Datasets:
File size: 9,192 Bytes
927370a 484ba9b 927370a d82c458 927370a d82c458 927370a d82c458 927370a d82c458 927370a d82c458 927370a 484ba9b d82c458 484ba9b abbe20e 484ba9b abbe20e 484ba9b abbe20e 484ba9b 64e7294 484ba9b 993a168 484ba9b 927370a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
---
license: apache-2.0
task_categories:
- multiple-choice
language:
- en
- zh
tags:
- audio-visual
- omnimodality
- multi-modality
- benchmark
pretty_name: 'XModBench '
size_categories:
- 10K<n<100K
---
<h1 align="center">
XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models
</h1>
<p align="center">
<img src="https://xingruiwang.github.io/projects/XModBench/static/images/teaser.png" width="90%" alt="XModBench teaser">
</p>
<p align="center">
<a href="https://arxiv.org/abs/2510.15148">
<img src="https://img.shields.io/badge/Arxiv-Paper-b31b1b.svg" alt="Paper">
</a>
<a href="https://xingruiwang.github.io/projects/XModBench/">
<img src="https://img.shields.io/badge/Website-Page-0a7aca?logo=globe&logoColor=white" alt="Website">
</a>
<a href="https://huggingface.co/datasets/RyanWW/XModBench">
<img src="https://img.shields.io/badge/Huggingface-Dataset-FFD21E?logo=huggingface" alt="Dataset">
</a>
<a href="https://github.com/XingruiWang/XModBench">
<img src="https://img.shields.io/badge/Github-Code-181717?logo=github&logoColor=white" alt="GitHub Repo">
</a>
<a href="https://opensource.org/licenses/MIT">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="License: MIT">
</a>
</p>
XModBench is a comprehensive benchmark designed to evaluate the cross-modal capabilities and consistency of omni-language models. It systematically assesses model performance across multiple modalities (text, vision, audio) and various cognitive tasks, revealing critical gaps in current state-of-the-art models.
### Key Features
- **π― Multi-Modal Evaluation**: Comprehensive testing across text, vision, and audio modalities
- **π§© 5 Task Dimensions**: Perception, Spatial, Temporal, Linguistic, and Knowledge tasks
- **π 13 SOTA Models Evaluated**: Including Gemini 2.5 Pro, Qwen2.5-Omni, EchoInk-R1, and more
- **π Consistency Analysis**: Measures performance stability across different modal configurations
- **π₯ Human Performance Baseline**: Establishes human-level benchmarks for comparison
## π Quick Start
### Installation
```bash
# Clone the repository
git clone https://github.com/XingruiWang/XModBench.git
cd XModBench
# Install dependencies
pip install -r requirements.txt
```
## π Dataset Structure
### Download and Setup
After cloning from HuggingFace, you'll need to extract the data:
```bash
# Download the dataset from HuggingFace
git clone https://huggingface.co/datasets/RyanWW/XModBench
cd XModBench
# Extract the Data.zip file
unzip Data.zip
# Now you have the following structure:
```
### Directory Structure
```
XModBench/
βββ Data/ # Unzipped from Data.zip
β βββ landscape_audiobench/ # Nature sound scenes
β βββ emotions/ # Emotion classification data
β βββ solos_processed/ # Musical instrument solos
β βββ gtzan-dataset-music-genre-classification/ # Music genre data
β βββ singers_data_processed/ # Singer identification
β βββ temporal_audiobench/ # Temporal reasoning tasks
β βββ urbansas_samples_videos_filtered/ # Urban 3D movements
β βββ STARSS23_processed_augmented/ # Spatial audio panorama
β βββ vggss_audio_bench/ # Fine-grained audio-visual
β βββ URMP_processed/ # Musical instrument arrangements
β βββ ExtremCountAV/ # Counting tasks
β βββ posters/ # Movie posters
β βββ trailer_clips/ # Movie trailers
β
βββ tasks/ # Task configurations (ready to use)
βββ 01_perception/ # Perception tasks
β βββ finegrained/ # Fine-grained recognition
β βββ natures/ # Nature scenes
β βββ instruments/ # Musical instruments
β βββ instruments_comp/ # Instrument compositions
β βββ general_activities/ # General activities
βββ 02_spatial/ # Spatial reasoning tasks
β βββ 3D_movements/ # 3D movement tracking
β βββ panaroma/ # Panoramic spatial audio
β βββ arrangements/ # Spatial arrangements
βββ 03_speech/ # Speech and language tasks
β βββ recognition/ # Speech recognition
β βββ translation/ # Translation
βββ 04_temporal/ # Temporal reasoning tasks
β βββ count/ # Temporal counting
β βββ order/ # Temporal ordering
β βββ calculation/ # Temporal calculations
βββ 05_Exteral/ # Additional classification tasks
βββ emotion_classification/ # Emotion recognition
βββ music_genre_classification/ # Music genre
βββ singer_identification/ # Singer identification
βββ movie_matching/ # Movie matching
```
**Note**: All file paths in the task JSON files use relative paths (`./benchmark/Data/...`), so ensure your working directory is set correctly when running evaluations.
