Add `openpeerllm` as library_name

#1
by Wauplin HF Staff - opened
Files changed (1) hide show
  1. README.md +208 -208
README.md CHANGED
@@ -1,209 +1,209 @@
1
- ---
2
- language:
3
- - en
4
- license: mit
5
- library_name: pytorch
6
- pipeline_tag: text-generation
7
- tags:
8
- - pytorch
9
- - causal-lm
10
- - decentralized-learning
11
- - transformer
12
- - boinc
13
- - decent-torch
14
- - lonscript
15
- datasets:
16
- - custom
17
- model-index:
18
- - name: OpenPeerLLM
19
- results:
20
- - task:
21
- name: Language Modeling
22
- type: text-generation
23
- dataset:
24
- name: Custom Text Dataset
25
- type: text
26
- metrics:
27
- - name: Epoch
28
- type: number
29
- value: 2
30
- - name: Model Size
31
- type: text
32
- value: "1.82 GB"
33
- - name: Run Time
34
- type: text
35
- value: "2.5 minutes on Intel UHD Graphics 630"
36
- - name: Loss
37
- type: cross-entropy
38
- value: 7.11
39
- ---
40
-
41
- # OpenPeerLLM: A Decentralized Large Language Model
42
-
43
- [![DOI](https://img.shields.io/badge/DOI-10.57967%2Fhf%2F6469-blue.svg)](https://doi.org/10.57967/hf/6469)
44
-
45
- This project implements a decentralized Large Language Model (LLM) that utilizes DecentTorch, Huggingface Transformers, BOINC, and the decentralized-internet SDK. The model incorporates LonScript grammar for enhanced language understanding and leverages OpenPeer for decentralized training and inference.
46
-
47
- ## Author Information
48
- - **Author:** Andrew Magdy Kamal Nassief
49
- - **Year:** 2025
50
- - **Publisher:** Stark Publishing Group
51
- - **Journal:** Hugging Face Model Hub
52
-
53
- ## Features
54
-
55
- - Decentralized model architecture using DecentTorch
56
- - Distributed computation through BOINC integration
57
- - OpenPeer network integration for peer-to-peer model training
58
- - LonScript-inspired grammar parsing system
59
- - Deep reasoning capabilities following LLM standards
60
-
61
- ## Installation
62
-
63
- 1. Install the required dependencies:
64
- ```bash
65
- pip install -r requirements.txt
66
- ```
67
-
68
- 2. Ensure you have Mojo runtime installed for enhanced performance.
69
-
70
- ## Usage
71
-
72
- ```python
73
- from src.model import DecentralizedLLM
74
- from src.grammar import LonScriptGrammar
75
-
76
- # Initialize the model
77
- model = DecentralizedLLM()
78
- grammar = LonScriptGrammar()
79
-
80
- # Use the model for inference
81
- response = model.reason("context", "query")
82
- ```
83
-
84
- ## Training Details
85
-
86
- ### Training Data
87
- The model is trained on the [awesome-chatgpt-prompts](https://huggingface.co/datasets/fka/awesome-chatgpt-prompts) dataset, which contains diverse prompt-completion pairs. This dataset helps the model understand various roles and contexts, making it suitable for a wide range of applications.
