|  | """ | 
					
						
						|  | vLLM-compatible implementation of KORMo MoE | 
					
						
						|  |  | 
					
						
						|  | This file should be placed in: /usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/kormo_moe.py | 
					
						
						|  |  | 
					
						
						|  | Usage: | 
					
						
						|  | from vllm import LLM | 
					
						
						|  |  | 
					
						
						|  | llm = LLM( | 
					
						
						|  | model="/path/to/kormo_moe_model", | 
					
						
						|  | trust_remote_code=False,  # Not needed with this implementation | 
					
						
						|  | dtype="float16", | 
					
						
						|  | ) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | from collections.abc import Iterable | 
					
						
						|  | from typing import Any, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from torch import nn | 
					
						
						|  |  | 
					
						
						|  | from vllm.attention import Attention | 
					
						
						|  | from vllm.compilation.decorators import support_torch_compile | 
					
						
						|  | from vllm.config import CacheConfig, VllmConfig | 
					
						
						|  | from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size | 
					
						
						|  | from vllm.logger import init_logger | 
					
						
						|  | from vllm.model_executor.layers.activation import SiluAndMul | 
					
						
						|  | from vllm.model_executor.layers.fused_moe import FusedMoE | 
					
						
						|  | from vllm.model_executor.layers.layernorm import RMSNorm | 
					
						
						|  | from vllm.model_executor.layers.linear import ( | 
					
						
						|  | MergedColumnParallelLinear, | 
					
						
						|  | QKVParallelLinear, | 
					
						
						|  | ReplicatedLinear, | 
					
						
						|  | RowParallelLinear, | 
					
						
						|  | ) | 
					
						
						|  | from vllm.model_executor.layers.logits_processor import LogitsProcessor | 
					
						
						|  | from vllm.model_executor.layers.quantization import QuantizationConfig | 
					
						
						|  | from vllm.model_executor.layers.rotary_embedding import get_rope | 
					
						
						|  | from vllm.model_executor.layers.vocab_parallel_embedding import ( | 
					
						
						|  | ParallelLMHead, | 
					
						
						|  | VocabParallelEmbedding, | 
					
						
						|  | ) | 
					
						
						|  | from vllm.model_executor.model_loader.weight_utils import default_weight_loader | 
					
						
						|  | from vllm.model_executor.sampling_metadata import SamplingMetadata | 
					
						
						|  | from vllm.sequence import IntermediateTensors | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | from transformers import PretrainedConfig | 
					
						
						|  | except ImportError: | 
					
						
						|  |  | 
					
						
						|  | PretrainedConfig = object | 
					
						
						|  |  | 
					
						
						|  | from .interfaces import SupportsLoRA, SupportsPP | 
					
						
						|  | from .utils import ( | 
					
						
						|  | AutoWeightsLoader, | 
					
						
						|  | extract_layer_index, | 
					
						
						|  | is_pp_missing_parameter, | 
					
						
						|  | make_empty_intermediate_tensors_factory, | 
					
						
						|  | make_layers, | 
					
						
						|  | maybe_prefix, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | logger = init_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KORMoMoeConfig(PretrainedConfig): | 
					
						
						|  | """Configuration class for KORMo MoE""" | 
					
						
						|  |  | 
					
						
						|  | model_type = "kormo_moe" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=112576, | 
					
						
						|  | hidden_size=6144, | 
					
						
						|  | intermediate_size=21504, | 
					
						
						|  | num_hidden_layers=48, | 
					
						
						|  | num_attention_heads=40, | 
					
						
						|  | num_key_value_heads=8, | 
					
						
						|  | hidden_act="silu", | 
					
						
						|  | max_position_embeddings=131072, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | rms_norm_eps=1e-05, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | pad_token_id=None, | 
					
						
						|  | bos_token_id=0, | 
					
						
						|  | eos_token_id=1, | 
					
						
						|  | tie_word_embeddings=False, | 
					
						
						|  | rope_theta=500000.0, | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | rope_scaling=None, | 
					
