Datasets:
				
			
			
	
			
			
	
		annotations_creators:
  - expert-generated
language_creators:
  - expert-generated
language:
  - de
  - en
  - es
  - fr
  - it
license:
  - cc-by-sa-4.0
multilinguality:
  - multilingual
size_categories:
  - 10K<n<100K
source_datasets:
  - original
task_categories:
  - text-generation
  - fill-mask
  - text-classification
task_ids:
  - dialogue-modeling
  - language-modeling
  - masked-language-modeling
pretty_name: MIAM
tags:
  - dialogue-act-classification
dataset_info:
  - config_name: dihana
    features:
      - name: Speaker
        dtype: string
      - name: Utterance
        dtype: string
      - name: Dialogue_Act
        dtype: string
      - name: Dialogue_ID
        dtype: string
      - name: File_ID
        dtype: string
      - name: Label
        dtype:
          class_label:
            names:
              '0': Afirmacion
              '1': Apertura
              '2': Cierre
              '3': Confirmacion
              '4': Espera
              '5': Indefinida
              '6': Negacion
              '7': No_entendido
              '8': Nueva_consulta
              '9': Pregunta
              '10': Respuesta
      - name: Idx
        dtype: int32
    splits:
      - name: train
        num_bytes: 1946735
        num_examples: 19063
      - name: validation
        num_bytes: 216498
        num_examples: 2123
      - name: test
        num_bytes: 238446
        num_examples: 2361
    download_size: 1777267
    dataset_size: 2401679
  - config_name: ilisten
    features:
      - name: Speaker
        dtype: string
      - name: Utterance
        dtype: string
      - name: Dialogue_Act
        dtype: string
      - name: Dialogue_ID
        dtype: string
      - name: Label
        dtype:
          class_label:
            names:
              '0': AGREE
              '1': ANSWER
              '2': CLOSING
              '3': ENCOURAGE-SORRY
              '4': GENERIC-ANSWER
              '5': INFO-REQUEST
              '6': KIND-ATTITUDE_SMALL-TALK
              '7': OFFER-GIVE-INFO
              '8': OPENING
              '9': PERSUASION-SUGGEST
              '10': QUESTION
              '11': REJECT
              '12': SOLICITATION-REQ_CLARIFICATION
              '13': STATEMENT
              '14': TALK-ABOUT-SELF
      - name: Idx
        dtype: int32
    splits:
      - name: train
        num_bytes: 244336
        num_examples: 1986
      - name: validation
        num_bytes: 33988
        num_examples: 230
      - name: test
        num_bytes: 145376
        num_examples: 971
    download_size: 349993
    dataset_size: 423700
  - config_name: loria
    features:
      - name: Speaker
        dtype: string
      - name: Utterance
        dtype: string
      - name: Dialogue_Act
        dtype: string
      - name: Dialogue_ID
        dtype: string
      - name: File_ID
        dtype: string
      - name: Label
        dtype:
          class_label:
            names:
              '0': ack
              '1': ask
              '2': find_mold
              '3': find_plans
              '4': first_step
              '5': greet
              '6': help
              '7': inform
              '8': inform_engine
              '9': inform_job
              '10': inform_material_space
              '11': informer_conditioner
              '12': informer_decoration
              '13': informer_elcomps
              '14': informer_end_manufacturing
              '15': kindAtt
              '16': manufacturing_reqs
              '17': next_step
              '18': 'no'
              '19': other
              '20': quality_control
              '21': quit
              '22': reqRep
              '23': security_policies
              '24': staff_enterprise
              '25': staff_job
              '26': studies_enterprise
              '27': studies_job
              '28': todo_failure
              '29': todo_irreparable
              '30': 'yes'
      - name: Idx
        dtype: int32
    splits:
      - name: train
        num_bytes: 1208730
        num_examples: 8465
      - name: validation
        num_bytes: 133829
        num_examples: 942
      - name: test
        num_bytes: 149855
        num_examples: 1047
    download_size: 1221132
    dataset_size: 1492414
  - config_name: maptask
    features:
      - name: Speaker
        dtype: string
      - name: Utterance
        dtype: string
      - name: Dialogue_Act
        dtype: string
      - name: Dialogue_ID
        dtype: string
      - name: File_ID
        dtype: string
      - name: Label
        dtype:
          class_label:
            names:
              '0': acknowledge
              '1': align
              '2': check
              '3': clarify
              '4': explain
              '5': instruct
              '6': query_w
              '7': query_yn
              '8': ready
