metadata
			license: llama3.2
language:
  - en
base_model: meta-llama/Llama-3.2-1B
pipeline_tag: text-classification
library_name: peft
tags:
  - regression
  - story-point-estimation
  - software-engineering
datasets:
  - bamboo
metrics:
  - mae
  - mdae
model-index:
  - name: llama-3.2-1b-story-point-estimation
    results:
      - task:
          type: regression
          name: Story Point Estimation
        dataset:
          name: bamboo Dataset
          type: bamboo
          split: test
        metrics:
          - type: mae
            value: 1.104
            name: Mean Absolute Error (MAE)
          - type: mdae
            value: 0.832
            name: Median Absolute Error (MdAE)
LLAMA 3 Story Point Estimator - bamboo
This model is fine-tuned on issue descriptions from bamboo and tested on bamboo for story point estimation.
Model Details
Base Model: LLAMA 3.2 1B
Training Project: bamboo
Test Project: bamboo
Task: Story Point Estimation (Regression)
Architecture: PEFT (LoRA)
Input: Issue titles
Output: Story point estimation (continuous value)
Usage
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from peft import PeftConfig, PeftModel
# Load peft config model
config = PeftConfig.from_pretrained("DEVCamiloSepulveda/0-LLAMA3SP-bamboo")
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("DEVCamiloSepulveda/0-LLAMA3SP-bamboo")
base_model = AutoModelForSequenceClassification.from_pretrained(
    config.base_model_name_or_path,
    num_labels=1,
    torch_dtype=torch.float16,
    device_map='auto'
)
model = PeftModel.from_pretrained(base_model, "DEVCamiloSepulveda/0-LLAMA3SP-bamboo")
# Prepare input text
text = "Your issue description here"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=20, padding="max_length")
# Get prediction
outputs = model(**inputs)
story_points = outputs.logits.item()
Training Details
- Fine-tuning method: LoRA (Low-Rank Adaptation)
 - Sequence length: 20 tokens
 - Best training epoch: 0 / 20 epochs
 - Batch size: 32
 - Training time: 11.101 seconds
 - Mean Absolute Error (MAE): 1.104
 - Median Absolute Error (MdAE): 0.832
 
Framework versions
- PEFT 0.14.0