						
						|  | head_dim=128, | 
					
						
						|  |  | 
					
						
						|  | num_experts=2, | 
					
						
						|  | num_experts_per_tok=2, | 
					
						
						|  | moe_intermediate_size=None, | 
					
						
						|  | shared_expert_intermediate_size=None, | 
					
						
						|  | norm_topk_prob=True, | 
					
						
						|  | decoder_sparse_step=1, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.num_key_value_heads = num_key_value_heads or num_attention_heads | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.rms_norm_eps = rms_norm_eps | 
					
						
						|  | self.use_cache = use_cache | 
					
						
						|  | self.rope_theta = rope_theta | 
					
						
						|  | self.rope_scaling = rope_scaling | 
					
						
						|  | self.attention_dropout = attention_dropout | 
					
						
						|  | self.head_dim = head_dim or (self.hidden_size // self.num_attention_heads) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.num_experts = num_experts | 
					
						
						|  | self.num_experts_per_tok = num_experts_per_tok | 
					
						
						|  | self.moe_intermediate_size = ( | 
					
						
						|  | moe_intermediate_size if moe_intermediate_size is not None else intermediate_size | 
					
						
						|  | ) | 
					
						
						|  | self.shared_expert_intermediate_size = shared_expert_intermediate_size | 
					
						
						|  | self.norm_topk_prob = norm_topk_prob | 
					
						
						|  | self.decoder_sparse_step = decoder_sparse_step | 
					
						
						|  |  | 
					
						
						|  | super().__init__( | 
					
						
						|  | pad_token_id=pad_token_id, | 
					
						
						|  | bos_token_id=bos_token_id, | 
					
						
						|  | eos_token_id=eos_token_id, | 
					
						
						|  | tie_word_embeddings=tie_word_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KORMoMoEMLP(nn.Module): | 
					
						
						|  | """MLP for KORMo, used for shared expert""" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | hidden_size: int, | 
					
						
						|  | intermediate_size: int, | 
					
						
						|  | hidden_act: str, | 
					
						
						|  | quant_config: Optional[QuantizationConfig] = None, | 
					
						
						|  | reduce_results: bool = True, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.gate_up_proj = MergedColumnParallelLinear( | 
					
						
						|  | hidden_size, | 
					
						
						|  | [intermediate_size] * 2, | 
					
						
						|  | bias=False, | 
					
						
						|  | quant_config=quant_config, | 
					
						
						|  | ) | 
					
						
						|  | self.down_proj = RowParallelLinear( | 
					
						
						|  | intermediate_size, | 
					
						
						|  | hidden_size, | 
					
						
						|  | bias=False, | 
					
						
						|  | quant_config=quant_config, | 
					
						
						|  | reduce_results=reduce_results, | 
					
						
						|  | ) | 
					
						
						|  | if hidden_act != "silu": | 
					
						
						|  | raise ValueError(f"Unsupported activation: {hidden_act}. Only silu is supported.") | 
					
						
						|  | self.act_fn = SiluAndMul() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | gate_up, _ = self.gate_up_proj(x) | 
					
						
						|  | x = self.act_fn(gate_up) | 
					
						
						|  | x, _ = self.down_proj(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KORMoSparseMoeBlock(nn.Module): | 
					
						
						|  | """KORMo Sparse MoE Block optimized for vLLM""" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | config: KORMoMoeConfig, | 
					
						
						|  | quant_config: Optional[QuantizationConfig] = None, | 
					
						
						|  | prefix: str = "", | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.tp_size = get_tensor_model_parallel_world_size() | 
					
						
						|  |  | 
					
						
						|  | if self.tp_size > config.num_experts: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Tensor parallel size {self.tp_size} is greater than " | 
					
						
						|  | f"the number of experts {config.num_experts}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.experts = FusedMoE( | 
					
						
						|  | num_experts=config.num_experts, | 
					
						
						|  | top_k=config.num_experts_per_tok, | 
					
						
						|  | hidden_size=config.hidden_size, | 
					
						
						|  | intermediate_size=config.moe_intermediate_size, | 
					
						
						|  | reduce_results=False, | 
					
						
						|  | renormalize=config.norm_topk_prob, | 
					
						
						|  | quant_config=quant_config, | 
					
						
						|  | prefix=f"{prefix}.experts", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.gate = ReplicatedLinear( | 
					
