identifier
stringlengths
7
18
space
stringclasses
4 values
uid
stringlengths
1
6
arch_str
stringlengths
1
32
input
stringlengths
8.51k
461k
target_metric
stringclasses
1 value
val_accuracy
float64
0
95.1
flops
float64
31.1M
14.7B
params
float64
227k
50M
metadata
stringlengths
0
1.46k
metainformation
stringclasses
1 value
NASBench101_23434
NASBench101
23434
0e27d5e67e6835be605f787690c714cc
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_725[FLOAT, 128x3x3x3] %onnx::Conv_726[FLOAT, 128] %onnx::Conv_728[FLOAT, 43x128x1x1] %onnx::Conv_729[FLOAT, 43] %onnx::Conv_731[FLOAT, 43x43x1x1] %onnx::Conv_734[FLOAT, 43x43x3x3] %onnx::Conv_737[FLOAT, 43x128x1x1] %onnx::Conv_740[FLOAT, 43x128x1x1] %onnx::Conv_743[FLOAT, 43x43x1x1] %onnx::Conv_746[FLOAT, 43x43x3x3] %onnx::Conv_749[FLOAT, 43x128x1x1] %onnx::Conv_752[FLOAT, 43x128x1x1] %onnx::Conv_755[FLOAT, 43x43x1x1] %onnx::Conv_758[FLOAT, 43x43x3x3] %onnx::Conv_761[FLOAT, 43x128x1x1] %onnx::Conv_764[FLOAT, 86x128x1x1] %onnx::Conv_765[FLOAT, 86] %onnx::Conv_767[FLOAT, 86x86x1x1] %onnx::Conv_770[FLOAT, 85x85x3x3] %onnx::Conv_771[FLOAT, 85] %onnx::Conv_773[FLOAT, 85x128x1x1] %onnx::Conv_776[FLOAT, 86x256x1x1] %onnx::Conv_779[FLOAT, 86x86x1x1] %onnx::Conv_782[FLOAT, 85x85x3x3] %onnx::Conv_785[FLOAT, 85x256x1x1] %onnx::Conv_788[FLOAT, 86x256x1x1] %onnx::Conv_791[FLOAT, 86x86x1x1] %onnx::Conv_794[FLOAT, 85x85x3x3] %onnx::Conv_797[FLOAT, 85x256x1x1] %onnx::Conv_800[FLOAT, 171x256x1x1] %onnx::Conv_801[FLOAT, 171] %onnx::Conv_803[FLOAT, 171x171x1x1] %onnx::Conv_806[FLOAT, 171x171x3x3] %onnx::Conv_809[FLOAT, 171x256x1x1] %onnx::Conv_812[FLOAT, 171x512x1x1] %onnx::Conv_815[FLOAT, 171x171x1x1] %onnx::Conv_818[FLOAT, 171x171x3x3] %onnx::Conv_821[FLOAT, 171x512x1x1] %onnx::Conv_824[FLOAT, 171x512x1x1] %onnx::Conv_827[FLOAT, 171x171x1x1] %onnx::Conv_830[FLOAT, 171x171x3x3] %onnx::Conv_833[FLOAT, 171x512x1x1] ) { %onnx::Conv_834 = Identity(%onnx::Conv_801) %onnx::Conv_831 = Identity(%onnx::Conv_801) %onnx::Conv_828 = Identity(%onnx::Conv_801) %onnx::Conv_825 = Identity(%onnx::Conv_801) %onnx::Conv_822 = Identity(%onnx::Conv_801) %onnx::Conv_819 = Identity(%onnx::Conv_801) %onnx::Conv_816 = Identity(%onnx::Conv_801) %onnx::Conv_813 = Identity(%onnx::Conv_801) %onnx::Conv_810 = Identity(%onnx::Conv_801) %onnx::Conv_807 = Identity(%onnx::Conv_801) %onnx::Conv_804 = Identity(%onnx::Conv_801) %onnx::Conv_798 = Identity(%onnx::Conv_771) %onnx::Conv_795 = Identity(%onnx::Conv_771) %onnx::Conv_792 = Identity(%onnx::Conv_765) %onnx::Conv_789 = Identity(%onnx::Conv_765) %onnx::Conv_786 = Identity(%onnx::Conv_771) %onnx::Conv_783 = Identity(%onnx::Conv_771) %onnx::Conv_780 = Identity(%onnx::Conv_765) %onnx::Conv_777 = Identity(%onnx::Conv_765) %onnx::Conv_774 = Identity(%onnx::Conv_771) %onnx::Conv_768 = Identity(%onnx::Conv_765) %onnx::Conv_762 = Identity(%onnx::Conv_729) %onnx::Conv_759 = Identity(%onnx::Conv_729) %onnx::Conv_756 = Identity(%onnx::Conv_729) %onnx::Conv_753 = Identity(%onnx::Conv_729) %onnx::Conv_750 = Identity(%onnx::Conv_729) %onnx::Conv_747 = Identity(%onnx::Conv_729) %onnx::Conv_744 = Identity(%onnx::Conv_729) %onnx::Conv_741 = Identity(%onnx::Conv_729) %onnx::Conv_738 = Identity(%onnx::Conv_729) %onnx::Conv_735 = Identity(%onnx::Conv_729) %onnx::Conv_732 = Identity(%onnx::Conv_729) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_725, %onnx::Conv_726) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Slice_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Slice_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Slice_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Slice_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Slice_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Slice_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %723 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %723 }
val_accuracy
89.563304
532,342,016
1,746,217
{'zcp_epe_nas': 82.63147353346187, 'zcp_fisher': 49.226837158203125, 'zcp_flops': 8517472256.0, 'zcp_grad_norm': 139.0555877685547, 'zcp_grasp': -66.6142578125, 'zcp_jacov': -16.05594918429108, 'zcp_l2_norm': 639.8930053710938, 'zcp_nwot': 212.6233051197033, 'zcp_params': 1746217.0, 'zcp_plain': 0.284423619508743, 'zcp_snip': 636.372802734375, 'zcp_synflow': 85.16641385386727, 'zcp_zen': 64.19390106201172, 'zcp_val_accuracy': 0.908052861690521}
NASBench101_230698
NASBench101
230698
8bae963763d26ad62588c55a9b55e65a
