metadata
			language: es
tags:
  - biomedical
  - clinical
  - spanish
  - XLM_R_Galen
license: mit
datasets:
  - IIC/livingner3
metrics:
  - f1
model-index:
  - name: IIC/XLM_R_Galen-livingner3
    results:
      - task:
          type: multi-label-classification
        dataset:
          name: livingner3
          type: IIC/livingner3
          split: test
        metrics:
          - name: f1
            type: f1
            value: 0.5
pipeline_tag: text-classification
XLM_R_Galen-livingner3
This model is a finetuned version of XLM_R_Galen for the livingner3 dataset used in a benchmark in the paper TODO. The model has a F1 of 0.5
Please refer to the original publication for more information TODO LINK
Parameters used
| parameter | Value | 
|---|---|
| batch size | 16 | 
| learning rate | 4e-05 | 
| classifier dropout | 0 | 
| warmup ratio | 0 | 
| warmup steps | 0 | 
| weight decay | 0 | 
| optimizer | AdamW | 
| epochs | 10 | 
| early stopping patience | 3 | 
BibTeX entry and citation info
TODO