						
						|  | config.hidden_size, | 
					
						
						|  | config.num_experts, | 
					
						
						|  | bias=False, | 
					
						
						|  | quant_config=None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if config.shared_expert_intermediate_size and config.shared_expert_intermediate_size > 0: | 
					
						
						|  | self.shared_expert = KORMoMoEMLP( | 
					
						
						|  | hidden_size=config.hidden_size, | 
					
						
						|  | intermediate_size=config.shared_expert_intermediate_size, | 
					
						
						|  | hidden_act=config.hidden_act, | 
					
						
						|  | quant_config=quant_config, | 
					
						
						|  | reduce_results=self.experts.must_reduce_shared_expert_outputs(), | 
					
						
						|  | ) | 
					
						
						|  | self.shared_expert_gate = nn.Linear(config.hidden_size, 1, bias=False) | 
					
						
						|  | else: | 
					
						
						|  | self.shared_expert = None | 
					
						
						|  | self.shared_expert_gate = None | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  |  | 
					
						
						|  | orig_shape = hidden_states.shape | 
					
						
						|  | hidden_dim = hidden_states.shape[-1] | 
					
						
						|  | hidden_states = hidden_states.view(-1, hidden_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | shared_output = None | 
					
						
						|  | if self.shared_expert is not None: | 
					
						
						|  | shared_output = self.shared_expert(hidden_states) | 
					
						
						|  | if self.shared_expert_gate is not None: | 
					
						
						|  | shared_output = F.sigmoid( | 
					
						
						|  | self.shared_expert_gate(hidden_states) | 
					
						
						|  | ) * shared_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | router_logits, _ = self.gate(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | final_hidden_states = self.experts( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | router_logits=router_logits, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if shared_output is not None: | 
					
						
						|  | final_hidden_states = final_hidden_states + shared_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.tp_size > 1: | 
					
						
						|  | final_hidden_states = self.experts.maybe_all_reduce_tensor_model_parallel( | 
					
						
						|  | final_hidden_states | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return final_hidden_states.view(orig_shape) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KORMoMoeAttention(nn.Module): | 
					
						
						|  | """KORMo MoE Attention mechanism""" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | hidden_size: int, | 
					
						
						|  | num_heads: int, | 
					
						
						|  | num_kv_heads: int, | 
					
						
						|  | rope_theta: float = 500000, | 
					
						
						|  | rope_scaling: Optional[dict[str, Any]] = None, | 
					
						
						|  | max_position_embeddings: int = 131072, | 
					
						
						|  | cache_config: Optional[CacheConfig] = None, | 
					
						
						|  | quant_config: Optional[QuantizationConfig] = None, | 
					
						
						|  | prefix: str = "", | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | tp_size = get_tensor_model_parallel_world_size() | 
					
						
						|  |  | 
					
						
						|  | self.total_num_heads = num_heads | 
					
						
						|  | assert self.total_num_heads % tp_size == 0 | 
					
						
						|  | self.num_heads = self.total_num_heads // tp_size | 
					
						
						|  |  | 
					
						
						|  | self.total_num_kv_heads = num_kv_heads | 
					
						
						|  | if self.total_num_kv_heads >= tp_size: | 
					
						
						|  | assert self.total_num_kv_heads % tp_size == 0 | 
					
						
						|  | else: | 
					
						
						|  | assert tp_size % self.total_num_kv_heads == 0 | 
					
						
						|  | self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) | 
					
						
						|  |  | 
					
						
						|  | self.head_dim = hidden_size // self.total_num_heads | 
					
						
						|  | self.q_size = self.num_heads * self.head_dim | 
					
						
						|  | self.kv_size = self.num_kv_heads * self.head_dim | 
					
						
						|  | self.scaling = self.head_dim**-0.5 | 
					
						
						|  | self.rope_theta = rope_theta | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  |  | 
					
