Improve model card: Add paper/abstract sections and HF Space link

#2
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +119 -30
README.md CHANGED
@@ -1,20 +1,29 @@
1
  ---
2
- license: apache-2.0
3
- pipeline_tag: image-text-to-text
4
- library_name: transformers
5
  base_model:
6
- - OpenGVLab/InternVL3_5-1B-MPO
7
- base_model_relation: finetune
8
  datasets:
9
- - OpenGVLab/MMPR-v1.2
10
- - OpenGVLab/MMPR-Tiny
11
  language:
12
- - multilingual
 
 
 
13
  tags:
14
- - internvl
15
- - custom_code
 
16
  ---
17
 
 
 
 
 
 
 
 
 
 
18
  # InternVL3_5-1B
19
 
20
  [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271) [\[📜 InternVL2.5-MPO\]](https://huggingface.co/papers/2411.10442) [\[📜 InternVL3\]](https://huggingface.co/papers/2504.10479) [\[📜 InternVL3.5\]](https://huggingface.co/papers/2508.18265)
@@ -529,40 +538,50 @@ generation_config = dict(max_new_tokens=1024, do_sample=True)
529
  # pure-text conversation (纯文本对话)
530
  question = 'Hello, who are you?'
531
  response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
532
- print(f'User: {question}\nAssistant: {response}')
 
533
 
534
  question = 'Can you tell me a story?'
535
  response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
536
- print(f'User: {question}\nAssistant: {response}')
 
537
 
538
  # single-image single-round conversation (单图单轮对话)
539
- question = '<image>\nPlease describe the image shortly.'
 
540
  response = model.chat(tokenizer, pixel_values, question, generation_config)
541
- print(f'User: {question}\nAssistant: {response}')
 
542
 
543
  # single-image multi-round conversation (单图多轮对话)
544
- question = '<image>\nPlease describe the image in detail.'
 
545
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
546
- print(f'User: {question}\nAssistant: {response}')
 
547
 
548
  question = 'Please write a poem according to the image.'
549
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
550
- print(f'User: {question}\nAssistant: {response}')
 
551
 
552
  # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
553
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
554
  pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
555
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
556
 
557
- question = '<image>\nDescribe the two images in detail.'
 
558
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
559
  history=None, return_history=True)
560
- print(f'User: {question}\nAssistant: {response}')
 
561
 
562
  question = 'What are the similarities and differences between these two images.'
563
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
564
  history=history, return_history=True)
565
- print(f'User: {question}\nAssistant: {response}')
 
566
 
567
  # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
568
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
@@ -570,17 +589,21 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1
570
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
571
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
572
 
573
- question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
 
 
574
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
575
  num_patches_list=num_patches_list,
576
  history=None, return_history=True)
577
- print(f'User: {question}\nAssistant: {response}')
 
578
 
579
  question = 'What are the similarities and differences between these two images.'
580
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
581
  num_patches_list=num_patches_list,
582
  history=history, return_history=True)
583
- print(f'User: {question}\nAssistant: {response}')
 
584
 
585
  # batch inference, single image per sample (单图批处理)
586
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
@@ -588,13 +611,15 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1
588
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
589
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
590
 
591
- questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
 
592
  responses = model.batch_chat(tokenizer, pixel_values,
593
  num_patches_list=num_patches_list,
594
  questions=questions,
595
  generation_config=generation_config)
596
  for question, response in zip(questions, responses):
597
- print(f'User: {question}\nAssistant: {response}')
 
598
 
599
  # video multi-round conversation (视频多轮对话)
600
  def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
@@ -632,17 +657,24 @@ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=3
632
  video_path = './examples/red-panda.mp4'
633
  pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
634
  pixel_values = pixel_values.to(torch.bfloat16).cuda()
635
- video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
 
636
  question = video_prefix + 'What is the red panda doing?'
637
- # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
 
 
 
 
638
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
639
  num_patches_list=num_patches_list, history=None, return_history=True)
640
- print(f'User: {question}\nAssistant: {response}')
 
641
 
642
  question = 'Describe this video in detail.'
643
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
644
  num_patches_list=num_patches_list, history=history, return_history=True)
645
- print(f'User: {question}\nAssistant: {response}')
 