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_644[FLOAT, 128x3x3x3] %onnx::Conv_645[FLOAT, 128] %onnx::Conv_647[FLOAT, 43x128x1x1] %onnx::Conv_648[FLOAT, 43] %onnx::Conv_650[FLOAT, 43x43x3x3] %onnx::Conv_653[FLOAT, 128x128x1x1] %onnx::Conv_656[FLOAT, 43x128x1x1] %onnx::Conv_659[FLOAT, 43x43x3x3] %onnx::Conv_662[FLOAT, 128x128x1x1] %onnx::Conv_665[FLOAT, 43x128x1x1] %onnx::Conv_668[FLOAT, 43x43x3x3] %onnx::Conv_671[FLOAT, 128x128x1x1] %onnx::Conv_674[FLOAT, 86x128x1x1] %onnx::Conv_675[FLOAT, 86] %onnx::Conv_677[FLOAT, 86x86x3x3] %onnx::Conv_680[FLOAT, 256x128x1x1] %onnx::Conv_681[FLOAT, 256] %onnx::Conv_683[FLOAT, 86x256x1x1] %onnx::Conv_686[FLOAT, 86x86x3x3] %onnx::Conv_689[FLOAT, 256x256x1x1] %onnx::Conv_692[FLOAT, 86x256x1x1] %onnx::Conv_695[FLOAT, 86x86x3x3] %onnx::Conv_698[FLOAT, 256x256x1x1] %onnx::Conv_701[FLOAT, 171x256x1x1] %onnx::Conv_702[FLOAT, 171] %onnx::Conv_704[FLOAT, 171x171x3x3] %onnx::Conv_707[FLOAT, 512x256x1x1] %onnx::Conv_708[FLOAT, 512] %onnx::Conv_710[FLOAT, 171x512x1x1] %onnx::Conv_713[FLOAT, 171x171x3x3] %onnx::Conv_716[FLOAT, 512x512x1x1] %onnx::Conv_719[FLOAT, 171x512x1x1] %onnx::Conv_722[FLOAT, 171x171x3x3] %onnx::Conv_725[FLOAT, 512x512x1x1] ) { %onnx::Conv_726 = Identity(%onnx::Conv_708) %onnx::Conv_723 = Identity(%onnx::Conv_702) %onnx::Conv_720 = Identity(%onnx::Conv_702) %onnx::Conv_717 = Identity(%onnx::Conv_708) %onnx::Conv_714 = Identity(%onnx::Conv_702) %onnx::Conv_711 = Identity(%onnx::Conv_702) %onnx::Conv_705 = Identity(%onnx::Conv_702) %onnx::Conv_699 = Identity(%onnx::Conv_681) %onnx::Conv_696 = Identity(%onnx::Conv_675) %onnx::Conv_693 = Identity(%onnx::Conv_675) %onnx::Conv_690 = Identity(%onnx::Conv_681) %onnx::Conv_687 = Identity(%onnx::Conv_675) %onnx::Conv_684 = Identity(%onnx::Conv_675) %onnx::Conv_678 = Identity(%onnx::Conv_675) %onnx::Conv_672 = Identity(%onnx::Conv_645) %onnx::Conv_669 = Identity(%onnx::Conv_648) %onnx::Conv_666 = Identity(%onnx::Conv_648) %onnx::Conv_663 = Identity(%onnx::Conv_645) %onnx::Conv_660 = Identity(%onnx::Conv_648) %onnx::Conv_657 = Identity(%onnx::Conv_648) %onnx::Conv_654 = Identity(%onnx::Conv_645) %onnx::Conv_651 = Identity(%onnx::Conv_648) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_644, %onnx::Conv_645) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_5_output_0) %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/Constant_7_output_0, %/layers.1/Constant_8_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_9_output_0) %/layers.1/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_10_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/Slice_1_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_5_output_0) %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/Constant_7_output_0, %/layers.2/Constant_8_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_9_output_0) %/layers.2/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_10_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/Slice_1_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_5_output_0) %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/Constant_7_output_0, %/layers.3/Constant_8_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_9_output_0) %/layers.3/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_10_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/Slice_1_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_4_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0, %/layers.5/Constant_8_output_0, %/layers.5/Constant_6_output_0, %/layers.5/Constant_9_output_0) %/layers.5/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_10_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0, %/layers.6/Constant_8_output_0, %/layers.6/Constant_6_output_0, %/layers.6/Constant_9_output_0) %/layers.6/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_10_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0, %/layers.7/Constant_8_output_0, %/layers.7/Constant_6_output_0, %/layers.7/Constant_9_output_0) %/layers.7/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_10_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_4_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_5_output_0) %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/Constant_7_output_0, %/layers.9/Constant_8_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_9_output_0) %/layers.9/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_10_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/Slice_1_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_5_output_0) %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/Constant_7_output_0, %/layers.10/Constant_8_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_9_output_0) %/layers.10/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_10_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/Slice_1_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_5_output_0) %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/Constant_7_output_0, %/layers.11/Constant_8_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_9_output_0) %/layers.11/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_10_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/Slice_1_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_4_output_0) %642 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %642 }
val_accuracy
91.225964
681,328,000
2,215,724
