|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.utils import ( |
|
|
logging, ) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class BeeConfig(PretrainedConfig): |
|
|
model_type = "Bee" |
|
|
attribute_map = { |
|
|
"image_token_id": "image_token_index", |
|
|
} |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vision_config=None, |
|
|
text_config=None, |
|
|
image_token_index=151646, |
|
|
projector_hidden_act="gelu", |
|
|
vision_feature_select_strategy="full", |
|
|
vision_feature_layer=-1, |
|
|
vision_aspect_ratio="anyres_max_6", |
|
|
image_grid_pinpoints=None, |
|
|
tie_word_embeddings=False, |
|
|
multimodal_projector_bias=True, |
|
|
max_position_embeddings=32768, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
from transformers.models.auto import CONFIG_MAPPING |
|
|
self.image_token_index = image_token_index |
|
|
self.projector_hidden_act = projector_hidden_act |
|
|
self.multimodal_projector_bias = multimodal_projector_bias |
|
|
|
|
|
if vision_feature_select_strategy not in ["default", "full"]: |
|
|
raise ValueError( |
|
|
"vision_feature_select_strategy should be one of 'default', 'full'." |
|
|
f"Got: {vision_feature_select_strategy}") |
|
|
|
|
|
self.vision_feature_select_strategy = vision_feature_select_strategy |
|
|
self.vision_feature_layer = vision_feature_layer |
|
|
self.vision_aspect_ratio = vision_aspect_ratio |
|
|
|
|
|
image_grid_pinpoints = ( |
|
|
image_grid_pinpoints if image_grid_pinpoints is not None else |
|
|
[[384, 768], [768, 384], [768, 768], [1152, 384], [384, 1152]]) |
|
|
self.image_grid_pinpoints = image_grid_pinpoints |
|
|
|
|
|
if isinstance(vision_config, dict): |
|
|
vision_config["model_type"] = (vision_config["model_type"] |
|
|
if "model_type" in vision_config |
|
|
else "siglip_vision_model") |
|
|
vision_config = CONFIG_MAPPING[vision_config["model_type"]]( |
|
|
**vision_config) |
|
|
elif vision_config is None: |
|
|
vision_config = CONFIG_MAPPING["siglip_vision_model"]( |
|
|
hidden_size=1152, |
|
|
intermediate_size=4304, |
|
|
patch_size=14, |
|
|
image_size=384, |
|
|
num_hidden_layers=26, |
|
|
num_attention_heads=14, |
|
|
vision_use_head=False, |
|
|
) |
|
|
|
|
|
self.vision_config = vision_config |
|
|
|
|
|
if isinstance(text_config, dict): |
|
|
text_config["model_type"] = text_config[ |
|
|
"model_type"] if "model_type" in text_config else "qwen2" |
|
|
text_config = CONFIG_MAPPING[text_config["model_type"]]( |
|
|
**text_config) |
|
|
elif text_config is None: |
|
|
text_config = CONFIG_MAPPING["qwen2"]() |
|
|
|
|
|
self.text_config = text_config |
|
|
|
|
|
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) |
|
|
|
|
|
|
|
|
__all__ = ["BeeConfig"] |
|
|
|