YAML Metadata
		Warning:
	empty or missing yaml metadata in repo card
	(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
	
		
	
	
		π§  Code Generation Model β Fine-Tuned Salesforce/codegen-350M-multi
	
This repository contains a fine-tuned version of the Salesforce/codegen-350M-multi model. It generates code snippets based on natural language or function signature prompts.
π¦ Base Model
- Model: Salesforce/codegen-350M-multi
- Architecture: Causal LM (Decoder-only Transformer)
- Parameters: ~350M
- Supports: Python, JavaScript, Java, and more
- Quantized: β
 FP16 using bitsandbytes(optional)
π Dataset
Dataset: code_x_glue_cc_code_to_text
- Source: Hugging Face Datasets
- Description: Dataset of code snippets (in Python) and corresponding natural language docstrings.
from datasets import load_dataset
dataset = load_dataset("code_x_glue_cc_code_to_text", "python")
π Evaluation (Scoring)
Metric: BLEU or CodeBLEU (you can also use exact match, ROUGE, etc.)
from datasets import load_metric
bleu = load_metric("bleu")
bleu_score = bleu.compute(predictions=["generated_code"], references=["reference_code"])
print("BLEU Score:", bleu_score)
π Folder Structure
finetuned_codegen_350M/ βββ config.json βββ pytorch_model.bin βββ tokenizer_config.json βββ tokenizer.json βββ special_tokens_map.json βββ vocab.json βββ merges.txt βββ training_args.bin βββ README.md
π¬ Inference Example
from transformers import pipeline
pipe = pipeline("text-generation", model="./finetuned_codegen_350M", device=0)
prompt = "def is_prime(n):"
result = pipe(prompt, max_length=100, do_sample=True)
print(result[0]["generated_text"])
- Downloads last month
- 4
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	π
			
		Ask for provider support
