DinoBloom: A Foundation Model for Generalizable Cell Embeddings in Hematology

DinoBloom logo

DinoBloom builds upon DINOv2 (Meta AI) and is trained on 13 diverse publicly available datasets of single cells from peripheral blood and bone marrow.


πŸ“„ Paper β€’ πŸ’» GitHub β€’ πŸ“¦ Zenodo

🧠 Model Variants

DinoBloom is available in four sizes:

Model Feature Dim Parameters Checkpoint
DinoBloom-S 384 22M pytorch_model_s.bin
DinoBloom-B 768 86M pytorch_model_b.bin
DinoBloom-L 1024 304M pytorch_model_l.bin
DinoBloom-G 1536 1136M pytorch_model_g.bin

πŸš€ Usage

from huggingface_hub import hf_hub_download
import torch
import torch.nn as nn

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Choose variant: "s", "b", "l", or "g"
variant = "b"

# Configuration
variant_config = {
    "s": ("dinov2_vits14", 384),
    "b": ("dinov2_vitb14", 768),
    "l": ("dinov2_vitl14", 1024),
    "g": ("dinov2_vitg14", 1536),
}

dinov2_model, embed_dim = variant_config[variant]

# Load base DINOv2 model
model = torch.hub.load("facebookresearch/dinov2", dinov2_model)

# Download DinoBloom weights
ckpt_path = hf_hub_download(
    repo_id="MarrLab/DinoBloom",
    filename=f"pytorch_model_{variant}.bin"
)
ckpt = torch.load(ckpt_path, map_location="cpu")

num_tokens = int(1 + (224 / 14) ** 2)
model.pos_embed = nn.Parameter(torch.zeros(1, num_tokens, embed_dim))
model.load_state_dict(ckpt, strict=True)
model.to(device)
model.eval()

# Get transforms
from torchvision import transforms
transform = transforms.Compose([
    transforms.Resize((224,224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

# Apply to image
from PIL import Image
img = Image.open("path/to/cell_image")
img_tensor = transform(img).unsqueeze(0).to(device)

# Get features
with torch.no_grad():
    features = model(img_tensor)

print(f"Features shape: {features.shape}")  # [1, 768] for DinoBloom-B

πŸ“Š Model Performance

DinoBloom outperforms existing medical and non-medical vision models in:

  1. Linear probing and k-nearest neighbor evaluations for cell-type classification
  2. Weakly supervised multiple-instance learning (MIL) for acute myeloid leukemia subtyping

See our paper for detailed benchmarks.


πŸ”§ Requirements

pip install torch torchvision huggingface_hub

πŸ“š Citation

If you use DinoBloom in your research, please cite:

@inproceedings{koch2024dinobloom,
  title={DinoBloom: a foundation model for generalizable cell embeddings in hematology},
  author={Koch, Valentin and Wagner, Sophia J and Kazeminia, Salome and Sancar, Ece and Hehr, Matthias and Schnabel, Julia A and Peng, Tingying and Marr, Carsten},
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
  pages={520--530},
  year={2024},
  organization={Springer}
}

πŸ“– Related Work

DinoBloom builds upon:


πŸ“„ License

Apache 2.0 - See LICENSE file for details.


For questions or issues, please open an issue on GitHub or contact the authors.

Downloads last month
155
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support