File size: 13,779 Bytes
8bd26ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import sys
import heapq
import math
from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout, 
                             QHBoxLayout, QPushButton, QLabel, QSpinBox, 
                             QComboBox, QMessageBox, QFrame)
from PyQt5.QtCore import Qt, QTimer, pyqtSignal
from PyQt5.QtGui import QPainter, QColor, QPen, QFont

class Node:
    def __init__(self, x, y, walkable=True):
        self.x = x
        self.y = y
        self.walkable = walkable
        self.g = 0  # Cost from start to this node
        self.h = 0  # Heuristic cost to end
        self.f = 0  # Total cost (g + h)
        self.parent = None
        
    def __lt__(self, other):
        return self.f < other.f

class AStarGame(QMainWindow):
    def __init__(self):
        super().__init__()
        self.grid_size = 20
        self.cell_size = 30
        self.grid = []
        self.start_node = None
        self.end_node = None
        self.path = []
        self.open_set = []
        self.closed_set = set()
        self.is_running = False
        self.is_paused = False
        self.speed = 100  # ms
        self.timer = QTimer()
        self.timer.timeout.connect(self.step_algorithm)
        self.current_mode = "start"  # start, end, obstacle, erase
        self.init_ui()
        self.init_grid()
        
    def init_ui(self):
        self.setWindowTitle("A* Pathfinding Algorithm Game")
        self.setFixedSize(self.grid_size * self.cell_size + 250, 
                         self.grid_size * self.cell_size + 50)
        
        # Central widget
        central_widget = QWidget()
        self.setCentralWidget(central_widget)
        
        # Main layout
        main_layout = QHBoxLayout()
        central_widget.setLayout(main_layout)
        
        # Grid widget
        self.grid_widget = GridWidget(self)
        main_layout.addWidget(self.grid_widget)
        
        # Control panel
        control_panel = QFrame()
        control_panel.setFrameStyle(QFrame.Box)
        control_panel.setFixedWidth(200)
        control_layout = QVBoxLayout()
        control_panel.setLayout(control_layout)
        
        # Mode selection
        mode_label = QLabel("Mode:")
        mode_label.setFont(QFont("Arial", 12, QFont.Bold))
        control_layout.addWidget(mode_label)
        
        self.mode_combo = QComboBox()
        self.mode_combo.addItems(["Start Point", "End Point", "Obstacles", "Erase"])
        self.mode_combo.currentIndexChanged.connect(self.change_mode)
        control_layout.addWidget(self.mode_combo)
        
        # Algorithm controls
        control_layout.addSpacing(20)
        algo_label = QLabel("Algorithm Controls:")
        algo_label.setFont(QFont("Arial", 12, QFont.Bold))
        control_layout.addWidget(algo_label)
        
        self.start_button = QPushButton("Start")
        self.start_button.clicked.connect(self.start_algorithm)
        control_layout.addWidget(self.start_button)
        
        self.pause_button = QPushButton("Pause")
        self.pause_button.clicked.connect(self.pause_algorithm)
        self.pause_button.setEnabled(False)
        control_layout.addWidget(self.pause_button)
        
        self.reset_button = QPushButton("Reset")
        self.reset_button.clicked.connect(self.reset_grid)
        control_layout.addWidget(self.reset_button)
        
        self.clear_button = QPushButton("Clear All")
        self.clear_button.clicked.connect(self.clear_all)
        control_layout.addWidget(self.clear_button)
        
        # Speed control
        control_layout.addSpacing(20)
        speed_label = QLabel("Speed:")
        speed_label.setFont(QFont("Arial", 12, QFont.Bold))
        control_layout.addWidget(speed_label)
        
        speed_layout = QHBoxLayout()
        self.speed_spin = QSpinBox()
        self.speed_spin.setRange(10, 500)
        self.speed_spin.setValue(self.speed)
        self.speed_spin.valueChanged.connect(self.change_speed)
        speed_layout.addWidget(self.speed_spin)
        speed_layout.addWidget(QLabel("ms"))
        control_layout.addLayout(speed_layout)
        