88
-
89
- ### Training Procedure
90
- - **Architecture:** 12-layer transformer with 768 hidden dimensions and 12 attention heads
91
- - **Optimizer:** AdamW with learning rate 5e-5
92
- - **Batch Size:** 8
93
- - **Training Steps:** 10,000
94
- - **Warmup Steps:** 1,000
95
- - **Hardware:** Distributed across peer network nodes
96
-
97
- ## Evaluation Results
98
-
99
- Initial testing shows promising results:
100
- - **Final Epoch:** 2
101
- - **Model Size:** 1.82 GB
102
- - **Total Run Time:** 2.5 minutes on Intel UHD Graphics 630
103
- - **Loss:** 7.11
104
- - **Perplexity:** 1223.8
105
- - **Accuracy:** 78.5%
106
- - **Response Coherence:** 82.1%
107
- - **Peer Network Efficiency:** 91.2%
108
-
109
- ### Metrics Explanation
110
-
111
- #### Test Calculations and Methodology
112
-
113
- Our evaluation metrics were computed using the following methodology:
114
-
115
- 1. **Training Progression**
116
- - Total Steps = epochs × steps_per_epoch = 2 × 10,000 = 20,000
117
- - Samples Processed = total_steps × batch_size = 20,000 × 8 = 160,000
118
- - Average Time/Epoch = 75 seconds on Intel UHD Graphics 630
119
-
120
- 2. **Model Storage Analysis**
121
- - Parameter Count = layers × hidden_dim² = 12 × 768² ≈ 7.1M
122
- - Network State Size = 1.82 GB (measured post-training)
123
- - Includes: weights, biases, peer coordination tables
124
-
125
- 3. **Performance Metrics**
126
- - Cross-Entropy Loss = -∑(y_true * log(y_pred)) = 7.11
127
- - Perplexity = exp(cross_entropy) = exp(7.11) ≈ 1223.8
128
- - Token Accuracy = correct_predictions/total_tokens × 100 = 78.5%
129
-
130
- 4. **Output Evaluation**
131
- - Coherence Score: Based on inter-sentence relationship strength
132
- - Measured across 1000 generated responses
133
- - Average semantic link score: 82.1%
134
-
135
- 5. **Network Metrics**
136
- - Task Completion Rate = successful_tasks/total_tasks × 100 = 91.2%
137
- - Measured across distributed training operations
138
- - Accounts for node synchronization success
139
-
140
- #### Metric Descriptions
141
-
142
- - **Training Progress**: Two complete dataset passes, processing 160,000 total samples through 20,000 batched steps.
143
-
144
- - **Model Scale**: Neural network deployment package of 1.82 GB, encompassing parameter matrices and distributed coordination components.
145
-
146
- - **Validation Results**: Cross-entropy of 7.11 yields perplexity of 1223.8, indicating the model's token prediction spread across vocabulary space.
147
-
148
- - **Token Precision**: Successfully predicted 78.5% of next tokens in held-out validation data, tested against reference completions.
149
-
150
- - **Generation Quality**: Achieved 82.1% semantic continuity score across multi-sentence outputs, based on contextual alignment measurements.
151
-
152
- - **Distributed Performance**: Maintained 91.2% task execution success rate across peer nodes during distributed operations.
153
-
154
- - **Output Quality**: Automated analysis of 82.1% reflects the generated text's internal consistency, measuring how well each new statement connects to and builds upon previous ones.
155
-
156
- - **Network Performance**: Distributed training achieved 91.2% task throughput, indicating the proportion of successfully coordinated computation across the peer-to-peer node network.
157
-
158
- ## Limitations & Biases
159
-
160
- 1. **Current Limitations:**
161
- - Maximum sequence length of 1024 tokens
162
- - Requires stable network connection for peer-to-peer operations
163
- - Limited support for non-English languages
164
-
165
- 2. **Known Biases:**
166
- - Training data may contain societal biases
167
- - Peer network distribution may favor certain geographic regions
168
- - Response quality depends on active peer participation
169
-
170
- ## Environmental Impact
171
-
172
- The model is designed to minimize environmental impact through:
173
- - Efficient resource distribution across peer networks
174
- - Multithreading and parallel processing optimization
175
- - Smart load balancing among participating nodes
176
- - Reduced central server dependency
177
- - Optimized computational resource sharing
178
-
179
- ## Architecture
180
-
181
- The system consists of several key components:
182
-
183
- 1. **DecentralizedLLM:** The main model class that integrates various components
184
- 2. **LonScriptGrammar:** Grammar parsing system inspired by LonScript
185
- 3. **BOINC Integration:** For distributed computation
186
- 4. **OpenPeer Network:** For decentralized training and inference
187
-
188
- ## License
189
-
190
- This project is licensed under multiple licenses to ensure maximum flexibility and openness:
191
- - OPNL and OPNL-2 for the decentralized protocol aspects
192
- - MIT License for the software implementation
193
- - Creative Commons Attribution 4.0 International (CC-BY-4.0) for documentation and models
194
-
195
- ## Citation
196
-
197
- ```bibtex
198
- @misc{openpeer-llm,
199
- author = {Andrew Magdy Kamal Nassief},
200
- title = {OpenPeerLLM: A Decentralized Language Model},
201
- year = {2025},
202
- publisher = {Stark Publishing Group},
203
- journal = {Hugging Face Model Hub}
204
- }
205
- ```
206
-
207
- ## Contributing
208
-
209
  Contributions are welcome! Please feel free to submit a Pull Request.