						
						|  | self.qkv_proj = QKVParallelLinear( | 
					
						
						|  | hidden_size, | 
					
						
						|  | self.head_dim, | 
					
						
						|  | self.total_num_heads, | 
					
						
						|  | self.total_num_kv_heads, | 
					
						
						|  | bias=False, | 
					
						
						|  | quant_config=quant_config, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.o_proj = RowParallelLinear( | 
					
						
						|  | self.total_num_heads * self.head_dim, | 
					
						
						|  | hidden_size, | 
					
						
						|  | bias=False, | 
					
						
						|  | quant_config=quant_config, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.rotary_emb = get_rope( | 
					
						
						|  | self.head_dim, | 
					
						
						|  | rotary_dim=self.head_dim, | 
					
						
						|  | max_position=max_position_embeddings, | 
					
						
						|  | base=rope_theta, | 
					
						
						|  | rope_scaling=rope_scaling, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attn = Attention( | 
					
						
						|  | self.num_heads, | 
					
						
						|  | self.head_dim, | 
					
						
						|  | self.scaling, | 
					
						
						|  | num_kv_heads=self.num_kv_heads, | 
					
						
						|  | cache_config=cache_config, | 
					
						
						|  | quant_config=quant_config, | 
					
						
						|  | prefix=f"{prefix}.attn", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | positions: torch.Tensor, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | qkv, _ = self.qkv_proj(hidden_states) | 
					
						
						|  | q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) | 
					
						
						|  | q, k = self.rotary_emb(positions, q, k) | 
					
						
						|  | attn_output = self.attn(q, k, v) | 
					
						
						|  | output, _ = self.o_proj(attn_output) | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KORMoMoeDecoderLayer(nn.Module): | 
					
						
						|  | """KORMo MoE Decoder Layer""" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | config: KORMoMoeConfig, | 
					
						
						|  | cache_config: Optional[CacheConfig] = None, | 
					
						
						|  | quant_config: Optional[QuantizationConfig] = None, | 
					
						
						|  | prefix: str = "", | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.self_attn = KORMoMoeAttention( | 
					
						
						|  | hidden_size=self.hidden_size, | 
					
						
						|  | num_heads=config.num_attention_heads, | 
					
						
						|  | num_kv_heads=config.num_key_value_heads, | 
					
						
						|  | rope_theta=config.rope_theta, | 
					
						
						|  | rope_scaling=config.rope_scaling, | 
					
						
						|  | max_position_embeddings=config.max_position_embeddings, | 
					
						
						|  | cache_config=cache_config, | 
					
						
						|  | quant_config=quant_config, | 
					
						
						|  | prefix=f"{prefix}.self_attn", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.mlp = KORMoSparseMoeBlock( | 
					
						
						|  | config=config, | 
					
						
						|  | quant_config=quant_config, | 
					
						
						|  | prefix=f"{prefix}.mlp", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.pre_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.pre_mlp_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | positions: torch.Tensor, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | residual: Optional[torch.Tensor], | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  |  | 
					
						
						|  | if residual is None: | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.pre_attention_layernorm(hidden_states) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states, residual = self.pre_attention_layernorm(hidden_states, residual) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.self_attn( | 
					
						
						|  | positions=positions, | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, residual = self.pre_mlp_layernorm(hidden_states, residual) | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, residual | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @support_torch_compile | 
					
						
						|  | class KORMoMoeModel(nn.Module): | 
					
						
						|  | """KORMo MoE Model""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | config = vllm_config.model_config.hf_config | 
					
						
						|  | cache_config = vllm_config.cache_config | 
					
						
						|  | quant_config = vllm_config.quant_config | 
					
						
						|  |  | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = VocabParallelEmbedding( | 
					
						
						|  | config.vocab_size, | 
					
						
						|  | config.hidden_size, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.start_layer, self.end_layer, self.layers = make_layers( | 
					
