Add pipeline tag and library name to model card
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,10 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
language:
|
| 4 |
-
- en
|
| 5 |
base_model:
|
| 6 |
- Qwen/Qwen3-8B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
---
|
|
|
|
| 8 |
<div align="center">
|
| 9 |
|
| 10 |
# 🧩 ReForm: Reflective Autoformalization with Prospective Bounded Sequence Optimization
|
|
@@ -50,7 +53,8 @@ model_name = "GuoxinChen/ReForm-8B" # or "GuoxinChen/ReForm-32B"
|
|
| 50 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 51 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
| 52 |
|
| 53 |
-
prompt = "Think step by step to translate the mathematical problem in natural language to Lean 4, and verify the consistency
|
|
|
|
| 54 |
|
| 55 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 56 |
outputs = model.generate(**inputs, max_new_tokens=512)
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
base_model:
|
| 3 |
- Qwen/Qwen3-8B
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
license: apache-2.0
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
+
library_name: transformers
|
| 9 |
---
|
| 10 |
+
|
| 11 |
<div align="center">
|
| 12 |
|
| 13 |
# 🧩 ReForm: Reflective Autoformalization with Prospective Bounded Sequence Optimization
|
|
|
|
| 53 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 54 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
| 55 |
|
| 56 |
+
prompt = "Think step by step to translate the mathematical problem in natural language to Lean 4, and verify the consistency.
|
| 57 |
+
Let $a_1, a_2,\\cdots, a_n$ be real constants, $x$ a real variable, and $f(x)=\\cos(a_1+x)+\\frac{1}{2}\\cos(a_2+x)+\\frac{1}{4}\\cos(a_3+x)+\\cdots+\\frac{1}{2^{n-1}}\\cos(a_n+x).$ Given that $f(x_1)=f(x_2)=0,$ prove that $x_2-x_1=m\\pi$ for some integer $m.$"
|
| 58 |
|
| 59 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 60 |
outputs = model.generate(**inputs, max_new_tokens=512)
|