### Basic Usage
```bash
#!/bin/bash
#SBATCH --job-name=VLM_eval
#SBATCH --output=log/job_%j.out
#SBATCH --error=log/job_%j.log
#SBATCH --ntasks-per-node=1
#SBATCH --gpus-per-node=4
echo "Running on host: $(hostname)"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
module load conda
# conda activate vlm
conda activate omni
export audioBench='/home/xwang378/scratch/2025/AudioBench'
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_audio_vision \
# --sample 1000
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_vision_audio \
# --sample 1000
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_vision_text \
# --sample 1000
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_audio_text \
# --sample 1000
# Qwen2.5-Omni
# python $audioBench/scripts/run.py \
# --model qwen2.5_omni \
# --task_name perception/vggss_audio_text \
# --sample 1000
python $audioBench/scripts/run.py \
--model qwen2.5_omni \
--task_name perception/vggss_vision_text \
--sample 1000
```
## π Benchmark Results
### Overall Performance Comparison
| Model | Perception | Spatial | Temporal | Linguistic | Knowledge | Average |
|-------|------------|---------|----------|------------|-----------|---------|
| **Gemini 2.5 Pro** | 75.9% | 50.1% | 60.8% | 76.8% | 89.3% | 70.6% |
| **Human Performance** | 91.0% | 89.7% | 88.9% | 93.9% | 93.9% | 91.5% |
### Key Findings
#### 1οΈβ£ Task Competence Gaps
- **Strong Performance**: Perception and linguistic tasks (~75% for best models)
- **Weak Performance**: Spatial (50.1%) and temporal reasoning (60.8%)
- **Performance Drop**: 15-25 points decrease in spatial/temporal vs. perception tasks
#### 2οΈβ£ Modality Disparity
- **Audio vs. Text**: 20-49 point performance drop
- **Audio vs. Vision**: 33-point average gap
- **Vision vs. Text**: ~15-point disparity
- **Consistency**: Best models show 10-12 point standard deviation
#### 3οΈβ£ Directional Imbalance
- **VisionβText**: 9-17 point gaps between directions
- **AudioβText**: 6-8 point asymmetries
- **Root Cause**: Training data imbalance favoring image-to-text over inverse directions
## π Citation
If you use XModBench in your research, please cite our paper:
```bibtex
@article{wang2024xmodbench,
title={XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models},
author={Wang, Xingrui, etc.},
journal={arXiv preprint arXiv:2510.15148},
year={2024}
}
```
## π License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## π Acknowledgments
We thank all contributors and the research community for their valuable feedback and suggestions.
## π§ Contact
- **Project Lead**: Xingrui Wang
- **Email**: [xwang378@jh.edu]
- **Website**: [https://xingruiwang.github.io/projects/XModBench/](https://xingruiwang.github.io/projects/XModBench/)
## π Links
- [Project Website](https://xingruiwang.github.io/projects/XModBench/)
- [Paper](https://arxiv.org/abs/xxxx.xxxxx)
- [Leaderboard](https://xingruiwang.github.io/projects/XModBench/leaderboard)
- [Documentation](https://xingruiwang.github.io/projects/XModBench/docs)
## Todo
- [ ] Release Huggingface data
- [x] Release data processing code
- [x] Release data evaluation code
---
**Note**: XModBench is actively maintained and regularly updated with new models and evaluation metrics. For the latest updates, please check our [releases](https://github.com/XingruiWang/XModBench/releases) page. |