						
						|  | config.num_hidden_layers, | 
					
						
						|  | lambda prefix: KORMoMoeDecoderLayer( | 
					
						
						|  | config=config, | 
					
						
						|  | cache_config=cache_config, | 
					
						
						|  | quant_config=quant_config, | 
					
						
						|  | prefix=prefix, | 
					
						
						|  | ), | 
					
						
						|  | prefix=f"{prefix}.layers", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( | 
					
						
						|  | ["hidden_states", "residual"], config.hidden_size | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | return self.embed_tokens(input_ids) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.Tensor, | 
					
						
						|  | positions: torch.Tensor, | 
					
						
						|  | intermediate_tensors: Optional[IntermediateTensors] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | ) -> Union[torch.Tensor, IntermediateTensors]: | 
					
						
						|  | if get_pp_group().is_first_rank: | 
					
						
						|  | if inputs_embeds is not None: | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = self.get_input_embeddings(input_ids) | 
					
						
						|  | residual = None | 
					
						
						|  | else: | 
					
						
						|  | assert intermediate_tensors is not None | 
					
						
						|  | hidden_states = intermediate_tensors["hidden_states"] | 
					
						
						|  | residual = intermediate_tensors["residual"] | 
					
						
						|  |  | 
					
						
						|  | for layer in self.layers[self.start_layer : self.end_layer]: | 
					
						
						|  | hidden_states, residual = layer(positions, hidden_states, residual) | 
					
						
						|  |  | 
					
						
						|  | if not get_pp_group().is_last_rank: | 
					
						
						|  | return IntermediateTensors({ | 
					
						
						|  | "hidden_states": hidden_states, | 
					
						
						|  | "residual": residual, | 
					
						
						|  | }) | 
					
						
						|  |  | 
					
						
						|  | hidden_states, _ = self.norm(hidden_states, residual) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  | def get_expert_mapping(self) -> list[tuple[str, str, int, str]]: | 
					
						
						|  | """Return expert parameter mapping for weight loading""" | 
					
						
						|  | return FusedMoE.make_expert_params_mapping( | 
					
						
						|  | ckpt_gate_proj_name="gate_proj", | 
					
						
						|  | ckpt_down_proj_name="down_proj", | 
					
						
						|  | ckpt_up_proj_name="up_proj", | 
					
						
						|  | num_experts=self.config.num_experts, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: | 
					
						
						|  | stacked_params_mapping = [ | 
					
						
						|  |  | 
					
						
						|  | ("qkv_proj", "q_proj", "q"), | 
					
						
						|  | ("qkv_proj", "k_proj", "k"), | 
					
						
						|  | ("qkv_proj", "v_proj", "v"), | 
					
						
						|  | ("gate_up_proj", "gate_proj", 0), | 
					
						
						|  | ("gate_up_proj", "up_proj", 1), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | params_dict = dict(self.named_parameters()) | 
					
						
						|  | loaded_params: set[str] = set() | 
					
						
						|  | expert_params_mapping = self.get_expert_mapping() | 
					
						
						|  |  | 
					
						
						|  | for name, loaded_weight in weights: | 
					
						
						|  |  | 
					
						
						|  | for param_name, weight_name, shard_id in stacked_params_mapping: | 
					
						
						|  | if weight_name not in name: | 
					
						
						|  | continue | 
					
						
						|  | if "mlp.experts" in name: | 
					
						
						|  | continue | 
					
						
						|  | name = name.replace(weight_name, param_name) | 
					
						
						|  | if (name.endswith(".bias") or name.endswith("_bias")) and name not in params_dict: | 
					
						
						|  | continue | 
					
						
						|  | if is_pp_missing_parameter(name, self): | 
					
						
						|  | continue | 
					
						
						|  | if name not in params_dict: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | param = params_dict[name] | 
					
						
						|  | weight_loader = param.weight_loader | 
					
						
						|  | weight_loader(param, loaded_weight, shard_id) | 
					
						
						|  | break | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | for mapping in expert_params_mapping: | 
					