{'zcp_epe_nas': 119.55388976700034, 'zcp_fisher': 39.14056396484375, 'zcp_flops': 10901248000.0, 'zcp_grad_norm': 90.42355346679688, 'zcp_grasp': -45.1439208984375, 'zcp_jacov': -16.05619491273142, 'zcp_l2_norm': 517.2471923828125, 'zcp_nwot': 215.93321612644974, 'zcp_params': 2215724.0, 'zcp_plain': 0.23295111954212103, 'zcp_snip': 493.6295166015625, 'zcp_synflow': 69.81624243674725, 'zcp_zen': 59.149192810058594, 'zcp_val_accuracy': 0.920472741127014}
NASBench101_293704
NASBench101
293704
b1cf84167e19dc9c7cb833619012c6c9
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_860[FLOAT, 128x3x3x3] %onnx::Conv_861[FLOAT, 128] %onnx::Conv_863[FLOAT, 64x128x1x1] %onnx::Conv_864[FLOAT, 64] %onnx::Conv_866[FLOAT, 64x64x3x3] %onnx::Conv_869[FLOAT, 64x128x1x1] %onnx::Conv_872[FLOAT, 64x64x1x1] %onnx::Conv_875[FLOAT, 64x128x1x1] %onnx::Conv_878[FLOAT, 64x64x3x3] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 64x128x1x1] %onnx::Conv_890[FLOAT, 64x64x1x1] %onnx::Conv_893[FLOAT, 64x128x1x1] %onnx::Conv_896[FLOAT, 64x64x3x3] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 64x128x1x1] %onnx::Conv_908[FLOAT, 64x64x1x1] %onnx::Conv_911[FLOAT, 64x128x1x1] %onnx::Conv_914[FLOAT, 64x64x3x3] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x3x3] %onnx::Conv_935[FLOAT, 128x256x1x1] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x256x1x1] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x256x1x1] %onnx::Conv_950[FLOAT, 128x128x3x3] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 128x256x1x1] %onnx::Conv_962[FLOAT, 128x128x1x1] %onnx::Conv_965[FLOAT, 128x256x1x1] %onnx::Conv_968[FLOAT, 128x128x3x3] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_972[FLOAT, 256] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x3x3] %onnx::Conv_989[FLOAT, 256x512x1x1] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x512x1x1] %onnx::Conv_998[FLOAT, 256x256x1x1] %onnx::Conv_1001[FLOAT, 256x512x1x1] %onnx::Conv_1004[FLOAT, 256x256x3x3] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 256x512x1x1] %onnx::Conv_1016[FLOAT, 256x256x1x1] %onnx::Conv_1019[FLOAT, 256x512x1x1] %onnx::Conv_1022[FLOAT, 256x256x3x3] ) { %onnx::Conv_1023 = Identity(%onnx::Conv_972) %onnx::Conv_1020 = Identity(%onnx::Conv_972) %onnx::Conv_1017 = Identity(%onnx::Conv_972) %onnx::Conv_1014 = Identity(%onnx::Conv_972) %onnx::Conv_1011 = Identity(%onnx::Conv_972) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_972) %onnx::Conv_1002 = Identity(%onnx::Conv_972) %onnx::Conv_999 = Identity(%onnx::Conv_972) %onnx::Conv_996 = Identity(%onnx::Conv_972) %onnx::Conv_993 = Identity(%onnx::Conv_972) %onnx::Conv_990 = Identity(%onnx::Conv_972) %onnx::Conv_987 = Identity(%onnx::Conv_972) %onnx::Conv_984 = Identity(%onnx::Conv_972) %onnx::Conv_981 = Identity(%onnx::Conv_972) %onnx::Conv_978 = Identity(%onnx::Conv_972) %onnx::Conv_975 = Identity(%onnx::Conv_972) %onnx::Conv_969 = Identity(%onnx::Conv_861) %onnx::Conv_966 = Identity(%onnx::Conv_861) %onnx::Conv_963 = Identity(%onnx::Conv_861) %onnx::Conv_960 = Identity(%onnx::Conv_861) %onnx::Conv_957 = Identity(%onnx::Conv_861) %onnx::Conv_954 = Identity(%onnx::Conv_861) %onnx::Conv_951 = Identity(%onnx::Conv_861) %onnx::Conv_948 = Identity(%onnx::Conv_861) %onnx::Conv_945 = Identity(%onnx::Conv_861) %onnx::Conv_942 = Identity(%onnx::Conv_861) %onnx::Conv_939 = Identity(%onnx::Conv_861) %onnx::Conv_936 = Identity(%onnx::Conv_861) %onnx::Conv_933 = Identity(%onnx::Conv_861) %onnx::Conv_930 = Identity(%onnx::Conv_861) %onnx::Conv_927 = Identity(%onnx::Conv_861) %onnx::Conv_924 = Identity(%onnx::Conv_861) %onnx::Conv_921 = Identity(%onnx::Conv_861) %onnx::Conv_918 = Identity(%onnx::Conv_861) %onnx::Conv_915 = Identity(%onnx::Conv_864) %onnx::Conv_912 = Identity(%onnx::Conv_864) %onnx::Conv_909 = Identity(%onnx::Conv_864) %onnx::Conv_906 = Identity(%onnx::Conv_864) %onnx::Conv_903 = Identity(%onnx::Conv_864) %onnx::Conv_900 = Identity(%onnx::Conv_864) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_864) %onnx::Conv_888 = Identity(%onnx::Conv_864) %onnx::Conv_885 = Identity(%onnx::Conv_864) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_864) %onnx::Conv_873 = Identity(%onnx::Conv_864) %onnx::Conv_870 = Identity(%onnx::Conv_864) %onnx::Conv_867 = Identity(%onnx::Conv_864) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_860, %onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %858 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %858 }
val_accuracy
91.937101
1,861,756,928
6,230,410
{'zcp_epe_nas': 148.20221184623094, 'zcp_fisher': 10.449402809143066, 'zcp_flops': 29788110848.0, 'zcp_grad_norm': 59.55012893676758, 'zcp_grasp': 1.906341552734375, 'zcp_jacov': -16.056801262287465, 'zcp_l2_norm': 1040.931640625, 'zcp_nwot': 223.75763510234472, 'zcp_params': 6230410.0, 'zcp_plain': 0.048387415707111005, 'zcp_snip': 388.2084045410156, 'zcp_synflow': 96.91249119112875, 'zcp_zen': 102.1106185913086, 'zcp_val_accuracy': 0.8812099099159241}
NASBench101_328941
NASBench101
328941
c6f77351ef5b456af4bddd0ad24e0460
