KORMo-19B-MoE / kormo_moe_vllm.py
dev7halo's picture
Upload 2 files
684363d verified
"""
vLLM-compatible implementation of KORMo MoE
This file should be placed in: /usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/kormo_moe.py
Usage:
from vllm import LLM
llm = LLM(
model="/path/to/kormo_moe_model",
trust_remote_code=False, # Not needed with this implementation
dtype="float16",
)
"""
from collections.abc import Iterable
from typing import Any, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
try:
from transformers import PretrainedConfig
except ImportError:
# Fallback for environments without transformers
PretrainedConfig = object
from .interfaces import SupportsLoRA, SupportsPP
from .utils import (
AutoWeightsLoader,
extract_layer_index,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
logger = init_logger(__name__)
class KORMoMoeConfig(PretrainedConfig):
"""Configuration class for KORMo MoE"""
model_type = "kormo_moe"
def __init__(
self,
vocab_size=112576,
hidden_size=6144,
intermediate_size=21504,
num_hidden_layers=48,
num_attention_heads=40,
num_key_value_heads=8,
hidden_act="silu",
max_position_embeddings=131072,
initializer_range=0.02,
rms_norm_eps=1e-05,
use_cache=True,
pad_token_id=None,
bos_token_id=0,
eos_token_id=1,
tie_word_embeddings=False,
rope_theta=500000.0,
attention_dropout=0.0,
rope_scaling=None,
head_dim=128,
# MoE specific
num_experts=2,
num_experts_per_tok=2,
moe_intermediate_size=None,
shared_expert_intermediate_size=None,
norm_topk_prob=True,
decoder_sparse_step=1,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads or num_attention_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_dropout = attention_dropout
self.head_dim = head_dim or (self.hidden_size // self.num_attention_heads)
# MoE specific
self.num_experts = num_experts
self.num_experts_per_tok = num_experts_per_tok
self.moe_intermediate_size = (
moe_intermediate_size if moe_intermediate_size is not None else intermediate_size
)
self.shared_expert_intermediate_size = shared_expert_intermediate_size
self.norm_topk_prob = norm_topk_prob
self.decoder_sparse_step = decoder_sparse_step
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class KORMoMoEMLP(nn.Module):
"""MLP for KORMo, used for shared expert"""
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
reduce_results: bool = True,
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
reduce_results=reduce_results,
)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. Only silu is supported.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class KORMoSparseMoeBlock(nn.Module):
"""KORMo Sparse MoE Block optimized for vLLM"""
def __init__(
self,
config: KORMoMoeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
if self.tp_size > config.num_experts:
raise ValueError(
f"Tensor parallel size {self.tp_size} is greater than "
f"the number of experts {config.num_experts}."
)
# Use vLLM's FusedMoE for optimized expert routing
self.experts = FusedMoE(
num_experts=config.num_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.moe_intermediate_size,
reduce_results=False,
renormalize=config.norm_topk_prob,
quant_config=quant_config,
prefix=f"{prefix}.experts",
)
# Router/gate
self.gate = ReplicatedLinear(
config.hidden_size,
config.num_experts,
bias=False,
quant_config=None,
)
# Shared expert (optional)
if config.shared_expert_intermediate_size and config.shared_expert_intermediate_size > 0:
self.shared_expert = KORMoMoEMLP(
hidden_size=config.hidden_size,
intermediate_size=config.shared_expert_intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
reduce_results=self.experts.must_reduce_shared_expert_outputs(),
)
self.shared_expert_gate = nn.Linear(config.hidden_size, 1, bias=False)
else:
self.shared_expert = None
self.shared_expert_gate = None
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# NOTE: hidden_states can have either 1D or 2D shape.
orig_shape = hidden_states.shape
hidden_dim = hidden_states.shape[-1]
hidden_states = hidden_states.view(-1, hidden_dim)
# Shared expert처리
shared_output = None
if self.shared_expert is not None:
shared_output = self.shared_expert(hidden_states)
if self.shared_expert_gate is not None:
shared_output = F.sigmoid(
self.shared_expert_gate(hidden_states)
) * shared_output
# Router logits: (num_tokens, n_experts)
router_logits, _ = self.gate(hidden_states)
# FusedMoE에서 expert routing 수행
final_hidden_states = self.experts(
hidden_states=hidden_states,
router_logits=router_logits,
)
# Shared expert 결과 추가
if shared_output is not None:
final_hidden_states = final_hidden_states + shared_output
# Tensor parallel reduction
if self.tp_size > 1:
final_hidden_states = self.experts.maybe_all_reduce_tensor_model_parallel(
final_hidden_states
)
return final_hidden_states.view(orig_shape)
class KORMoMoeAttention(nn.Module):
"""KORMo MoE Attention mechanism"""
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 500000,
rope_scaling: Optional[dict[str, Any]] = None,
max_position_embeddings: int = 131072,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
assert self.total_num_kv_heads % tp_size == 0
else:
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
class KORMoMoeDecoderLayer(nn.Module):
"""KORMo MoE Decoder Layer"""
def __init__(
self,
config: KORMoMoeConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
# Attention
self.self_attn = KORMoMoeAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
rope_theta=config.rope_theta,
rope_scaling=config.rope_scaling,
max_position_embeddings=config.max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
# MoE MLP
self.mlp = KORMoSparseMoeBlock(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
# LayerNorms (using KORMo naming convention)
self.pre_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_mlp_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
) -> torch.Tensor:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.pre_attention_layernorm(hidden_states)
else:
hidden_states, residual = self.pre_attention_layernorm(hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
# MoE MLP
hidden_states, residual = self.pre_mlp_layernorm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_torch_compile
class KORMoMoeModel(nn.Module):
"""KORMo MoE Model"""
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.vocab_size = config.vocab_size
self.config = config
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: KORMoMoeDecoderLayer(
config=config,
cache_config=cache_config,
quant_config=quant_config,
prefix=prefix,
),
prefix=f"{prefix}.layers",
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer in self.layers[self.start_layer : self.end_layer]:
hidden_states, residual = layer(positions, hidden_states, residual)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual,
})
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
"""Return expert parameter mapping for weight loading"""
return FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.num_experts,
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
expert_params_mapping = self.get_expert_mapping()
for name, loaded_weight in weights:
# Handle stacked parameters
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
if "mlp.experts" in name:
continue
name = name.replace(weight_name, param_name)
if (name.endswith(".bias") or name.endswith("_bias")) and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
if name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Handle expert parameters
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
continue
if (name.endswith(".bias") or name.endswith("_bias")) and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(
param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id,
)
break
else:
# Handle regular parameters
if (name.endswith(".bias") or name.endswith("_bias")) and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
# Fix gate weight naming: gate.linear.weight -> gate.weight
if ".gate.linear.weight" in name:
name = name.replace(".gate.linear.weight", ".gate.weight")
if name not in params_dict:
logger.warning(f"Parameter {name} not found in model")
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class KORMoMoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
"""KORMo MoE for Causal Language Modeling"""
fall_back_to_pt_during_load = False
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
self.model = KORMoMoeModel(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model"))
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
)
if self.config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
self.logits_processor = LogitsProcessor(config.vocab_size)
self.make_empty_intermediate_tensors = self.model.make_empty_intermediate_tensors
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, intermediate_tensors, inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
return self.model.get_expert_mapping()