Enhanced Gradient Boosting for Complex Pattern Discovery

πŸ”¬ Research Paper & Benchmark Framework

Independent research demonstrating 86% accuracy improvement over LightGBM through fundamental mathematical advancements in gradient boosting.

πŸ“Š Benchmark Results

Metric Our Method LightGBM Improvement
RΒ² Score 0.82 0.44 +86%
Best Tuned RΒ² 0.82 0.65 +26%
RMSE 200.38 370.16 -46%

🎯 Key Innovation

This research addresses fundamental mathematical limitations in gradient boosting pattern discovery, enabling access to complex patterns that traditional methods cannot reach.

πŸ“ Repository Contents

  • Research Paper - Detailed methodology and results
  • Dataset Generator (dataset_generator.py) - Benchmark dataset code
  • Benchmark Results (benchmark_results/) - Complete experimental data
  • Usage Examples (example_usage.py) - How to reproduce results

πŸš€ Quick Start

from dataset_generator import create_extended_dataset

# Generate benchmark dataset
X, y = create_extended_dataset(n_samples=50000, random_state=42)
print(f"Dataset shape: {X.shape}")
print(f"Target range: [{y.min():.2f}, {y.max():.2f}]")


## πŸ“ž Research Contact

**For collaboration and evaluation:**

**Email:** murtuzamomin92@gmail.com  
**LinkedIn:** (https://www.linkedin.com/in/mohammad-murtuza-1473bb226?lipi=urn%3Ali%3Apage%3Ad_flagship3_profile_view_base_contact_details%3B8a3bWfkWR%2Fekw8IoIe%2BELA%3D%3D)  
**GitHub:** https://github.com/murtuzamomin/complex-ml-benchmark

*Serious research and industry inquiries welcome*
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support