              '9': reply_n
              '10': reply_w
              '11': reply_y
      - name: Idx
        dtype: int32
    splits:
      - name: train
        num_bytes: 1910120
        num_examples: 25382
      - name: validation
        num_bytes: 389879
        num_examples: 5221
      - name: test
        num_bytes: 396947
        num_examples: 5335
    download_size: 1729021
    dataset_size: 2696946
  - config_name: vm2
    features:
      - name: Utterance
        dtype: string
      - name: Dialogue_Act
        dtype: string
      - name: Speaker
        dtype: string
      - name: Dialogue_ID
        dtype: string
      - name: Label
        dtype:
          class_label:
            names:
              '0': ACCEPT
              '1': BACKCHANNEL
              '2': BYE
              '3': CLARIFY
              '4': CLOSE
              '5': COMMIT
              '6': CONFIRM
              '7': DEFER
              '8': DELIBERATE
              '9': DEVIATE_SCENARIO
              '10': EXCLUDE
              '11': EXPLAINED_REJECT
              '12': FEEDBACK
              '13': FEEDBACK_NEGATIVE
              '14': FEEDBACK_POSITIVE
              '15': GIVE_REASON
              '16': GREET
              '17': INFORM
              '18': INIT
              '19': INTRODUCE
              '20': NOT_CLASSIFIABLE
              '21': OFFER
              '22': POLITENESS_FORMULA
              '23': REJECT
              '24': REQUEST
              '25': REQUEST_CLARIFY
              '26': REQUEST_COMMENT
              '27': REQUEST_COMMIT
              '28': REQUEST_SUGGEST
              '29': SUGGEST
              '30': THANK
      - name: Idx
        dtype: int32
    splits:
      - name: train
        num_bytes: 1869254
        num_examples: 25060
      - name: validation
        num_bytes: 209390
        num_examples: 2860
      - name: test
        num_bytes: 209032
        num_examples: 2855
    download_size: 1641453
    dataset_size: 2287676
config_names:
  - dihana
  - ilisten
  - loria
  - maptask
  - vm2
Dataset Card for MIAM
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: [N/A]
- Repository: [N/A]
- Paper: [N/A]
- Leaderboard: [N/A]
- Point of Contact: [N/A]
Dataset Summary
Multilingual dIalogAct benchMark is a collection of resources for training, evaluating, and analyzing natural language understanding systems specifically designed for spoken language. Datasets are in English, French, German, Italian and Spanish. They cover a variety of domains including spontaneous speech, scripted scenarios, and joint task completion. All datasets contain dialogue act labels.
Supported Tasks and Leaderboards
[More Information Needed]
Languages
English, French, German, Italian, Spanish.
Dataset Structure
Data Instances
Dihana Corpus
For the dihana configuration one example from the dataset is:
{
  'Speaker': 'U',
  'Utterance': 'Hola , quería obtener el horario para ir a Valencia',
  'Dialogue_Act': 9,  # 'Pregunta' ('Request')
  'Dialogue_ID': '0',
  'File_ID': 'B209_BA5c3',
}
iLISTEN Corpus
For the ilisten configuration one example from the dataset is:
{
  'Speaker': 'T_11_U11',
  'Utterance': 'ok, grazie per le informazioni',
  'Dialogue_Act': 6,  # 'KIND-ATTITUDE_SMALL-TALK'
  'Dialogue_ID': '0',
}
LORIA Corpus
For the loria configuration one example from the dataset is:
{
  'Speaker': 'Samir',
  'Utterance': 'Merci de votre visite, bonne chance, et à la prochaine !',
  'Dialogue_Act': 21,  # 'quit'
  'Dialogue_ID': '5',
  'File_ID': 'Dial_20111128_113927',
}
HCRC MapTask Corpus
For the maptask configuration one example from the dataset is:
{
  'Speaker': 'f',
  'Utterance': 'is it underneath the rope bridge or to the left',
  'Dialogue_Act': 6,  # 'query_w'
  'Dialogue_ID': '0',
  'File_ID': 'q4ec1',
}
VERBMOBIL
For the vm2 configuration one example from the dataset is:
{
  'Utterance': 'ja was sind viereinhalb Stunden Bahngerüttel gegen siebzig Minuten Turbulenzen im Flugzeug',
  'Utterance': 'Utterance',
  'Dialogue_Act': 'Dialogue_Act',  # 'INFORM'
  'Speaker': 'A',
  'Dialogue_ID': '66',
}
Data Fields
For the dihana configuration, the different fields are:
- Speaker: identifier of the speaker as a string.
- Utterance: Utterance as a string.
- Dialogue_Act: Dialog act label of the utterance. It can be one of 'Afirmacion' (0) [Feedback_positive], 'Apertura' (1) [Opening], 'Cierre' (2) [Closing], 'Confirmacion' (3) [Acknowledge], 'Espera' (4) [Hold], 'Indefinida' (5) [Undefined], 'Negacion' (6) [Feedback_negative], 'No_entendido' (7) [Request_clarify], 'Nueva_consulta' (8) [New_request], 'Pregunta' (9) [Request] or 'Respuesta' (10) [Reply].
- Dialogue_ID: identifier of the dialogue as a string.
- File_ID: identifier of the source file as a string.
For the ilisten configuration, the different fields are:
- Speaker: identifier of the speaker as a string.
- Utterance: Utterance as a string.