646
  ```
647
 
648
  #### Streaming Output
@@ -726,7 +758,9 @@ image_urls=[
726
 
727
  images = [load_image(img_url) for img_url in image_urls]
728
  # Numbering images improves multi-image conversations
729
- response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
 
 
730
  print(response.text)
731
  ```
732
 
@@ -828,4 +862,59 @@ If you find this project useful in your research, please consider citing:
828
  journal={arXiv preprint arXiv:2508.18265},
829
  year={2025}
830
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
831
  ```
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model:
3
+ - OpenGVLab/InternVL3_5-1B-MPO
 
4
  datasets:
5
+ - OpenGVLab/MMPR-v1.2
6
+ - OpenGVLab/MMPR-Tiny
7
  language:
8
+ - multilingual
9
+ library_name: transformers
10
+ license: apache-2.0
11
+ pipeline_tag: image-text-to-text
12
  tags:
13
+ - internvl
14
+ - custom_code
15
+ base_model_relation: finetune
16
  ---
17
 
18
+ # Paper: Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling
19
+ The model series InternVL 3.5 builds upon advancements presented in the paper [Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling](https://huggingface.co/papers/2412.05271).
20
+
21
+ ## Abstract
22
+ We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality. In this work, we delve into the relationship between model scaling and performance, systematically exploring the performance trends in vision encoders, language models, dataset sizes, and test-time configurations. Through extensive evaluations on a wide range of benchmarks, including multi-discipline reasoning, document understanding, multi-image / video understanding, real-world comprehension, multimodal hallucination detection, visual grounding, multilingual capabilities, and pure language processing, InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet. Notably, our model is the first open-source MLLMs to surpass 70% on the MMMU benchmark, achieving a 3.7-point improvement through Chain-of-Thought (CoT) reasoning and showcasing strong potential for test-time scaling. We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems. HuggingFace demo see this https URL
23
+
24
+ ## Hugging Face Space
25
+ Link to the official Hugging Face Space: [OpenGVLab/InternVL](https://huggingface.co/spaces/OpenGVLab/InternVL)
26
+
27
  # InternVL3_5-1B
28
 
29
  [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271) [\[📜 InternVL2.5-MPO\]](https://huggingface.co/papers/2411.10442) [\[📜 InternVL3\]](https://huggingface.co/papers/2504.10479) [\[📜 InternVL3.5\]](https://huggingface.co/papers/2508.18265)
 
538
  # pure-text conversation (纯文本对话)
539
  question = 'Hello, who are you?'
540
  response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
541
+ print(f'User: {question}
542
+ Assistant: {response}')
543
 
544
  question = 'Can you tell me a story?'
545
  response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
546
+ print(f'User: {question}
547
+ Assistant: {response}')
548
 
549
  # single-image single-round conversation (单图单轮对话)
550
+ question = '<image>
551
+ Please describe the image shortly.'
552
  response = model.chat(tokenizer, pixel_values, question, generation_config)
553
+ print(f'User: {question}
554
+ Assistant: {response}')
555
 
556
  # single-image multi-round conversation (单图多轮对话)
557
+ question = '<image>
558
+ Please describe the image in detail.'
559
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
560
+ print(f'User: {question}
561
+ Assistant: {response}')
562
 
563
  question = 'Please write a poem according to the image.'
564
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
565
+ print(f'User: {question}
566
+ Assistant: {response}')
567
 
568
  # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
569
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
570
  pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
571
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
572
 
573
+ question = '<image>
574
+ Describe the two images in detail.'
575
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
576
  history=None, return_history=True)
577
+ print(f'User: {question}
578
+ Assistant: {response}')
579
 
580
  question = 'What are the similarities and differences between these two images.'
581
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
582
  history=history, return_history=True)
583
+ print(f'User: {question}
584
+ Assistant: {response}')
585
 
586
  # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
587
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
 
589
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
590
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
591
 
592
+ question = 'Image-1: <image>
593
+ Image-2: <image>
594
+ Describe the two images in detail.'
595
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
596
  num_patches_list=num_patches_list,
597
  history=None, return_history=True)
598
+ print(f'User: {question}
599
+ Assistant: {response}')
600
 
601
  question = 'What are the similarities and differences between these two images.'
602
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
603
  num_patches_list=num_patches_list,
604
  history=history, return_history=True)
605
+ print(f'User: {question}
606
+ Assistant: {response}')
607
 
608
  # batch inference, single image per sample (单图批处理)
609
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
 
611
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
612
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
613
 
614
+ questions = ['<image>
615
+ Describe the image in detail.'] * len(num_patches_list)
616
  responses = model.batch_chat(tokenizer, pixel_values,
617
  num_patches_list=num_patches_list,
618
  questions=questions,
619
  generation_config=generation_config)
620
  for question, response in zip(questions, responses):
621
+ print(f'User: {question}
622
+ Assistant: {response}')
623
 
624
  # video multi-round conversation (视频多轮对话)
625
  def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
 
657
  video_path = './examples/red-panda.mp4'
658
  pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
659
  pixel_values = pixel_values.to(torch.bfloat16).cuda()
660
+ video_prefix = ''.join([f'Frame{i+1}: <image>
661
+ ' for i in range(len(num_patches_list))])
662
  question = video_prefix + 'What is the red panda doing?'
663
+ # Frame1: <image>
664
+ Frame2: <image>
665
+ ...
666
+ Frame8: <image>
667
+ {question}
668
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
669
  num_patches_list=num_patches_list, history=None, return_history=True)
670
+ print(f'User: {question}
671
+ Assistant: {response}')
672
 
673
  question = 'Describe this video in detail.'
674
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
675
  num_patches_list=num_patches_list, history=history, return_history=True)
676
+ print(f'User: {question}
677
+ Assistant: {response}')
678
  ```
679
 