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ library_name: openpeerllm
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - pytorch
9
+ - causal-lm
10
+ - decentralized-learning
11
+ - transformer
12
+ - boinc
13
+ - decent-torch
14
+ - lonscript
15
+ datasets:
16
+ - custom
17
+ model-index:
18
+ - name: OpenPeerLLM
19
+ results:
20
+ - task:
21
+ name: Language Modeling
22
+ type: text-generation
23
+ dataset:
24
+ name: Custom Text Dataset
25
+ type: text
26
+ metrics:
27
+ - name: Epoch
28
+ type: number
29
+ value: 2
30
+ - name: Model Size
31
+ type: text
32
+ value: "1.82 GB"
33
+ - name: Run Time
34
+ type: text
35
+ value: "2.5 minutes on Intel UHD Graphics 630"
36
+ - name: Loss
37
+ type: cross-entropy
38
+ value: 7.11
39
+ ---
40
+
41
+ # OpenPeerLLM: A Decentralized Large Language Model
42
+
43
+ [![DOI](https://img.shields.io/badge/DOI-10.57967%2Fhf%2F6469-blue.svg)](https://doi.org/10.57967/hf/6469)
44
+
45
+ This project implements a decentralized Large Language Model (LLM) that utilizes DecentTorch, Huggingface Transformers, BOINC, and the decentralized-internet SDK. The model incorporates LonScript grammar for enhanced language understanding and leverages OpenPeer for decentralized training and inference.
46
+
47
+ ## Author Information
48
+ - **Author:** Andrew Magdy Kamal Nassief
49
+ - **Year:** 2025
50
+ - **Publisher:** Stark Publishing Group
51
+ - **Journal:** Hugging Face Model Hub
52
+
53
+ ## Features
54
+
55
+ - Decentralized model architecture using DecentTorch
56
+ - Distributed computation through BOINC integration
57
+ - OpenPeer network integration for peer-to-peer model training
58
+ - LonScript-inspired grammar parsing system
59
+ - Deep reasoning capabilities following LLM standards
60
+
61
+ ## Installation
62
+
63
+ 1. Install the required dependencies:
64
+ ```bash
65
+ pip install -r requirements.txt
66
+ ```
67
+
68
+ 2. Ensure you have Mojo runtime installed for enhanced performance.
69
+
70
+ ## Usage
71
+
72
+ ```python
73
+ from src.model import DecentralizedLLM
74
+ from src.grammar import LonScriptGrammar
75
+
76
+ # Initialize the model
77
+ model = DecentralizedLLM()
78
+ grammar = LonScriptGrammar()
79
+
80
+ # Use the model for inference
81
+ response = model.reason("context", "query")
82
+ ```
83
+
84
+ ## Training Details
85
+
86
+ ### Training Data
87
+ The model is trained on the [awesome-chatgpt-prompts](https://huggingface.co/datasets/fka/awesome-chatgpt-prompts) dataset, which contains diverse prompt-completion pairs. This dataset helps the model understand various roles and contexts, making it suitable for a wide range of applications.
88
+
89
+ ### Training Procedure
90
+ - **Architecture:** 12-layer transformer with 768 hidden dimensions and 12 attention heads
91
+ - **Optimizer:** AdamW with learning rate 5e-5
92
+ - **Batch Size:** 8
93
+ - **Training Steps:** 10,000
94
+ - **Warmup Steps:** 1,000
95
+ - **Hardware:** Distributed across peer network nodes
96
+
97
+ ## Evaluation Results
98
+
99
+ Initial testing shows promising results:
100
+ - **Final Epoch:** 2
101
+ - **Model Size:** 1.82 GB
102
+ - **Total Run Time:** 2.5 minutes on Intel UHD Graphics 630
103
+ - **Loss:** 7.11
104
+ - **Perplexity:** 1223.8
105
+ - **Accuracy:** 78.5%
106
+ - **Response Coherence:** 82.1%
107
+ - **Peer Network Efficiency:** 91.2%
108
+
109
+ ### Metrics Explanation
110
+
111
+ #### Test Calculations and Methodology
112
+
113
+ Our evaluation metrics were computed using the following methodology:
114
+
115
+ 1. **Training Progression**
116
+ - Total Steps = epochs × steps_per_epoch = 2 × 10,000 = 20,000
117
+ - Samples Processed = total_steps × batch_size = 20,000 × 8 = 160,000
118
+ - Average Time/Epoch = 75 seconds on Intel UHD Graphics 630
119
+
120
+ 2. **Model Storage Analysis**
121
+ - Parameter Count = layers × hidden_dim² = 12 × 768² ≈ 7.1M
122
+ - Network State Size = 1.82 GB (measured post-training)
123
+ - Includes: weights, biases, peer coordination tables
124
+
125
+ 3. **Performance Metrics**
126
+ - Cross-Entropy Loss = -∑(y_true * log(y_pred)) = 7.11
127
+ - Perplexity = exp(cross_entropy) = exp(7.11) ≈ 1223.8
128
+ - Token Accuracy = correct_predictions/total_tokens × 100 = 78.5%
129
+
130
+ 4. **Output Evaluation**
131
+ - Coherence Score: Based on inter-sentence relationship strength
132
+ - Measured across 1000 generated responses
133
+ - Average semantic link score: 82.1%
134
+
135
+ 5. **Network Metrics**
136
+ - Task Completion Rate = successful_tasks/total_tasks × 100 = 91.2%
137
+ - Measured across distributed training operations
138
+ - Accounts for node synchronization success
139
+
140
+ #### Metric Descriptions
141
+
142
+ - **Training Progress**: Two complete dataset passes, processing 160,000 total samples through 20,000 batched steps.
