| video
				 video | label
				 class label 2
				classes | 
|---|---|
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 0tactile_video_gelsight
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | |
| 1tactile_video_mctac_v1
 | 
Dataset of Reactive Diffusion Policy
Contents
Description
This is the raw and postprocessed dataset used in the paper Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation.
Structure
We offer two versions of the dataset: one is the full dataset used to train the models in our paper, and the other is a mini dataset for easier examination. Both versions include raw and postprocessed subsets of peeling, wiping and lifting.
Each raw subset is structured as follows:
subset_name
βββ seq_01.pkl
βββ seq_02.pkl
βββ ...
Note that we split the full raw lifting subset into 2 parts due to file size restrictions.
Each postprocessed subset is stored in Zarr format, which is structured as follows:
 βββ action (25710, 4) float32
 βββ external_img (25710, 240, 320, 3) uint8
 βββ left_gripper1_img (25710, 240, 320, 3) uint8
 βββ left_gripper1_initial_marker (25710, 63, 2) float32
 βββ left_gripper1_marker_offset (25710, 63, 2) float32
 βββ left_gripper1_marker_offset_emb (25710, 15) float32
 βββ left_gripper2_img (25710, 240, 320, 3) uint8
 βββ left_gripper2_initial_marker (25710, 25, 2) float32
 βββ left_gripper2_marker_offset (25710, 25, 2) float32
 βββ left_gripper2_marker_offset_emb (25710, 15) float32
 βββ left_robot_gripper_force (25710, 1) float32
 βββ left_robot_gripper_width (25710, 1) float32
 βββ left_robot_tcp_pose (25710, 9) float32
 βββ left_robot_tcp_vel (25710, 6) float32
 βββ left_robot_tcp_wrench (25710, 6) float32
 βββ left_wrist_img (25710, 240, 320, 3) uint8
 βββ right_robot_gripper_force (25710, 1) float32
 βββ right_robot_gripper_width (25710, 1) float32
 βββ right_robot_tcp_pose (25710, 9) float32
 βββ right_robot_tcp_vel (25710, 6) float32
 βββ right_robot_tcp_wrench (25710, 6) float32
 βββ target (25710, 4) float32
 βββ timestamp (25710,) float32
Usage
Follow the README in our GitHub repo to postprocess the raw data and train the model.
Tactile Dataset
We also provide the raw videos of the tactile dataset used for generate the PCA embedding in our paper.
- Downloads last month
- 242