						
						|  | param_name, weight_name, expert_id, shard_id = mapping | 
					
						
						|  | if weight_name not in name: | 
					
						
						|  | continue | 
					
						
						|  | name = name.replace(weight_name, param_name) | 
					
						
						|  |  | 
					
						
						|  | if is_pp_missing_parameter(name, self): | 
					
						
						|  | continue | 
					
						
						|  | if (name.endswith(".bias") or name.endswith("_bias")) and name not in params_dict: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | param = params_dict[name] | 
					
						
						|  | weight_loader = param.weight_loader | 
					
						
						|  | weight_loader( | 
					
						
						|  | param, | 
					
						
						|  | loaded_weight, | 
					
						
						|  | name, | 
					
						
						|  | shard_id=shard_id, | 
					
						
						|  | expert_id=expert_id, | 
					
						
						|  | ) | 
					
						
						|  | break | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if (name.endswith(".bias") or name.endswith("_bias")) and name not in params_dict: | 
					
						
						|  | continue | 
					
						
						|  | if is_pp_missing_parameter(name, self): | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ".gate.linear.weight" in name: | 
					
						
						|  | name = name.replace(".gate.linear.weight", ".gate.weight") | 
					
						
						|  |  | 
					
						
						|  | if name not in params_dict: | 
					
						
						|  | logger.warning(f"Parameter {name} not found in model") | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | param = params_dict[name] | 
					
						
						|  | weight_loader = getattr(param, "weight_loader", default_weight_loader) | 
					
						
						|  | weight_loader(param, loaded_weight) | 
					
						
						|  |  | 
					
						
						|  | loaded_params.add(name) | 
					
						
						|  |  | 
					
						
						|  | return loaded_params | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class KORMoMoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA): | 
					
						
						|  | """KORMo MoE for Causal Language Modeling""" | 
					
						
						|  |  | 
					
						
						|  | fall_back_to_pt_during_load = False | 
					
						
						|  | packed_modules_mapping = { | 
					
						
						|  | "qkv_proj": ["q_proj", "k_proj", "v_proj"], | 
					
						
						|  | "gate_up_proj": ["gate_proj", "up_proj"], | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): | 
					
						
						|  | super().__init__() | 
					
						
						|  | config = vllm_config.model_config.hf_config | 
					
						
						|  | quant_config = vllm_config.quant_config | 
					
						
						|  |  | 
					
						
						|  | self.config = config | 
					
						
						|  | self.quant_config = quant_config | 
					
						
						|  |  | 
					
						
						|  | self.model = KORMoMoeModel(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")) | 
					
						
						|  | self.lm_head = ParallelLMHead( | 
					
						
						|  | config.vocab_size, | 
					
						
						|  | config.hidden_size, | 
					
						
						|  | quant_config=quant_config, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.config.tie_word_embeddings: | 
					
						
						|  | self.lm_head.weight = self.model.embed_tokens.weight | 
					
						
						|  |  | 
					
						
						|  | self.logits_processor = LogitsProcessor(config.vocab_size) | 
					
						
						|  | self.make_empty_intermediate_tensors = self.model.make_empty_intermediate_tensors | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | return self.model.get_input_embeddings(input_ids) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.Tensor, | 
					
						
						|  | positions: torch.Tensor, | 
					
						
						|  | intermediate_tensors: Optional[IntermediateTensors] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | ) -> Union[torch.Tensor, IntermediateTensors]: | 
					
						
						|  | hidden_states = self.model(input_ids, positions, intermediate_tensors, inputs_embeds) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  | def compute_logits( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | sampling_metadata: SamplingMetadata, | 
					
						
						|  | ) -> Optional[torch.Tensor]: | 
					
						
						|  | logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) | 
					
						
						|  | return logits | 
					
						
						|  |  | 
					
						
						|  | def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: | 
					
						
						|  | loader = AutoWeightsLoader(self) | 
					
						
						|  | return loader.load_weights(weights) | 
					
						
						|  |  | 
					
						
						|  | def get_expert_mapping(self) -> list[tuple[str, str, int, str]]: | 
					
						
						|  | return self.model.get_expert_mapping() | 
					
						
						|  |  |