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_641[FLOAT, 128x3x3x3] %onnx::Conv_642[FLOAT, 128] %onnx::Conv_644[FLOAT, 43x128x1x1] %onnx::Conv_645[FLOAT, 43] %onnx::Conv_647[FLOAT, 43x43x3x3] %onnx::Conv_650[FLOAT, 42x42x1x1] %onnx::Conv_651[FLOAT, 42] %onnx::Conv_653[FLOAT, 43x128x1x1] %onnx::Conv_656[FLOAT, 43x43x3x3] %onnx::Conv_659[FLOAT, 42x42x1x1] %onnx::Conv_662[FLOAT, 43x128x1x1] %onnx::Conv_665[FLOAT, 43x43x3x3] %onnx::Conv_668[FLOAT, 42x42x1x1] %onnx::Conv_671[FLOAT, 86x128x1x1] %onnx::Conv_672[FLOAT, 86] %onnx::Conv_674[FLOAT, 86x86x3x3] %onnx::Conv_677[FLOAT, 85x85x1x1] %onnx::Conv_678[FLOAT, 85] %onnx::Conv_680[FLOAT, 86x256x1x1] %onnx::Conv_683[FLOAT, 86x86x3x3] %onnx::Conv_686[FLOAT, 85x85x1x1] %onnx::Conv_689[FLOAT, 86x256x1x1] %onnx::Conv_692[FLOAT, 86x86x3x3] %onnx::Conv_695[FLOAT, 85x85x1x1] %onnx::Conv_698[FLOAT, 171x256x1x1] %onnx::Conv_699[FLOAT, 171] %onnx::Conv_701[FLOAT, 171x171x3x3] %onnx::Conv_704[FLOAT, 170x170x1x1] %onnx::Conv_705[FLOAT, 170] %onnx::Conv_707[FLOAT, 171x512x1x1] %onnx::Conv_710[FLOAT, 171x171x3x3] %onnx::Conv_713[FLOAT, 170x170x1x1] %onnx::Conv_716[FLOAT, 171x512x1x1] %onnx::Conv_719[FLOAT, 171x171x3x3] %onnx::Conv_722[FLOAT, 170x170x1x1] ) { %onnx::Conv_723 = Identity(%onnx::Conv_705) %onnx::Conv_720 = Identity(%onnx::Conv_699) %onnx::Conv_717 = Identity(%onnx::Conv_699) %onnx::Conv_714 = Identity(%onnx::Conv_705) %onnx::Conv_711 = Identity(%onnx::Conv_699) %onnx::Conv_708 = Identity(%onnx::Conv_699) %onnx::Conv_702 = Identity(%onnx::Conv_699) %onnx::Conv_696 = Identity(%onnx::Conv_678) %onnx::Conv_693 = Identity(%onnx::Conv_672) %onnx::Conv_690 = Identity(%onnx::Conv_672) %onnx::Conv_687 = Identity(%onnx::Conv_678) %onnx::Conv_684 = Identity(%onnx::Conv_672) %onnx::Conv_681 = Identity(%onnx::Conv_672) %onnx::Conv_675 = Identity(%onnx::Conv_672) %onnx::Conv_669 = Identity(%onnx::Conv_651) %onnx::Conv_666 = Identity(%onnx::Conv_645) %onnx::Conv_663 = Identity(%onnx::Conv_645) %onnx::Conv_660 = Identity(%onnx::Conv_651) %onnx::Conv_657 = Identity(%onnx::Conv_645) %onnx::Conv_654 = Identity(%onnx::Conv_645) %onnx::Conv_648 = Identity(%onnx::Conv_645) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_641, %onnx::Conv_642) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Slice_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Slice_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Slice_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_8_output_0, %/layers.5/Constant_9_output_0, %/layers.5/Constant_7_output_0, %/layers.5/Constant_10_output_0) %/layers.5/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_11_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_8_output_0, %/layers.6/Constant_9_output_0, %/layers.6/Constant_7_output_0, %/layers.6/Constant_10_output_0) %/layers.6/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_11_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_8_output_0, %/layers.7/Constant_9_output_0, %/layers.7/Constant_7_output_0, %/layers.7/Constant_10_output_0) %/layers.7/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_11_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Slice_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Slice_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Slice_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %639 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %639 }
val_accuracy
87.890625
442,236,288
1,457,445
{'zcp_epe_nas': 83.80543651217293, 'zcp_fisher': 49.152435302734375, 'zcp_flops': 7075780608.0, 'zcp_grad_norm': 87.61833953857422, 'zcp_grasp': -15.974609375, 'zcp_jacov': -16.06877680614757, 'zcp_l2_norm': 443.6905822753906, 'zcp_nwot': 208.77779885627552, 'zcp_params': 1457445.0, 'zcp_plain': 0.143830686807632, 'zcp_snip': 461.2461853027344, 'zcp_synflow': 86.07546092253249, 'zcp_zen': 56.89176940917969, 'zcp_val_accuracy': 0.9217748641967771}
NASBench101_354018
NASBench101
354018
d5fe094ba6f108d2fffbe64f89e7cff3
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_752[FLOAT, 128x3x3x3] %onnx::Conv_753[FLOAT, 128] %onnx::Conv_755[FLOAT, 64x128x1x1] %onnx::Conv_756[FLOAT, 64] %onnx::Conv_758[FLOAT, 64x64x1x1] %onnx::Conv_761[FLOAT, 64x64x1x1] %onnx::Conv_764[FLOAT, 64x128x1x1] %onnx::Conv_767[FLOAT, 64x64x1x1] %onnx::Conv_770[FLOAT, 64x128x1x1] %onnx::Conv_773[FLOAT, 64x64x1x1] %onnx::Conv_776[FLOAT, 64x64x1x1] %onnx::Conv_779[FLOAT, 64x128x1x1] %onnx::Conv_782[FLOAT, 64x64x1x1] %onnx::Conv_785[FLOAT, 64x128x1x1] %onnx::Conv_788[FLOAT, 64x64x1x1] %onnx::Conv_791[FLOAT, 64x64x1x1] %onnx::Conv_794[FLOAT, 64x128x1x1] %onnx::Conv_797[FLOAT, 64x64x1x1] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 128x128x1x1] %onnx::Conv_806[FLOAT, 128x128x1x1] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 128x128x1x1] %onnx::Conv_815[FLOAT, 128x256x1x1] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x256x1x1] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x256x1x1] %onnx::Conv_833[FLOAT, 