DIMI-Arabic-OCR
Datasets used to train AhmedZaky1/DIMI-Arabic-OCR
Evaluation results
- Word Error Rate on Combined Arabic OCR Datasetself-reported0.0XXX
- Character Error Rate on Combined Arabic OCR Datasetself-reported0.0XXX