Hercules LLM collection
					Collection
				
Hercules Gemma 3N collection
					β’ 
				6 items
				β’ 
				Updated
					
				
This finetuned model is specialized in STEM like LCB, CodeForce, AIME24, AIME25, AMC23, MATH500.
Note:
Use unsloth inference
!pip install --upgrade transformers
import torch
from transformers import pipeline
model_id = "EpistemeAI/Hercules-Coder-E4B-it"
pipe = pipeline(
    "text-generation", 
    model=model_id, 
    torch_dtype=torch.bfloat16, 
    device_map="auto"
)
print(pipe("Write me a Python function to calculate the nth fibonacci number."))
Benchmark results (5 shot):
| Tasks | Version | Filter | n-shot | Metric | Value | |
|---|---|---|---|---|---|---|
| arc_challenge | 1 | none | 5 | acc | β | 0.5759 | 
| hellaswag | 1 | none | 5 | acc | β | 0.7651 | 
| winogrande | 1 | none | 5 | acc | β | 0.7526 | 
GPQA Diamond result
| Tasks | Version | Filter | n-shot | Metric | Value | |
|---|---|---|---|---|---|---|
| gpqa_diamond_zeroshot | 1 | none | 0 | acc | β | 0.2516 | 
| none | 0 | acc_norm | β | 0.2516 | 
This gemma3n model was trained 2x faster with Unsloth and Huggingface's TRL library.
@misc{liu2025rstarcoderscalingcompetitivecode,
      title={rStar-Coder: Scaling Competitive Code Reasoning with a Large-Scale Verified Dataset}, 
      author={Yifei Liu and Li Lyna Zhang and Yi Zhu and Bingcheng Dong and Xudong Zhou and Ning Shang and Fan Yang and Mao Yang},
      year={2025},
      eprint={2505.21297},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2505.21297}, 
}