Llama-3-8b-QLoRa-Medical2
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4659
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.4796 | 0.2667 | 100 | 0.4840 |
| 0.4596 | 0.5333 | 200 | 0.4750 |
| 0.4701 | 0.8 | 300 | 0.4695 |
| 0.4392 | 1.0667 | 400 | 0.4674 |
| 0.4191 | 1.3333 | 500 | 0.4682 |
| 0.4253 | 1.6 | 600 | 0.4659 |
| 0.4121 | 1.8667 | 700 | 0.4645 |
| 0.3724 | 2.1333 | 800 | 0.4775 |
| 0.357 | 2.4 | 900 | 0.4765 |
| 0.3708 | 2.6667 | 1000 | 0.4768 |
| 0.3666 | 2.9333 | 1100 | 0.4764 |
Framework versions
- PEFT 0.17.1
- Transformers 4.56.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 7
Model tree for EshAhm/Llama-3-8b-QLoRa-Medical2
Base model
meta-llama/Meta-Llama-3-8B