143
+
144
+ - **Model Scale**: Neural network deployment package of 1.82 GB, encompassing parameter matrices and distributed coordination components.
145
+
146
+ - **Validation Results**: Cross-entropy of 7.11 yields perplexity of 1223.8, indicating the model's token prediction spread across vocabulary space.
147
+
148
+ - **Token Precision**: Successfully predicted 78.5% of next tokens in held-out validation data, tested against reference completions.
149
+
150
+ - **Generation Quality**: Achieved 82.1% semantic continuity score across multi-sentence outputs, based on contextual alignment measurements.
151
+
152
+ - **Distributed Performance**: Maintained 91.2% task execution success rate across peer nodes during distributed operations.
153
+
154
+ - **Output Quality**: Automated analysis of 82.1% reflects the generated text's internal consistency, measuring how well each new statement connects to and builds upon previous ones.
155
+
156
+ - **Network Performance**: Distributed training achieved 91.2% task throughput, indicating the proportion of successfully coordinated computation across the peer-to-peer node network.
157
+
158
+ ## Limitations & Biases
159
+
160
+ 1. **Current Limitations:**
161
+ - Maximum sequence length of 1024 tokens
162
+ - Requires stable network connection for peer-to-peer operations
163
+ - Limited support for non-English languages
164
+
165
+ 2. **Known Biases:**
166
+ - Training data may contain societal biases
167
+ - Peer network distribution may favor certain geographic regions
168
+ - Response quality depends on active peer participation
169
+
170
+ ## Environmental Impact
171
+
172
+ The model is designed to minimize environmental impact through:
173
+ - Efficient resource distribution across peer networks
174
+ - Multithreading and parallel processing optimization
175
+ - Smart load balancing among participating nodes
176
+ - Reduced central server dependency
177
+ - Optimized computational resource sharing
178
+
179
+ ## Architecture
180
+
181
+ The system consists of several key components:
182
+
183
+ 1. **DecentralizedLLM:** The main model class that integrates various components
184
+ 2. **LonScriptGrammar:** Grammar parsing system inspired by LonScript
185
+ 3. **BOINC Integration:** For distributed computation
186
+ 4. **OpenPeer Network:** For decentralized training and inference
187
+
188
+ ## License
189
+
190
+ This project is licensed under multiple licenses to ensure maximum flexibility and openness:
191
+ - OPNL and OPNL-2 for the decentralized protocol aspects
192
+ - MIT License for the software implementation
193
+ - Creative Commons Attribution 4.0 International (CC-BY-4.0) for documentation and models
194
+
195
+ ## Citation
196
+
197
+ ```bibtex
198
+ @misc{openpeer-llm,
199
+ author = {Andrew Magdy Kamal Nassief},
200
+ title = {OpenPeerLLM: A Decentralized Language Model},
201
+ year = {2025},
202
+ publisher = {Stark Publishing Group},
203
+ journal = {Hugging Face Model Hub}
204
+ }
205
+ ```
206
+
207
+ ## Contributing
208
+
209
  Contributions are welcome! Please feel free to submit a Pull Request.