| <div align="center"> | |
| <h1> | |
| DevOps-Model-7B-Base | |
| </h1> | |
| </div> | |
| <p align="center"> | |
| 🤗 <a href="https://huggingface.co/codefuse-ai" target="_blank">Hugging Face</a> • | |
| 🤖 <a href="https://modelscope.cn/organization/codefuse-ai" target="_blank">ModelScope</a> | |
| </p> | |
| DevOps-Model 是一个**开发运维大模型**,主要致力于在 DevOps 领域发挥实际价值。目前,DevOps-Model 能够帮助工程师回答在 DevOps 生命周期中遇到的问题。欢迎访问我们 Github 获取更多信息 [DevOps-Model](https://github.com/codefuse-ai/CodeFuse-DevOps-Model) | |
| DevOps-Model-7B-Base 是我们经过高质量 DevOps 语料训练基于 Qwen-7B 加训后的 **Base** 模型。我们的 Base 模型在开源和 DevOps 领域相关的评测数据上可以取得同规模模型中的**最佳效果**。同时我们也开源了经过对齐后的 [DevOps-Model-7B-Chat](https://modelscope.cn/models/codefuse-ai/CodeFuse-DevOps-Model-7B-Chat/summary) 模型,和 14B 参数量的[DevOps-Model-14B-Base](https://modelscope.cn/models/codefuse-ai/CodeFuse-DevOps-Model-14B-Base/summary) 和 [DevOps-Model-14B-Chat](https://modelscope.cn/models/codefuse-ai/CodeFuse-DevOps-Model-14B-Chat/summary) 。 | |
| <br> | |
| 同时我们也在搭建 DevOps 领域专属的评测基准 [DevOpsEval](https://github.com/luban-agi/DevOps-Eval),用来更好评测 DevOps 领域模型的效果。 | |
| <br> | |
| <br> | |
| # 模型评测 | |
| 我们先选取了 CMMLU 和 CEval 两个评测数据集中和 DevOps 相关的一共六项考试。总计一共 574 道选择题,具体信息如下: | |
| | 评测数据集 | 考试科目 | 题数 | | |
| |-------|-------|-------| | |
| | CMMLU | Computer science | 204 | | |
| | CMMLU | Computer security | 171 | | |
| | CMMLU | Machine learning | 122 | | |
| | CEval | College programming | 37 | | |
| | CEval | Computer architecture | 21 | | |
| | CEval | Computernetwork | 19 | | |
| 我们分别测试了 Zero-shot 和 Five-shot 的结果,我们的 DevOps-Model-7B-Base 模型可以在测试的同规模的开源 Base 模型中取得最高的成绩,后续我们也会进行更多的测试。 | |
| |模型|模型大小|Zero-shot 得分|Five-shot 得分| | |
| |--|--|--|--| | |
| |**DevOps-Model-7B-Base**|**7B**|**62.72**|**62.02**| | |
| |Qwen-7B-Base|7B|55.75|56.0| | |
| |Baichuan2-7B-Base|7B|49.30|55.4| | |
| |Internlm-7B-Base|7B|47.56|52.6| | |
| <br> | |
| # 快速使用 | |
| 我们提供简单的示例来说明如何利用 🤗 Transformers 快速使用 Devops-Model-7B-Base 模型 | |
| ## 要求 | |
| - python 3.8 及以上版本 | |
| - pytorch 2.0 及以上版本 | |
| - 建议使用CUDA 11.4及以上 | |
| ## 依赖项安装 | |
| 下载模型后,直接通过以下命令安装 requirements.txt 中的包就可以 | |
| ```bash | |
| cd path_to_download_model | |
| pip isntall -r requirements.txt | |
| ``` | |
| ## 模型推理示例 | |
| ```python | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from transformers.generation import GenerationConfig | |
| tokenizer = AutoTokenizer.from_pretrained("path_to_DevOps-Model-7B-Base", trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained("path_to_DevOps-Model-7B-Base", device_map="auto", trust_remote_code=True, bf16=True).eval() | |
| # 指定 generation_config | |
| model.generation_config = GenerationConfig.from_pretrained("path_to_DevOps-Model-7B-Base", trust_remote_code=True) | |
| inputs = '''Java 中 HashMap 的实现原理是''' | |
| input_ids = tokenizer(inputs, return_tensors='pt') | |
| input_ids = input_ids.to(model.device) | |
| pred = model.generate(**input_ids) | |
| print(tokenizer.decode(pred[0])) | |
| # Java 中 HashMap 的实现原理是数组 + 链表,数组存放的是链表中的每个节点,链表中的每个节点又存放着下一个节点的地址,从而实现了链表的遍历。当链表长度大于 8 时,链表就会转换成红黑树,从而加快了查询速度。... | |
| ``` | |
| # 免责声明 | |
| 由于语言模型的特性,模型生成的内容可能包含幻觉或者歧视性言论。请谨慎使用 DevOps-Model 系列模型生成的内容。 | |
| 如果要公开使用或商用该模型服务,请注意服务方需承担由此产生的不良影响或有害言论的责任,本项目开发者不承担任何由使用本项目(包括但不限于数据、模型、代码等)导致的危害或损失。 | |
| # 致谢 | |
| 本项目参考了以下开源项目,在此对相关项目和研究开发人员表示感谢。 | |
| - [LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning) | |
| - [Qwen-7B](https://github.com/QwenLM/Qwen-7B/tree/main) | |