Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
Tags:
cybersecurity
License:
| import datasets | |
| _CITATION = """\ | |
| @misc{deepurlbench2025, | |
| author = {Deep Instinct Research Team}, | |
| title = {DeepURLBench: A large-scale benchmark for URL classification}, | |
| year = {2025}, | |
| howpublished = {\\url{https://huggingface.co/datasets/DeepInstinct/DeepURLBench}} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| DeepURLBench is a large-scale benchmark for real-world URL classification. | |
| It includes two subsets: one with DNS resolution information and one without. | |
| """ | |
| _HOMEPAGE = "https://huggingface.co/datasets/DeepInstinct/DeepURLBench" | |
| _LICENSE = "cc-by-nc-4.0" | |
| # If your files are hosted in the root of the repo | |
| _URLS = { | |
| "with_dns": "https://huggingface.co/datasets/DeepInstinct/DeepURLBench/resolve/main/urls_with_dns.parquet", | |
| "without_dns": "https://huggingface.co/datasets/DeepInstinct/DeepURLBench/resolve/main/urls_without_dns.parquet", | |
| } | |
| class DeepURLBench(datasets.GeneratorBasedBuilder): | |
| VERSION = datasets.Version("1.0.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig(name="with_dns", version=VERSION, description="URLs with DNS info"), | |
| datasets.BuilderConfig(name="without_dns", version=VERSION, description="URLs without DNS info"), | |
| ] | |
| def _info(self): | |
| if self.config.name == "with_dns": | |
| features = datasets.Features({ | |
| "url": datasets.Value("string"), | |
| "first_seen": datasets.Value("string"), | |
| "TTL": datasets.Value("int32"), | |
| "label": datasets.Value("string"), | |
| "ip_address": datasets.Sequence(datasets.Value("string")), | |
| }) | |
| else: # without_dns | |
| features = datasets.Features({ | |
| "url": datasets.Value("string"), | |
| "first_seen": datasets.Value("string"), | |
| "label": datasets.Value("string"), | |
| }) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| data_file = _URLS[self.config.name] | |
| downloaded_file = dl_manager.download_and_extract(data_file) | |
| return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file})] | |
| def _generate_examples(self, filepath): | |
| import pandas as pd | |
| df = pd.read_parquet(filepath) | |
| for idx, row in df.iterrows(): | |
| yield idx, row.to_dict() | |