metadata
			license: mit
datasets:
  - Cynaptics/persona-chat
  - rizalHidayat/bot-dialog
language:
  - en
metrics:
  - accuracy
base_model:
  - distilbert/distilgpt2
pipeline_tag: text-generation
library_name: transformers
tags:
  - llm
  - text-generation-inference
✨DarkNeuron-AI/darkneuron-chat-v1.1
DarkNeuron-Chat v1.1 is a chatbot designed for basic, friendly conversations. It provides clear and concise responses and is suitable for general use.
👍Model Overview
- Model type: GPT-based causal language model
 - Purpose: Basic conversational chatbot
 - Training data: Fine-tuned on Persona-Chat and Bot-Dialog datasets
 - Intended audience: General users, students, hobbyists, and researchers interested in chatbot interactions
 
🌟Installation
Install the latest version of Transformers:
!pip install --upgrade transformers torch
👽Example Usage
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch, gc
# Load tokenizer and model
model_name = "DarkNeuron-AI/darkneuron-chat-v1.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Use GPU if available
device = 0 if torch.cuda.is_available() else -1
# Create chatbot pipeline
chatbot = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    device=device,
    return_full_text=False
)
# Optional: Free GPU memory
gc.collect()
torch.cuda.empty_cache()
# Interactive chat loop
print("Chatbot ready! Type 'exit' or 'quit' to stop.\n")
while True:
    user_input = input("User: ")
    if user_input.lower() in ["exit", "quit"]:
        print("Chat ended.")
        break
    prompt = f"User: {user_input}\nBot:"
    response = chatbot(
        prompt,
        max_length=100,
        do_sample=True,
        temperature=0.7,
        top_p=0.9,
        num_return_sequences=1
    )
    print(response[0]["generated_text"])