| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						base_model: | 
					
					
						
						| 
							 | 
						- Wan-AI/Wan2.1-T2V-14B | 
					
					
						
						| 
							 | 
						datasets: | 
					
					
						
						| 
							 | 
						- BestWishYsh/OpenS2V-Eval | 
					
					
						
						| 
							 | 
						- BestWishYsh/OpenS2V-5M | 
					
					
						
						| 
							 | 
						language: | 
					
					
						
						| 
							 | 
						- en | 
					
					
						
						| 
							 | 
						license: apache-2.0 | 
					
					
						
						| 
							 | 
						pipeline_tag: text-to-video | 
					
					
						
						| 
							 | 
						library_name: diffusers | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						<div align=center> | 
					
					
						
						| 
							 | 
						<img src="https://github.com/PKU-YuanGroup/OpenS2V-Nexus/blob/main/__assets__/OpenS2V-Nexus_logo.png?raw=true" width="300px"> | 
					
					
						
						| 
							 | 
						</div> | 
					
					
						
						| 
							 | 
						<h2 align="center"> <a href="https://pku-yuangroup.github.io/OpenS2V-Nexus/">OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation</a></h2> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for the latest update.  </h5> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## ✨ Summary | 
					
					
						
						| 
							 | 
						1. **New S2V Benchmark.**  | 
					
					
						
						| 
							 | 
						   - We introduce *OpenS2V-Eval* for comprehensive evaluation of S2V models and propose three new automatic metrics aligned with human perception. | 
					
					
						
						| 
							 | 
						2. **New Insights for S2V Model Selection.** | 
					
					
						
						| 
							 | 
						   - Our evaluations using *OpenS2V-Eval* provide crucial insights into the strengths and weaknesses of various subject-to-video generation models. | 
					
					
						
						| 
							 | 
						3. **Million-Scale S2V Dataset.**  | 
					
					
						
						| 
							 | 
						   - We create *OpenS2V-5M*, a dataset with 5.1M high-quality regular data and 0.35M Nexus Data, the latter is expected to address the three core challenges of subject-to-video. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## 💡 Description | 
					
					
						
						| 
							 | 
						- **Repository:** [Code](https://github.com/PKU-YuanGroup/OpenS2V-Nexus), [Page](https://pku-yuangroup.github.io/OpenS2V-Nexus/), [Dataset](https://huggingface.co/datasets/BestWishYsh/OpenS2V-5M), [Benchmark](https://huggingface.co/datasets/BestWishYsh/OpenS2V-Eval) | 
					
					
						
						| 
							 | 
						- **Paper:** [https://huggingface.co/papers/2505.20292](https://huggingface.co/papers/2505.20292) | 
					
					
						
						| 
							 | 
						- **Point of Contact:** [Shenghai Yuan](shyuan-cs@hotmail.com) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## ✏️ Citation | 
					
					
						
						| 
							 | 
						If you find our paper and code useful in your research, please consider giving a star and citation. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```BibTeX | 
					
					
						
						| 
							 | 
						@article{yuan2025opens2v, | 
					
					
						
						| 
							 | 
						  title={OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation}, | 
					
					
						
						| 
							 | 
						  author={Yuan, Shenghai and He, Xianyi and Deng, Yufan and Ye, Yang and Huang, Jinfa and Lin, Bin and Luo, Jiebo and Yuan, Li}, | 
					
					
						
						| 
							 | 
						  journal={arXiv preprint arXiv:2505.20292}, | 
					
					
						
						| 
							 | 
						  year={2025} | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						``` |