128x128x1x1] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x256x1x1] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 256x256x1x1] %onnx::Conv_846[FLOAT, 256] %onnx::Conv_848[FLOAT, 256x256x1x1] %onnx::Conv_851[FLOAT, 256x256x1x1] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_857[FLOAT, 256x256x1x1] %onnx::Conv_860[FLOAT, 256x512x1x1] %onnx::Conv_863[FLOAT, 256x256x1x1] %onnx::Conv_866[FLOAT, 256x256x1x1] %onnx::Conv_869[FLOAT, 256x512x1x1] %onnx::Conv_872[FLOAT, 256x256x1x1] %onnx::Conv_875[FLOAT, 256x512x1x1] %onnx::Conv_878[FLOAT, 256x256x1x1] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_884[FLOAT, 256x512x1x1] %onnx::Conv_887[FLOAT, 256x256x1x1] ) { %onnx::Conv_888 = Identity(%onnx::Conv_846) %onnx::Conv_885 = Identity(%onnx::Conv_846) %onnx::Conv_882 = Identity(%onnx::Conv_846) %onnx::Conv_879 = Identity(%onnx::Conv_846) %onnx::Conv_876 = Identity(%onnx::Conv_846) %onnx::Conv_873 = Identity(%onnx::Conv_846) %onnx::Conv_870 = Identity(%onnx::Conv_846) %onnx::Conv_867 = Identity(%onnx::Conv_846) %onnx::Conv_864 = Identity(%onnx::Conv_846) %onnx::Conv_861 = Identity(%onnx::Conv_846) %onnx::Conv_858 = Identity(%onnx::Conv_846) %onnx::Conv_855 = Identity(%onnx::Conv_846) %onnx::Conv_852 = Identity(%onnx::Conv_846) %onnx::Conv_849 = Identity(%onnx::Conv_846) %onnx::Conv_843 = Identity(%onnx::Conv_753) %onnx::Conv_840 = Identity(%onnx::Conv_753) %onnx::Conv_837 = Identity(%onnx::Conv_753) %onnx::Conv_834 = Identity(%onnx::Conv_753) %onnx::Conv_831 = Identity(%onnx::Conv_753) %onnx::Conv_828 = Identity(%onnx::Conv_753) %onnx::Conv_825 = Identity(%onnx::Conv_753) %onnx::Conv_822 = Identity(%onnx::Conv_753) %onnx::Conv_819 = Identity(%onnx::Conv_753) %onnx::Conv_816 = Identity(%onnx::Conv_753) %onnx::Conv_813 = Identity(%onnx::Conv_753) %onnx::Conv_810 = Identity(%onnx::Conv_753) %onnx::Conv_807 = Identity(%onnx::Conv_753) %onnx::Conv_804 = Identity(%onnx::Conv_753) %onnx::Conv_801 = Identity(%onnx::Conv_753) %onnx::Conv_798 = Identity(%onnx::Conv_756) %onnx::Conv_795 = Identity(%onnx::Conv_756) %onnx::Conv_792 = Identity(%onnx::Conv_756) %onnx::Conv_789 = Identity(%onnx::Conv_756) %onnx::Conv_786 = Identity(%onnx::Conv_756) %onnx::Conv_783 = Identity(%onnx::Conv_756) %onnx::Conv_780 = Identity(%onnx::Conv_756) %onnx::Conv_777 = Identity(%onnx::Conv_756) %onnx::Conv_774 = Identity(%onnx::Conv_756) %onnx::Conv_771 = Identity(%onnx::Conv_756) %onnx::Conv_768 = Identity(%onnx::Conv_756) %onnx::Conv_765 = Identity(%onnx::Conv_756) %onnx::Conv_762 = Identity(%onnx::Conv_756) %onnx::Conv_759 = Identity(%onnx::Conv_756) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_752, %onnx::Conv_753) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %750 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %750 }
val_accuracy
88.681889
516,827,136
1,664,778
{'zcp_epe_nas': 127.94613211882894, 'zcp_fisher': 3.9091637134552, 'zcp_flops': 8269234176.0, 'zcp_grad_norm': 46.05642318725586, 'zcp_grasp': 1.624664306640625, 'zcp_jacov': -16.052425550691066, 'zcp_l2_norm': 844.8428955078125, 'zcp_nwot': 221.69184992127975, 'zcp_params': 1664778.0, 'zcp_plain': -0.002451810287311, 'zcp_snip': 263.169677734375, 'zcp_synflow': 75.69719468497142, 'zcp_zen': 69.82167053222656, 'zcp_val_accuracy': 0.810296475887298}
NASBench101_28981
NASBench101
28981
1183a484672001d6522c1ac828c4da36
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_977[FLOAT, 128x3x3x3] %onnx::Conv_978[FLOAT, 128] %onnx::Conv_980[FLOAT, 64x128x1x1] %onnx::Conv_981[FLOAT, 64] %onnx::Conv_983[FLOAT, 64x64x1x1] %onnx::Conv_986[FLOAT, 64x128x1x1] %onnx::Conv_989[FLOAT, 64x64x1x1] %onnx::Conv_992[FLOAT, 64x64x3x3] %onnx::Conv_995[FLOAT, 64x64x3x3] %onnx::Conv_998[FLOAT, 64x64x3x3] %onnx::Conv_1001[FLOAT, 64x128x1x1] %onnx::Conv_1004[FLOAT, 64x64x1x1] %onnx::Conv_1007[FLOAT, 64x128x1x1] %onnx::Conv_1010[FLOAT, 64x64x1x1] %onnx::Conv_1013[FLOAT, 64x64x3x3] %onnx::Conv_1016[FLOAT, 64x64x3x3] %onnx::Conv_1019[FLOAT, 64x64x3x3] %onnx::Conv_1022[FLOAT, 64x128x1x1] %onnx::Conv_1025[FLOAT, 64x64x1x1] %onnx::Conv_1028[FLOAT, 64x128x1x1] %onnx::Conv_1031[FLOAT, 64x64x1x1] %onnx::Conv_1034[FLOAT, 64x64x3x3] %onnx::Conv_1037[FLOAT, 64x64x3x3] %onnx::Conv_1040[FLOAT, 64x64x3x3] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 128x128x1x1] %onnx::Conv_1049[FLOAT, 128x128x1x1] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x128x3x3] %onnx::Conv_1058[FLOAT, 128x128x3x3] %onnx::Conv_1061[FLOAT, 128x128x3x3] %onnx::Conv_1064[FLOAT, 128x256x1x1] %onnx::Conv_1067[FLOAT, 128x128x1x1] %onnx::Conv_1070[FLOAT, 128x256x1x1] %onnx::Conv_1073[FLOAT, 128x128x1x1] %onnx::Conv_1076[FLOAT, 128x128x3x3] %onnx::Conv_1079[FLOAT, 128x128x3x3] %onnx::Conv_1082[FLOAT, 128x128x3x3] %onnx::Conv_1085[FLOAT, 128x256x1x1] %onnx::Conv_1088[FLOAT, 128x128x1x1] %onnx::Conv_1091[FLOAT, 128x256x1x1] %onnx::Conv_1094[FLOAT, 128x128x1x1] %onnx::Conv_1097[FLOAT, 