680
  #### Streaming Output
 
758
 
759
  images = [load_image(img_url) for img_url in image_urls]
760
  # Numbering images improves multi-image conversations
761
+ response = pipe((f'Image-1: {IMAGE_TOKEN}
762
+ Image-2: {IMAGE_TOKEN}
763
+ describe these two images', images))
764
  print(response.text)
765
  ```
766
 
 
862
  journal={arXiv preprint arXiv:2508.18265},
863
  year={2025}
864
  }
865
+ @article{zhu2025internvl3,
866
+ title={Internvl3: Exploring advanced training and test-time recipes for open-source multimodal models},
867
+ author={Zhu, Jinguo and Wang, Weiyun and Chen, Zhe and Liu, Zhaoyang and Ye, Shenglong and Gu, Lixin and Tian, Hao and Duan, Yuchen and Su, Weijie and Shao, Jie and others},
868
+ journal={arXiv preprint arXiv:2504.10479},
869
+ year={2025}
870
+ }
871
+ @article{chen2024expanding,
872
+ title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
873
+ author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
874
+ journal={arXiv preprint arXiv:2412.05271},
875
+ year={2024}
876
+ }
877
+ @article{wang2024mpo,
878
+ title={Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization},
879
+ author={Wang, Weiyun and Chen, Zhe and Wang, Wenhai and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Zhu, Jinguo and Zhu, Xizhou and Lu, Lewei and Qiao, Yu and Dai, Jifeng},
880
+ journal={arXiv preprint arXiv:2411.10442},
881
+ year={2024}
882
+ }
883
+ @article{gao2024mini,
884
+ title={Mini-InternVL: a flexible-transfer pocket multi-modal model with 5\% parameters and 90\% performance},
885
+ author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
886
+ journal={Visual Intelligence},
887
+ volume={2},
888
+ number={1},
889
+ pages={1--17},
890
+ year={2024},
891
+ publisher={Springer}
892
+ }
893
+ @article{chen2024far,
894
+ title={How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites},
895
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
896
+ journal={Science China Information Sciences},
897
+ volume={67},
898
+ number={12},
899
+ pages={220101},
900
+ year={2024},
901
+ publisher={Springer}
902
+ }
903
+ @inproceedings{chen2024internvl,
904
+ title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
905
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
906
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
907
+ pages={24185--24198},
908
+ year={2024}
909
+ }
910
  ```
911
+
912
+ ## Acknowledgement
913
+
914
+ InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!
915
+
916
+ ______________________________________________________________________
917
+
918
+ Scan the following QR Code, join our WeChat group.
919
+
920
+ <p align="center"><img width="300" alt="image" src="https://github.com/user-attachments/assets/f776df09-ebba-4fd5-80c2-fec4ff1518be"></p>