        # Instructions
        control_layout.addSpacing(20)
        instructions_label = QLabel("Instructions:")
        instructions_label.setFont(QFont("Arial", 12, QFont.Bold))
        control_layout.addWidget(instructions_label)
        
        instructions = QLabel(
            "1. Set start and end points\n"
            "2. Add obstacles\n"
            "3. Click Start to find path\n"
            "4. Watch the algorithm work!"
        )
        instructions.setWordWrap(True)
        control_layout.addWidget(instructions)
        
        # Status
        control_layout.addSpacing(20)
        self.status_label = QLabel("Status: Ready")
        self.status_label.setFont(QFont("Arial", 10))
        control_layout.addWidget(self.status_label)
        
        control_layout.addStretch()
        main_layout.addWidget(control_panel)
        
    def init_grid(self):
        self.grid = []
        for y in range(self.grid_size):
            row = []
            for x in range(self.grid_size):
                row.append(Node(x, y))
            self.grid.append(row)
        
        # Set default start and end
        self.start_node = self.grid[2][2]
        self.end_node = self.grid[self.grid_size-3][self.grid_size-3]
        self.update()
        
    def change_mode(self, index):
        modes = ["start", "end", "obstacle", "erase"]
        self.current_mode = modes[index]
        
    def change_speed(self, value):
        self.speed = value
        if self.timer.isActive():
            self.timer.setInterval(self.speed)
        
    def start_algorithm(self):
        if not self.start_node or not self.end_node:
            QMessageBox.warning(self, "Warning", "Please set both start and end points.")
            return
            
        self.is_running = True
        self.is_paused = False
        self.path = []
        self.open_set = []
        self.closed_set = set()
        
        # Initialize start node
        self.start_node.g = 0
        self.start_node.h = self.heuristic(self.start_node, self.end_node)
        self.start_node.f = self.start_node.g + self.start_node.h
        
        heapq.heappush(self.open_set, (self.start_node.f, self.start_node))
        
        self.start_button.setEnabled(False)
        self.pause_button.setEnabled(True)
        self.reset_button.setEnabled(False)
        self.status_label.setText("Status: Running")
        
        self.timer.start(self.speed)
        
    def pause_algorithm(self):
        if self.is_running:
            if self.is_paused:
                self.timer.start(self.speed)
                self.pause_button.setText("Pause")
                self.status_label.setText("Status: Running")
            else:
                self.timer.stop()
                self.pause_button.setText("Resume")
                self.status_label.setText("Status: Paused")
            self.is_paused = not self.is_paused
            
    def reset_grid(self):
        self.timer.stop()
        self.is_running = False
        self.is_paused = False
        
        for row in self.grid:
            for node in row:
                node.g = 0
                node.h = 0
                node.f = 0
                node.parent = None
                
        self.path = []
        self.open_set = []
        self.closed_set = set()
        
        self.start_button.setEnabled(True)
        self.pause_button.setEnabled(False)
        self.reset_button.setEnabled(True)
        self.pause_button.setText("Pause")
        self.status_label.setText("Status: Ready")
        
        self.update()
        
    def clear_all(self):
        self.reset_grid()
        self.init_grid()
        
    def step_algorithm(self):
        if not self.open_set:
            self.timer.stop()
            self.is_running = False
            self.status_label.setText("Status: No path found!")
            self.start_button.setEnabled(True)
            self.pause_button.setEnabled(False)
            self.reset_button.setEnabled(True)
            return
            
        # Get node with lowest f score
        current = heapq.heappop(self.open_set)[1]
        
        # Check if we reached the end
        if current == self.end_node:
            self.timer.stop()
            self.is_running = False
            self.reconstruct_path(current)
            self.status_label.setText("Status: Path found!")
            self.start_button.setEnabled(True)
            self.pause_button.setEnabled(False)
            self.reset_button.setEnabled(True)
            return
            
        self.closed_set.add(current)
        