128x128x3x3] %onnx::Conv_1100[FLOAT, 128x128x3x3] %onnx::Conv_1103[FLOAT, 128x128x3x3] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1107[FLOAT, 256] %onnx::Conv_1109[FLOAT, 256x256x1x1] %onnx::Conv_1112[FLOAT, 256x256x1x1] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1118[FLOAT, 256x256x3x3] %onnx::Conv_1121[FLOAT, 256x256x3x3] %onnx::Conv_1124[FLOAT, 256x256x3x3] %onnx::Conv_1127[FLOAT, 256x512x1x1] %onnx::Conv_1130[FLOAT, 256x256x1x1] %onnx::Conv_1133[FLOAT, 256x512x1x1] %onnx::Conv_1136[FLOAT, 256x256x1x1] %onnx::Conv_1139[FLOAT, 256x256x3x3] %onnx::Conv_1142[FLOAT, 256x256x3x3] %onnx::Conv_1145[FLOAT, 256x256x3x3] %onnx::Conv_1148[FLOAT, 256x512x1x1] %onnx::Conv_1151[FLOAT, 256x256x1x1] %onnx::Conv_1154[FLOAT, 256x512x1x1] %onnx::Conv_1157[FLOAT, 256x256x1x1] %onnx::Conv_1160[FLOAT, 256x256x3x3] %onnx::Conv_1163[FLOAT, 256x256x3x3] %onnx::Conv_1166[FLOAT, 256x256x3x3] ) { %onnx::Conv_1167 = Identity(%onnx::Conv_1107) %onnx::Conv_1164 = Identity(%onnx::Conv_1107) %onnx::Conv_1161 = Identity(%onnx::Conv_1107) %onnx::Conv_1158 = Identity(%onnx::Conv_1107) %onnx::Conv_1155 = Identity(%onnx::Conv_1107) %onnx::Conv_1152 = Identity(%onnx::Conv_1107) %onnx::Conv_1149 = Identity(%onnx::Conv_1107) %onnx::Conv_1146 = Identity(%onnx::Conv_1107) %onnx::Conv_1143 = Identity(%onnx::Conv_1107) %onnx::Conv_1140 = Identity(%onnx::Conv_1107) %onnx::Conv_1137 = Identity(%onnx::Conv_1107) %onnx::Conv_1134 = Identity(%onnx::Conv_1107) %onnx::Conv_1131 = Identity(%onnx::Conv_1107) %onnx::Conv_1128 = Identity(%onnx::Conv_1107) %onnx::Conv_1125 = Identity(%onnx::Conv_1107) %onnx::Conv_1122 = Identity(%onnx::Conv_1107) %onnx::Conv_1119 = Identity(%onnx::Conv_1107) %onnx::Conv_1116 = Identity(%onnx::Conv_1107) %onnx::Conv_1113 = Identity(%onnx::Conv_1107) %onnx::Conv_1110 = Identity(%onnx::Conv_1107) %onnx::Conv_1104 = Identity(%onnx::Conv_978) %onnx::Conv_1101 = Identity(%onnx::Conv_978) %onnx::Conv_1098 = Identity(%onnx::Conv_978) %onnx::Conv_1095 = Identity(%onnx::Conv_978) %onnx::Conv_1092 = Identity(%onnx::Conv_978) %onnx::Conv_1089 = Identity(%onnx::Conv_978) %onnx::Conv_1086 = Identity(%onnx::Conv_978) %onnx::Conv_1083 = Identity(%onnx::Conv_978) %onnx::Conv_1080 = Identity(%onnx::Conv_978) %onnx::Conv_1077 = Identity(%onnx::Conv_978) %onnx::Conv_1074 = Identity(%onnx::Conv_978) %onnx::Conv_1071 = Identity(%onnx::Conv_978) %onnx::Conv_1068 = Identity(%onnx::Conv_978) %onnx::Conv_1065 = Identity(%onnx::Conv_978) %onnx::Conv_1062 = Identity(%onnx::Conv_978) %onnx::Conv_1059 = Identity(%onnx::Conv_978) %onnx::Conv_1056 = Identity(%onnx::Conv_978) %onnx::Conv_1053 = Identity(%onnx::Conv_978) %onnx::Conv_1050 = Identity(%onnx::Conv_978) %onnx::Conv_1047 = Identity(%onnx::Conv_978) %onnx::Conv_1044 = Identity(%onnx::Conv_978) %onnx::Conv_1041 = Identity(%onnx::Conv_981) %onnx::Conv_1038 = Identity(%onnx::Conv_981) %onnx::Conv_1035 = Identity(%onnx::Conv_981) %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_977, %onnx::Conv_978) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %975 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %975 }
val_accuracy
93.449521
2,485,266,432
8,379,402
{'zcp_epe_nas': 201.2466860872314, 'zcp_fisher': 7.983575344085693, 'zcp_flops': 39764262912.0, 'zcp_grad_norm': 66.68225860595703, 'zcp_grasp': 7.35321044921875, 'zcp_jacov': -16.06371835433537, 'zcp_l2_norm': 1143.9212646484375, 'zcp_nwot': 226.93990848686445, 'zcp_params': 8379402.0, 'zcp_plain': -0.04895793646574, 'zcp_snip': 390.3296813964844, 'zcp_synflow': 149.22676081897185, 'zcp_zen': 114.706787109375, 'zcp_val_accuracy': 0.9178686141967771}
NASBench101_256983
NASBench101
256983
9b97a7d637a0c44c1f323603389c37c3
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_545[FLOAT, 128x3x3x3] %onnx::Conv_546[FLOAT, 128] %onnx::Conv_548[FLOAT, 128x128x1x1] %onnx::Conv_551[FLOAT, 128x128x3x3] %onnx::Conv_554[FLOAT, 128x128x1x1] %onnx::Conv_557[FLOAT, 128x128x1x1] %onnx::Conv_560[FLOAT, 128x128x3x3] %onnx::Conv_563[FLOAT, 128x128x1x1] %onnx::Conv_566[FLOAT, 128x128x1x1] %onnx::Conv_569[FLOAT, 128x128x3x3] %onnx::Conv_572[FLOAT, 128x128x1x1] %onnx::Conv_575[FLOAT, 256x128x1x1] %onnx::Conv_576[FLOAT, 256] %onnx::Conv_578[FLOAT, 256x256x3x3] %onnx::Conv_581[FLOAT, 256x128x1x1] %onnx::Conv_584[FLOAT, 256x256x1x1] %onnx::Conv_587[FLOAT, 256x256x3x3] %onnx::Conv_590[FLOAT, 256x256x1x1] %onnx::Conv_593[FLOAT, 256x256x1x1] %onnx::Conv_596[FLOAT, 256x256x3x3] %onnx::Conv_599[FLOAT, 256x256x1x1] %onnx::Conv_602[FLOAT, 512x256x1x1] %onnx::Conv_603[FLOAT, 512] %onnx::Conv_605[FLOAT, 512x512x3x3] %onnx::Conv_608[FLOAT, 512x256x1x1] %onnx::Conv_611[FLOAT, 512x512x1x1] %onnx::Conv_614[FLOAT, 512x512x3x3] %onnx::Conv_617[FLOAT, 512x512x1x1] %onnx::Conv_620[FLOAT, 512x512x1x1] %onnx::Conv_623[FLOAT, 512x512x3x3] %onnx::Conv_626[FLOAT, 512x512x1x1] ) { %onnx::Conv_627 = Identity(%onnx::Conv_603) %onnx::Conv_624 = Identity(%onnx::Conv_603) %onnx::Conv_621 = Identity(%onnx::Conv_603) %onnx::Conv_618 = Identity(%onnx::Conv_603) %onnx::Conv_615 = Identity(%onnx::Conv_603) %onnx::Conv_612 = Identity(%onnx::Conv_603) %onnx::Conv_609 = Identity(%onnx::Conv_603) %onnx::Conv_606 = Identity(%onnx::Conv_603) %onnx::Conv_600 = Identity(%onnx::Conv_576) %onnx::Conv_597 = Identity(%onnx::Conv_576) %onnx::Conv_594 = Identity(%onnx::Conv_576) %onnx::Conv_591 = Identity(%onnx::Conv_576) %onnx::Conv_588 = Identity(%onnx::Conv_576) %onnx::Conv_585 = Identity(%onnx::Conv_576) %onnx::Conv_582 = Identity(%onnx::Conv_576) %onnx::Conv_579 = Identity(%onnx::Conv_576) %onnx::Conv_573 = Identity(%onnx::Conv_546) %onnx::Conv_570 = Identity(%onnx::Conv_546) %onnx::Conv_567 = Identity(%onnx::Conv_546) %onnx::Conv_564 = Identity(%onnx::Conv_546) %onnx::Conv_561 = Identity(%onnx::Conv_546) %onnx::Conv_558 = Identity(%onnx::Conv_546) %onnx::Conv_555 = Identity(%onnx::Conv_546) %onnx::Conv_552 = Identity(%onnx::Conv_546) %onnx::Conv_549 = Identity(%onnx::Conv_546) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_545, %onnx::Conv_546) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_548, %onnx::Conv_549) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_551, %onnx::Conv_552) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_554, %onnx::Conv_555) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_557, %onnx::Conv_558) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_560, %onnx::Conv_561) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_563, %onnx::Conv_564) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_566, %onnx::Conv_567) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_569, %onnx::Conv_570) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_572, %onnx::Conv_573) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.5/maxpool/MaxPool_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_3_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_575, %onnx::Conv_576) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_578, %onnx::Conv_579) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_581, %onnx::Conv_582) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_584, %onnx::Conv_585) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_587, %onnx::Conv_588) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_590, %onnx::Conv_591) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_593, %onnx::Conv_594) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_596, %onnx::Conv_597) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_599, %onnx::Conv_600) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.5/maxpool/MaxPool_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_3_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_602, %onnx::Conv_603) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_605, %onnx::Conv_606) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_608, %onnx::Conv_609) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_611, %onnx::Conv_612) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_614, %onnx::Conv_615) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_617, %onnx::Conv_618) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_620, %onnx::Conv_621) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_623, %onnx::Conv_624) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_626, %onnx::Conv_627) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.5/maxpool/MaxPool_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_3_output_0) %543 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %543 }
val_accuracy
89.172679
3,279,431,680
11,051,402
{'zcp_epe_nas': 143.32001839251257, 'zcp_fisher': 18.164621353149414, 'zcp_flops': 52470906880.0, 'zcp_grad_norm': 75.23977661132812, 'zcp_grasp': -70.39849853515625, 'zcp_jacov': -16.059419036875852, 'zcp_l2_norm': 606.9711303710938, 'zcp_nwot': 223.77770817520783, 'zcp_params': 11051402.0, 'zcp_plain': 0.38964286446571306, 'zcp_snip': 601.5684204101562, 'zcp_synflow': 73.56808868021426, 'zcp_zen': 72.45105743408203, 'zcp_val_accuracy': 0.9266827106475831}
NASBench101_30139
NASBench101
30139
1239352fb50c2ccc90a0e3d34233e4e8
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 43x128x1x1] %onnx::Conv_891[FLOAT, 43] %onnx::Conv_893[FLOAT, 43x43x3x3] %onnx::Conv_896[FLOAT, 43x43x1x1] %onnx::Conv_899[FLOAT, 43x128x1x1] %onnx::Conv_902[FLOAT, 43x43x3x3] %onnx::Conv_905[FLOAT, 42x42x1x1] %onnx::Conv_906[FLOAT, 42] %onnx::Conv_908[FLOAT, 43x128x1x1] %onnx::Conv_911[FLOAT, 43x43x3x3] %onnx::Conv_914[FLOAT, 43x43x1x1] %onnx::Conv_917[FLOAT, 43x128x1x1] %onnx::Conv_920[FLOAT, 43x43x3x3] %onnx::Conv_923[FLOAT, 42x42x1x1] %onnx::Conv_926[FLOAT, 43x128x1x1] %onnx::Conv_929[FLOAT, 43x43x3x3] %onnx::Conv_932[FLOAT, 43x43x1x1] %onnx::Conv_935[FLOAT, 43x128x1x1] %onnx::Conv_938[FLOAT, 43x43x3x3] %onnx::Conv_941[FLOAT, 42x42x1x1] %onnx::Conv_944[FLOAT, 86x128x1x1] %onnx::Conv_945[FLOAT, 86] %onnx::Conv_947[FLOAT, 