 
				Mitsua/mitsua-japanese-clip-vit-b-16
			Zero-Shot Image Classification
			• 
		
				0.2B
			• 
	
				Updated
					
				
				• 
					
					4
				
	
				• 
					
					7
				
| image
				 imagewidth (px) 256 256 | label
				 stringclasses 290
				values | 
|---|---|
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | |
| 
	00000 | 
This is a pre-generated 1k classes, 1M images colored-multi-fractal-images dataset based on Improving Fractal Pre-training by Connor Anderson et al. and Multi-Fractal-Dataset by FYSignate1009.
We have changed some fractal parameters so that our ViT pretraining can converge. Modified parameters can be found on this repo.
You can pretrain vision transformers without worrying about dataset licensing for commercial use.
This repo contains all scripts that are used to generate fractal images.
python generator_no_mixup.py