- Dialogue_Act: Dialog act label of the utterance. It can be one of 'AGREE' (0), 'ANSWER' (1), 'CLOSING' (2), 'ENCOURAGE-SORRY' (3), 'GENERIC-ANSWER' (4), 'INFO-REQUEST' (5), 'KIND-ATTITUDE_SMALL-TALK' (6), 'OFFER-GIVE-INFO' (7), 'OPENING' (8), 'PERSUASION-SUGGEST' (9), 'QUESTION' (10), 'REJECT' (11), 'SOLICITATION-REQ_CLARIFICATION' (12), 'STATEMENT' (13) or 'TALK-ABOUT-SELF' (14).
- Dialogue_ID: identifier of the dialogue as a string.
For the loria configuration, the different fields are:
- Speaker: identifier of the speaker as a string.
- Utterance: Utterance as a string.
- Dialogue_Act: Dialog act label of the utterance. It can be one of 'ack' (0), 'ask' (1), 'find_mold' (2), 'find_plans' (3), 'first_step' (4), 'greet' (5), 'help' (6), 'inform' (7), 'inform_engine' (8), 'inform_job' (9), 'inform_material_space' (10), 'informer_conditioner' (11), 'informer_decoration' (12), 'informer_elcomps' (13), 'informer_end_manufacturing' (14), 'kindAtt' (15), 'manufacturing_reqs' (16), 'next_step' (17), 'no' (18), 'other' (19), 'quality_control' (20), 'quit' (21), 'reqRep' (22), 'security_policies' (23), 'staff_enterprise' (24), 'staff_job' (25), 'studies_enterprise' (26), 'studies_job' (27), 'todo_failure' (28), 'todo_irreparable' (29), 'yes' (30)
- Dialogue_ID: identifier of the dialogue as a string.
- File_ID: identifier of the source file as a string.
For the maptask configuration, the different fields are:
- Speaker: identifier of the speaker as a string.
- Utterance: Utterance as a string.
- Dialogue_Act: Dialog act label of the utterance. It can be one of 'acknowledge' (0), 'align' (1), 'check' (2), 'clarify' (3), 'explain' (4), 'instruct' (5), 'query_w' (6), 'query_yn' (7), 'ready' (8), 'reply_n' (9), 'reply_w' (10) or 'reply_y' (11).
- Dialogue_ID: identifier of the dialogue as a string.
- File_ID: identifier of the source file as a string.
For the vm2 configuration, the different fields are:
- Utterance: Utterance as a string.
- Dialogue_Act: Dialogue act label of the utterance. It can be one of 'ACCEPT' (0), 'BACKCHANNEL' (1), 'BYE' (2), 'CLARIFY' (3), 'CLOSE' (4), 'COMMIT' (5), 'CONFIRM' (6), 'DEFER' (7), 'DELIBERATE' (8), 'DEVIATE_SCENARIO' (9), 'EXCLUDE' (10), 'EXPLAINED_REJECT' (11), 'FEEDBACK' (12), 'FEEDBACK_NEGATIVE' (13), 'FEEDBACK_POSITIVE' (14), 'GIVE_REASON' (15), 'GREET' (16), 'INFORM' (17), 'INIT' (18), 'INTRODUCE' (19), 'NOT_CLASSIFIABLE' (20), 'OFFER' (21), 'POLITENESS_FORMULA' (22), 'REJECT' (23), 'REQUEST' (24), 'REQUEST_CLARIFY' (25), 'REQUEST_COMMENT' (26), 'REQUEST_COMMIT' (27), 'REQUEST_SUGGEST' (28), 'SUGGEST' (29), 'THANK' (30).
- Speaker: Speaker as a string.
- Dialogue_ID: identifier of the dialogue as a string.
Data Splits
| Dataset name | Train | Valid | Test | 
|---|---|---|---|
| dihana | 19063 | 2123 | 2361 | 
| ilisten | 1986 | 230 | 971 | 
| loria | 8465 | 942 | 1047 | 
| maptask | 25382 | 5221 | 5335 | 
| vm2 | 25060 | 2860 | 2855 | 
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
Anonymous.
Licensing Information
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License.
Citation Information
@inproceedings{colombo-etal-2021-code,
    title = "Code-switched inspired losses for spoken dialog representations",
    author = "Colombo, Pierre  and
      Chapuis, Emile  and
      Labeau, Matthieu  and
      Clavel, Chlo{\'e}",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.656",
    doi = "10.18653/v1/2021.emnlp-main.656",
    pages = "8320--8337",
    abstract = "Spoken dialogue systems need to be able to handle both multiple languages and multilinguality inside a conversation (\textit{e.g} in case of code-switching). In this work, we introduce new pretraining losses tailored to learn generic multilingual spoken dialogue representations. The goal of these losses is to expose the model to code-switched language. In order to scale up training, we automatically build a pretraining corpus composed of multilingual conversations in five different languages (French, Italian, English, German and Spanish) from OpenSubtitles, a huge multilingual corpus composed of 24.3G tokens. We test the generic representations on MIAM, a new benchmark composed of five dialogue act corpora on the same aforementioned languages as well as on two novel multilingual tasks (\textit{i.e} multilingual mask utterance retrieval and multilingual inconsistency identification). Our experiments show that our new losses achieve a better performance in both monolingual and multilingual settings.",
}
Contributions
Thanks to @eusip and @PierreColombo for adding this dataset.
