Update README.md
#3
by
Sansa
- opened
README.md
CHANGED
|
@@ -24,5 +24,49 @@ Training recipe:
|
|
| 24 |
|
| 25 |
- GitHub: https://github.com/apple/ml-diffucoder
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
#### Acknowledgement
|
| 28 |
To power this HuggingFace model release, we reuse [Dream](https://huggingface.co/Dream-org/Dream-v0-Base-7B)'s modeling architecture and generation utils.
|
|
|
|
| 24 |
|
| 25 |
- GitHub: https://github.com/apple/ml-diffucoder
|
| 26 |
|
| 27 |
+
```
|
| 28 |
+
import torch
|
| 29 |
+
from transformers import AutoModel, AutoTokenizer
|
| 30 |
+
|
| 31 |
+
model_path = "apple/DiffuCoder-7B-cpGRPO"
|
| 32 |
+
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True)
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 34 |
+
model = model.to("cuda").eval()
|
| 35 |
+
|
| 36 |
+
query = "Write a function to find the shared elements from the given two lists."
|
| 37 |
+
prompt = f"""<|im_start|>system
|
| 38 |
+
You are a helpful assistant.<|im_end|>
|
| 39 |
+
<|im_start|>user
|
| 40 |
+
{query.strip()}
|
| 41 |
+
<|im_end|>
|
| 42 |
+
<|im_start|>assistant
|
| 43 |
+
""" ## following the template of qwen; you can also use apply_chat_template function
|
| 44 |
+
|
| 45 |
+
TOKEN_PER_STEP = 1 # diffusion timesteps * TOKEN_PER_STEP = total new tokens
|
| 46 |
+
|
| 47 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 48 |
+
input_ids = inputs.input_ids.to(device="cuda")
|
| 49 |
+
attention_mask = inputs.attention_mask.to(device="cuda")
|
| 50 |
+
|
| 51 |
+
output = model.diffusion_generate(
|
| 52 |
+
input_ids,
|
| 53 |
+
attention_mask=attention_mask,
|
| 54 |
+
max_new_tokens=256,
|
| 55 |
+
output_history=True,
|
| 56 |
+
return_dict_in_generate=True,
|
| 57 |
+
steps=256//TOKEN_PER_STEP,
|
| 58 |
+
temperature=0.4,
|
| 59 |
+
top_p=0.95,
|
| 60 |
+
alg="entropy",
|
| 61 |
+
alg_temp=0.,
|
| 62 |
+
)
|
| 63 |
+
generations = [
|
| 64 |
+
tokenizer.decode(g[len(p) :].tolist())
|
| 65 |
+
for p, g in zip(input_ids, output.sequences)
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
print(generations[0].split('<|dlm_pad|>')[0])
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
#### Acknowledgement
|
| 72 |
To power this HuggingFace model release, we reuse [Dream](https://huggingface.co/Dream-org/Dream-v0-Base-7B)'s modeling architecture and generation utils.
|