Fix: Add missing sentence-transformers installation in example code
#8
by
anon-repair-bot
- opened
README.md
CHANGED
|
@@ -1,72 +1,73 @@
|
|
| 1 |
-
---
|
| 2 |
-
language: en
|
| 3 |
-
pipeline_tag: zero-shot-classification
|
| 4 |
-
tags:
|
| 5 |
-
- transformers
|
| 6 |
-
datasets:
|
| 7 |
-
- nyu-mll/multi_nli
|
| 8 |
-
- stanfordnlp/snli
|
| 9 |
-
metrics:
|
| 10 |
-
- accuracy
|
| 11 |
-
license: apache-2.0
|
| 12 |
-
base_model:
|
| 13 |
-
- microsoft/deberta-v3-large
|
| 14 |
-
library_name: sentence-transformers
|
| 15 |
-
---
|
| 16 |
-
|
| 17 |
-
# Cross-Encoder for Natural Language Inference
|
| 18 |
-
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. This model is based on [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large)
|
| 19 |
-
|
| 20 |
-
## Training Data
|
| 21 |
-
The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
|
| 22 |
-
|
| 23 |
-
## Performance
|
| 24 |
-
- Accuracy on SNLI-test dataset: 92.20
|
| 25 |
-
- Accuracy on MNLI mismatched set: 90.49
|
| 26 |
-
|
| 27 |
-
For futher evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).
|
| 28 |
-
|
| 29 |
-
## Usage
|
| 30 |
-
|
| 31 |
-
Pre-trained models can be used like this:
|
| 32 |
-
```python
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
import
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
| 72 |
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
pipeline_tag: zero-shot-classification
|
| 4 |
+
tags:
|
| 5 |
+
- transformers
|
| 6 |
+
datasets:
|
| 7 |
+
- nyu-mll/multi_nli
|
| 8 |
+
- stanfordnlp/snli
|
| 9 |
+
metrics:
|
| 10 |
+
- accuracy
|
| 11 |
+
license: apache-2.0
|
| 12 |
+
base_model:
|
| 13 |
+
- microsoft/deberta-v3-large
|
| 14 |
+
library_name: sentence-transformers
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# Cross-Encoder for Natural Language Inference
|
| 18 |
+
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. This model is based on [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large)
|
| 19 |
+
|
| 20 |
+
## Training Data
|
| 21 |
+
The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
|
| 22 |
+
|
| 23 |
+
## Performance
|
| 24 |
+
- Accuracy on SNLI-test dataset: 92.20
|
| 25 |
+
- Accuracy on MNLI mismatched set: 90.49
|
| 26 |
+
|
| 27 |
+
For futher evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).
|
| 28 |
+
|
| 29 |
+
## Usage
|
| 30 |
+
|
| 31 |
+
Pre-trained models can be used like this:
|
| 32 |
+
```python
|
| 33 |
+
# Requires: sentence-transformers
|
| 34 |
+
from sentence_transformers import CrossEncoder
|
| 35 |
+
model = CrossEncoder('cross-encoder/nli-deberta-v3-large')
|
| 36 |
+
scores = model.predict([('A man is eating pizza', 'A man eats something'), ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')])
|
| 37 |
+
|
| 38 |
+
#Convert scores to labels
|
| 39 |
+
label_mapping = ['contradiction', 'entailment', 'neutral']
|
| 40 |
+
labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
## Usage with Transformers AutoModel
|
| 44 |
+
You can use the model also directly with Transformers library (without SentenceTransformers library):
|
| 45 |
+
```python
|
| 46 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 47 |
+
import torch
|
| 48 |
+
|
| 49 |
+
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/nli-deberta-v3-large')
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/nli-deberta-v3-large')
|
| 51 |
+
|
| 52 |
+
features = tokenizer(['A man is eating pizza', 'A black race car starts up in front of a crowd of people.'], ['A man eats something', 'A man is driving down a lonely road.'], padding=True, truncation=True, return_tensors="pt")
|
| 53 |
+
|
| 54 |
+
model.eval()
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
scores = model(**features).logits
|
| 57 |
+
label_mapping = ['contradiction', 'entailment', 'neutral']
|
| 58 |
+
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
|
| 59 |
+
print(labels)
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
## Zero-Shot Classification
|
| 63 |
+
This model can also be used for zero-shot-classification:
|
| 64 |
+
```python
|
| 65 |
+
from transformers import pipeline
|
| 66 |
+
|
| 67 |
+
classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-deberta-v3-large')
|
| 68 |
+
|
| 69 |
+
sent = "Apple just announced the newest iPhone X"
|
| 70 |
+
candidate_labels = ["technology", "sports", "politics"]
|
| 71 |
+
res = classifier(sent, candidate_labels)
|
| 72 |
+
print(res)
|
| 73 |
```
|