metadata
license: apache-2.0
datasets:
- TIGER-Lab/BrowserAgent-RFT-Data
language:
- en
base_model:
- Qwen/Qwen2.5-7B-Instruct
metrics:
- success_rate
- efficiency
- safety_score
tags:
- agent
- browser
- web
- rft
Model
We release the RFT (Reward Fine-Tuned) model used in BrowserAgent, initialized from the SFT checkpoint of Qwen/Qwen2.5-7B-Instruct.
This model further optimizes browsing trajectories with task-level reward signals that encourage higher success rate, shorter action paths, and safer interactions.
Paper
BrowserAgent: Building Web Agents with Human-Inspired Web Browsing Actions
Project Page
https://tiger-ai-lab.github.io/BrowserAgent/
Code
https://github.com/TIGER-AI-Lab/BrowserAgent
Sample Usage
hf download TIGER-Lab/BrowserAgent-RFT --local-dir ./models/browseragent-rft --repo model
Citation
@misc{yu2025browseragentbuildingwebagents,
title={BrowserAgent: Building Web Agents with Human-Inspired Web Browsing Actions},
author={Tao Yu and Zhengbo Zhang and Zhiheng Lyu and Junhao Gong and Hongzhu Yi and Xinming Wang and Yuxuan Zhou and Jiabing Yang and Ping Nie and Yan Huang and Wenhu Chen},
year={2025},
eprint={2510.10666},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2510.10666},
}