Sparse Reasoning Model
					Collection
				
Distilled Reasoning Models with Activation Sparse
					• 
				3 items
				• 
				Updated
					
				•
					
					2
This model is a fine-tuned version of open-r1/OpenR1-Qwen-7B on the open-r1/OpenR1-Math-220k dataset. It has been trained using TRL.
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="ZMC2019/OpenR1-Qwen-7B-Sparse-P40", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
This model was trained with SFT.
Cite TRL as:
@misc{vonwerra2022trl,
    title        = {{TRL: Transformer Reinforcement Learning}},
    author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
    year         = 2020,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/huggingface/trl}}
}