Text-to-Video
Diffusers
ONNX
English
OpenS2V-Weight / README.md
BestWishYsh's picture
Add pipeline tag and library name (#1)
bea6337 verified
---
base_model:
- Wan-AI/Wan2.1-T2V-14B
datasets:
- BestWishYsh/OpenS2V-Eval
- BestWishYsh/OpenS2V-5M
language:
- en
license: apache-2.0
pipeline_tag: text-to-video
library_name: diffusers
---
<div align=center>
<img src="https://github.com/PKU-YuanGroup/OpenS2V-Nexus/blob/main/__assets__/OpenS2V-Nexus_logo.png?raw=true" width="300px">
</div>
<h2 align="center"> <a href="https://pku-yuangroup.github.io/OpenS2V-Nexus/">OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation</a></h2>
<h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for the latest update. </h5>
## ✨ Summary
1. **New S2V Benchmark.**
- We introduce *OpenS2V-Eval* for comprehensive evaluation of S2V models and propose three new automatic metrics aligned with human perception.
2. **New Insights for S2V Model Selection.**
- Our evaluations using *OpenS2V-Eval* provide crucial insights into the strengths and weaknesses of various subject-to-video generation models.
3. **Million-Scale S2V Dataset.**
- We create *OpenS2V-5M*, a dataset with 5.1M high-quality regular data and 0.35M Nexus Data, the latter is expected to address the three core challenges of subject-to-video.
## 💡 Description
- **Repository:** [Code](https://github.com/PKU-YuanGroup/OpenS2V-Nexus), [Page](https://pku-yuangroup.github.io/OpenS2V-Nexus/), [Dataset](https://huggingface.co/datasets/BestWishYsh/OpenS2V-5M), [Benchmark](https://huggingface.co/datasets/BestWishYsh/OpenS2V-Eval)
- **Paper:** [https://huggingface.co/papers/2505.20292](https://huggingface.co/papers/2505.20292)
- **Point of Contact:** [Shenghai Yuan](shyuan-cs@hotmail.com)
## ✏️ Citation
If you find our paper and code useful in your research, please consider giving a star and citation.
```BibTeX
@article{yuan2025opens2v,
title={OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation},
author={Yuan, Shenghai and He, Xianyi and Deng, Yufan and Ye, Yang and Huang, Jinfa and Lin, Bin and Luo, Jiebo and Yuan, Li},
journal={arXiv preprint arXiv:2505.20292},
year={2025}
}
```