        # Check neighbors
        for neighbor in self.get_neighbors(current):
            if neighbor in self.closed_set or not neighbor.walkable:
                continue
                
            tentative_g = current.g + self.distance(current, neighbor)
            
            if tentative_g < neighbor.g or neighbor not in [n[1] for n in self.open_set]:
                neighbor.parent = current
                neighbor.g = tentative_g
                neighbor.h = self.heuristic(neighbor, self.end_node)
                neighbor.f = neighbor.g + neighbor.h
                
                if neighbor not in [n[1] for n in self.open_set]:
                    heapq.heappush(self.open_set, (neighbor.f, neighbor))
        
        self.update()
        
    def get_neighbors(self, node):
        neighbors = []
        for dx, dy in [(0, -1), (1, 0), (0, 1), (-1, 0), (-1, -1), (1, -1), (-1, 1), (1, 1)]:
            x, y = node.x + dx, node.y + dy
            if 0 <= x < self.grid_size and 0 <= y < self.grid_size:
                neighbors.append(self.grid[y][x])
        return neighbors
        
    def distance(self, node_a, node_b):
        # Euclidean distance
        dx = node_a.x - node_b.x
        dy = node_a.y - node_b.y
        return math.sqrt(dx*dx + dy*dy)
        
    def heuristic(self, node_a, node_b):
        # Manhattan distance
        return abs(node_a.x - node_b.x) + abs(node_a.y - node_b.y)
        
    def reconstruct_path(self, current):
        self.path = []
        while current:
            self.path.append(current)
            current = current.parent
        self.path.reverse()
        
    def handle_click(self, x, y):
        if self.is_running:
            return
            
        node = self.grid[y][x]
        
        if self.current_mode == "start":
            if node != self.end_node and node.walkable:
                self.start_node = node
        elif self.current_mode == "end":
            if node != self.start_node and node.walkable:
                self.end_node = node
        elif self.current_mode == "obstacle":
            if node != self.start_node and node != self.end_node:
                node.walkable = False
        elif self.current_mode == "erase":
            node.walkable = True
            if node == self.start_node:
                self.start_node = None
            elif node == self.end_node:
                self.end_node = None
                
        self.update()

class GridWidget(QWidget):
    def __init__(self, game):
        super().__init__()
        self.game = game
        self.setMouseTracking(True)
        
    def mousePressEvent(self, event):
        if event.button() == Qt.LeftButton:
            x = event.x() // self.game.cell_size
            y = event.y() // self.game.cell_size
            if 0 <= x < self.game.grid_size and 0 <= y < self.game.grid_size:
                self.game.handle_click(x, y)
                
    def paintEvent(self, event):
        painter = QPainter(self)
        painter.setRenderHint(QPainter.Antialiasing)
        
        # Draw grid
        for y in range(self.game.grid_size):
            for x in range(self.game.grid_size):
                node = self.game.grid[y][x]
                rect = (x * self.game.cell_size, y * self.game.cell_size, 
                       self.game.cell_size, self.game.cell_size)
                
                # Background
                if node == self.game.start_node:
                    painter.fillRect(*rect, QColor(0, 200, 0))  # Green for start
                elif node == self.game.end_node:
                    painter.fillRect(*rect, QColor(200, 0, 0))  # Red for end
                elif not node.walkable:
                    painter.fillRect(*rect, QColor(100, 100, 100))  # Gray for obstacles
                elif node in self.game.path:
                    painter.fillRect(*rect, QColor(0, 0, 200))  # Blue for path
                elif node in [n[1] for n in self.game.open_set]:
                    painter.fillRect(*rect, QColor(200, 200, 100))  # Yellow for open set
                elif node in self.game.closed_set:
                    painter.fillRect(*rect, QColor(200, 150, 150))  # Light red for closed set
                else:
                    painter.fillRect(*rect, QColor(255, 255, 255))  # White for empty
                
                # Grid lines
                painter.setPen(QPen(QColor(200, 200, 200), 1))
                painter.drawRect(*rect)
                
                # Display cost values if algorithm is running
                if self.game.is_running and node.g > 0:
                    painter.setPen(QPen(QColor(0, 0, 0), 1))
                    painter.setFont(QFont("Arial", 8))
                    painter.drawText(rect[0] + 2, rect[1] + 12, f"g:{node.g:.1f}")
                    painter.drawText(rect[0] + 2, rect[1] + 24, f"h:{node.h:.1f}")

def main():
    app = QApplication(sys.argv)
    game = AStarGame()
    game.show()
    sys.exit(app.exec_())

if __name__ == "__main__":
    main()