smallcoder-303m / README.md
Beebey's picture
Update README.md
297e718 verified
---
license: apache-2.0
language:
- en
- code
library_name: transformers
pipeline_tag: text-generation
tags:
- smallcoder
- code-llm
- code-generation
- sft
- pretraining
- tpu
- 303m
- trc
datasets:
- HuggingFaceFW/fineweb-edu
- nvidia/Nemotron-Pretraining-SFT-v1
- bigcode/starcoderdata
- nvidia/Nemotron-Pretraining-Code-v1
- HuggingFaceFW/finewiki
- open-web-math/open-web-math
- nvidia/Nemotron-CC-Math-v1
- nvidia/OpenCodeInstruct
- nvidia/OpenMathInstruct-2
---
# 🧠 SmallCoder (303M)
**SmallCoder** is a **303M parameter** LLaMA-style language model trained **from scratch** for **code generation** and **algorithmic reasoning**.
This checkpoint represents a **6B-token Supervised Fine-Tuning (SFT)** run that fixed a critical **End-of-Sequence (EOS) token bug** from earlier versions.
Despite its compact size, SmallCoder achieves **state-of-the-art (SOTA) coding performance for <500M models**, rivaling 1B–7B parameter LLMs.
> Trained with support from **Google’s TPU Research Cloud (TRC)** program.
---
## πŸš€ Key Results
| Model | Size | HumanEval (pass@1) | MBPP (pass@1) |
|:------|:----:|:------------------:|:--------------:|
| **SmallCoder (Stage 4.1)** | **303M** | **27.4 %** | **31.0 %** |
| TinyLlama-1.1B | 1.1B | ~26.4 % | ~27.6 % |
| MPT-1B-Instruct | 1.0B | ~22.0 % | ~25.0 % |
| Zephyr-1.3B-SFT | 1.3B | 31.0 % | 34.0 % |
| Mistral-7B-Base | 7B | 30.5 % | 47.5 % |
> βš–οΈ **SmallCoder nearly matches Mistral 7B on HumanEval while being 23Γ— smaller.**
---
## 🧬 Model Architecture
A **LLaMA-type causal decoder** with standard Multi-Head Attention (MHA).
```python
LlamaConfig(
vocab_size=49152, # StarCoder tokenizer
hidden_size=768,
num_hidden_layers=24,
num_attention_heads=8,
num_key_value_heads=8,
intermediate_size=3072,
max_position_embeddings=1024,
)
````
| Parameter | Value |
| ----------------- | ------------------------------ |
| Total parameters | β‰ˆ 303 M |
| Context length | 1 024 tokens |
| Tokenizer | `bigcode/starcoder` |
| Architecture type | LLaMA (MHA, non-GQA) |
| Precision | bfloat16 |
| Optimizer | AdamW XLA |
| Hardware | TPU v4-32 (TRC) |
---
## πŸ“š Training Curriculum (4 Stages, 29.8B tokens)
| Stage | Tokens (B) | Dataset | Objective | Loss ↓ |
| :------------------------- | :--------: | :--------------------------------------------------- | :------------------------------- | :----------: |
| **1. Linguistic Base** | 6.3 | FineWeb-Edu | General English grounding | 10.87 β†’ 2.58 |
| **2. Code Specialization** | 7.5 | 60 % Nemotron Synthetic Code / 40 % StarCoderData | Code syntax & reasoning | 5.00 β†’ 1.25 |
| **3. Math & Knowledge** | 10.0 | Nemotron CC-Math / FineWiki / OpenWebMath | Mathematical reasoning | 2.77 β†’ 1.55 |
| **4.1 SFT (EOS Fixed)** | 6.0 | Nemotron SFT / OpenCodeInstruct / OpenMathInstruct-2 | Instruction-tuned code alignment | 1.73 β†’ ~0.70 |
> 🧩 Total β‰ˆ 29.8 B tokens of curated curriculum learning.
---
## πŸ“Š Detailed Benchmarks (Stage 4.1 SFT)
| Domain | Benchmark | Metric | Score |
| :-------------- | :------------------- | :----------- | :-----------: |
| **Code** | HumanEval (0-shot) | pass@1 | **27.4 %** |
| **Code** | MBPP (3-shot) | pass@1 | **31.0 %** |
| **Math** | GSM8k (0-shot) | exact match | **4.55 %** |
| **Knowledge** | Wikitext-2 | perplexity ↓ | **167.6** |
| **Reasoning** | ARC (Easy/Challenge) | acc norm | 34.6 / 22.8 % |
| **Commonsense** | HellaSwag | acc norm | 28.3 % |
> `humaneval`/`mbpp` were computed with manual evaluation (`max_new_tokens=512`, `temp=0.2`) due to SFT format truncation issues in `lm-eval`.
---
## ⚠️ Known Limitations
1. **Code-Specialized Model**
Tuned for Python and algorithmic reasoning. Poor performance on general text, math, and commonsense tasks.
2. **Short Context**
Trained on **1 024-token** sequences only. Performance degrades on longer inputs.
3. **Tokenizer Bias**
Uses `bigcode/starcoder` BPE vocabulary β€” optimized for code, not prose.
---
## πŸ’» Usage Example
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "Beebey/smallcoder-303m"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device)
prompt = """User: Write a Python function to compute Fibonacci numbers.
Assistant:"""
inputs = tokenizer(prompt, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=512,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
πŸ’‘ *Trained using the β€œUser:” / β€œAssistant:” dialogue format.*
---
## 🧾 Citation
If you use **SmallCoder (303M)** in your research, please cite:
```
@misc{smallcoder303m,
title = {SmallCoder: A 303M-parameter Code LLM trained from scratch},
author = {Da Silva, Ilan},
year = {2025},
url = {https://huggingface.co/Beebey/smallcoder-303m},
note = {Trained with Google TPU Research Cloud (TRC) support}
}
```
---
## πŸ™ Acknowledgements
This model was trained with support from the **Google TPU Research Cloud (TRC)** program.
Special thanks to the open datasets that enabled this work:
FineWeb, StarCoderData, Nemotron, and OpenWebMath.
---
## 🧩 Summary
| Category | Description |
| ------------------- | --------------------------- |
| **Type** | Code LLM (LLaMA-style) |
| **Parameters** | 303 M |
| **Training tokens** | ~29.8 B |
| **Specialty** | Code generation & reasoning |
| **Context window** | 1 024 tokens |
| **Tokenizer** | `bigcode/starcoder` |
| **License** | Apache 2.0 |
| **Hardware** | TPU v4 (TRC Program) |
---
> πŸ”¬ **SmallCoder (303M)** demonstrates that a carefully designed <500M model can achieve near-SOTA coding performance, matching 1B-class models on HumanEval β€” proving that *efficient, compact, open models* still matter.
```