| # MiniMax M2 模型 vLLM 部署指南 | |
| [英文版](./vllm_deploy_guide.md) | [中文版](./vllm_deploy_guide_cn.md) | |
| 我们推荐使用 [vLLM](https://docs.vllm.ai/en/stable/) 来部署 [MiniMax-M2](https://huggingface.co/MiniMaxAI/MiniMax-M2) 模型。vLLM 是一个高性能的推理引擎,其具有卓越的服务吞吐、高效智能的内存管理机制、强大的批量请求处理能力、深度优化的底层性能等特性。我们建议在部署之前查看 vLLM 的官方文档以检查硬件兼容性。 | |
| ## 本文档适用模型 | |
| 本文档适用以下模型,只需在部署时修改模型名称即可。 | |
| - [MiniMaxAI/MiniMax-M2](https://huggingface.co/MiniMaxAI/MiniMax-M2) | |
| 以下以 MiniMax-M2 为例说明部署流程。 | |
| ## 环境要求 | |
| - OS:Linux | |
| - Python:3.9 - 3.12 | |
| - GPU: | |
| - compute capability 7.0 or higher | |
| - 显存需求:权重需要 220 GB,每 1M 上下文 token 需要 240 GB | |
| 以下为推荐配置,实际需求请根据业务场景调整: | |
| - 96G x4 GPU:支持 40 万 token 的总上下文。 | |
| - 144G x8 GPU:支持长达 300 万 token 的总上下文。 | |
| ## 使用 Python 部署 | |
| 建议使用虚拟环境(如 **venv**、**conda**、**uv**)以避免依赖冲突。 | |
| 建议在全新的 Python 环境中安装 vLLM: | |
| ```bash | |
| uv pip install 'triton-kernels @ git+https://github.com/triton-lang/triton.git@v3.5.0#subdirectory=python/triton_kernels' vllm --extra-index-url https://wheels.vllm.ai/nightly --prerelease=allow | |
| ``` | |
| 运行如下命令启动 vLLM 服务器,vLLM 会自动从 Huggingface 下载并缓存 MiniMax-M2 模型。 | |
| 4 卡部署命令: | |
| ```bash | |
| SAFETENSORS_FAST_GPU=1 vllm serve \ | |
| MiniMaxAI/MiniMax-M2 --trust-remote-code \ | |
| --tensor-parallel-size 4 \ | |
| --enable-auto-tool-choice --tool-call-parser minimax_m2 \ | |
| --reasoning-parser minimax_m2_append_think | |
| ``` | |
| 8 卡部署命令: | |
| ```bash | |
| SAFETENSORS_FAST_GPU=1 vllm serve \ | |
| MiniMaxAI/MiniMax-M2 --trust-remote-code \ | |
| --enable_expert_parallel --tensor-parallel-size 8 \ | |
| --enable-auto-tool-choice --tool-call-parser minimax_m2 \ | |
| --reasoning-parser minimax_m2_append_think | |
| ``` | |
| ## 测试部署 | |
| 启动后,可以通过如下命令测试 vLLM OpenAI 兼容接口: | |
| ```bash | |
| curl http://localhost:8000/v1/chat/completions \ | |
| -H "Content-Type: application/json" \ | |
| -d '{ | |
| "model": "MiniMaxAI/MiniMax-M2", | |
| "messages": [ | |
| {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
| {"role": "user", "content": [{"type": "text", "text": "Who won the world series in 2020?"}]} | |
| ] | |
| }' | |
| ``` | |
| ## 常见问题 | |
| ### Huggingface 网络问题 | |
| 如果遇到网络问题,可以设置代理后再进行拉取。 | |
| ```bash | |
| export HF_ENDPOINT=https://hf-mirror.com | |
| ``` | |
| ### MiniMax-M2 model is not currently supported | |
| 该 vLLM 版本过旧,请升级到最新版本。 | |
| ### torch.AcceleratorError: CUDA error: an illegal memory access was encountered | |
| 在启动参数添加 `--compilation-config "{\"cudagraph_mode\": \"PIECEWISE\"}"` 可以解决。例如: | |
| ```bash | |
| SAFETENSORS_FAST_GPU=1 vllm serve \ | |
| MiniMaxAI/MiniMax-M2 --trust-remote-code \ | |
| --enable_expert_parallel --tensor-parallel-size 8 \ | |
| --enable-auto-tool-choice --tool-call-parser minimax_m2 \ | |
| --reasoning-parser minimax_m2_append_think \ | |
| --compilation-config "{\"cudagraph_mode\": \"PIECEWISE\"}" | |
| ``` | |
| ## 获取支持 | |
| 如果在部署 MiniMax 模型过程中遇到任何问题: | |
| - 通过邮箱 [model@minimax.io](mailto:model@minimax.io) 等官方渠道联系我们的技术支持团队 | |
| - 在我们的 [GitHub](https://github.com/MiniMax-AI) 仓库提交 Issue | |
| 我们会持续优化模型的部署体验,欢迎反馈! | |