86x86x3x3] %onnx::Conv_950[FLOAT, 86x86x1x1] %onnx::Conv_953[FLOAT, 85x128x1x1] %onnx::Conv_954[FLOAT, 85] %onnx::Conv_956[FLOAT, 85x85x3x3] %onnx::Conv_959[FLOAT, 85x85x1x1] %onnx::Conv_962[FLOAT, 86x256x1x1] %onnx::Conv_965[FLOAT, 86x86x3x3] %onnx::Conv_968[FLOAT, 86x86x1x1] %onnx::Conv_971[FLOAT, 85x256x1x1] %onnx::Conv_974[FLOAT, 85x85x3x3] %onnx::Conv_977[FLOAT, 85x85x1x1] %onnx::Conv_980[FLOAT, 86x256x1x1] %onnx::Conv_983[FLOAT, 86x86x3x3] %onnx::Conv_986[FLOAT, 86x86x1x1] %onnx::Conv_989[FLOAT, 85x256x1x1] %onnx::Conv_992[FLOAT, 85x85x3x3] %onnx::Conv_995[FLOAT, 85x85x1x1] %onnx::Conv_998[FLOAT, 171x256x1x1] %onnx::Conv_999[FLOAT, 171] %onnx::Conv_1001[FLOAT, 171x171x3x3] %onnx::Conv_1004[FLOAT, 171x171x1x1] %onnx::Conv_1007[FLOAT, 171x256x1x1] %onnx::Conv_1010[FLOAT, 171x171x3x3] %onnx::Conv_1013[FLOAT, 170x170x1x1] %onnx::Conv_1014[FLOAT, 170] %onnx::Conv_1016[FLOAT, 171x512x1x1] %onnx::Conv_1019[FLOAT, 171x171x3x3] %onnx::Conv_1022[FLOAT, 171x171x1x1] %onnx::Conv_1025[FLOAT, 171x512x1x1] %onnx::Conv_1028[FLOAT, 171x171x3x3] %onnx::Conv_1031[FLOAT, 170x170x1x1] %onnx::Conv_1034[FLOAT, 171x512x1x1] %onnx::Conv_1037[FLOAT, 171x171x3x3] %onnx::Conv_1040[FLOAT, 171x171x1x1] %onnx::Conv_1043[FLOAT, 171x512x1x1] %onnx::Conv_1046[FLOAT, 171x171x3x3] %onnx::Conv_1049[FLOAT, 170x170x1x1] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_1014) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_1014) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_954) %onnx::Conv_993 = Identity(%onnx::Conv_954) %onnx::Conv_990 = Identity(%onnx::Conv_954) %onnx::Conv_987 = Identity(%onnx::Conv_945) %onnx::Conv_984 = Identity(%onnx::Conv_945) %onnx::Conv_981 = Identity(%onnx::Conv_945) %onnx::Conv_978 = Identity(%onnx::Conv_954) %onnx::Conv_975 = Identity(%onnx::Conv_954) %onnx::Conv_972 = Identity(%onnx::Conv_954) %onnx::Conv_969 = Identity(%onnx::Conv_945) %onnx::Conv_966 = Identity(%onnx::Conv_945) %onnx::Conv_963 = Identity(%onnx::Conv_945) %onnx::Conv_960 = Identity(%onnx::Conv_954) %onnx::Conv_957 = Identity(%onnx::Conv_954) %onnx::Conv_951 = Identity(%onnx::Conv_945) %onnx::Conv_948 = Identity(%onnx::Conv_945) %onnx::Conv_942 = Identity(%onnx::Conv_906) %onnx::Conv_939 = Identity(%onnx::Conv_891) %onnx::Conv_936 = Identity(%onnx::Conv_891) %onnx::Conv_933 = Identity(%onnx::Conv_891) %onnx::Conv_930 = Identity(%onnx::Conv_891) %onnx::Conv_927 = Identity(%onnx::Conv_891) %onnx::Conv_924 = Identity(%onnx::Conv_906) %onnx::Conv_921 = Identity(%onnx::Conv_891) %onnx::Conv_918 = Identity(%onnx::Conv_891) %onnx::Conv_915 = Identity(%onnx::Conv_891) %onnx::Conv_912 = Identity(%onnx::Conv_891) %onnx::Conv_909 = Identity(%onnx::Conv_891) %onnx::Conv_903 = Identity(%onnx::Conv_891) %onnx::Conv_900 = Identity(%onnx::Conv_891) %onnx::Conv_897 = Identity(%onnx::Conv_891) %onnx::Conv_894 = Identity(%onnx::Conv_891) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Slice_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Slice_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Slice_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_5_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_6_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Slice_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_5_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_6_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Slice_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_5_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_6_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Slice_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Slice_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Slice_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Slice_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
90.885419
874,580,096
2,902,588
{'zcp_epe_nas': 73.31100609536252, 'zcp_fisher': 511.29510498046875, 'zcp_flops': 13993281536.0, 'zcp_grad_norm': 407.3238830566406, 'zcp_grasp': -235.57421875, 'zcp_jacov': -16.0696347452759, 'zcp_l2_norm': 885.7276000976562, 'zcp_nwot': 218.6215631734631, 'zcp_params': 2902588.0, 'zcp_plain': 0.023590676486492, 'zcp_snip': 1854.0367431640625, 'zcp_synflow': 112.74978238783324, 'zcp_zen': 92.61060333251953, 'zcp_val_accuracy': 0.9159655570983881}
NASBench101_37150
NASBench101
37150
1685c8d51ecec4250f354cf2b8392cdb
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_878[FLOAT, 128x3x3x3] %onnx::Conv_879[FLOAT, 128] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_882[FLOAT, 64] %onnx::Conv_884[FLOAT, 64x64x1x1] %onnx::Conv_887[FLOAT, 64x64x3x3] %onnx::Conv_890[FLOAT, 64x64x3x3] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x64x1x1] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x64x1x1] %onnx::Conv_905[FLOAT, 64x64x3x3] %onnx::Conv_908[FLOAT, 64x64x3x3] %onnx::Conv_911[FLOAT, 64x64x1x1] %onnx::Conv_914[FLOAT, 64x64x1x1] %onnx::Conv_917[FLOAT, 64x128x1x1] %onnx::Conv_920[FLOAT, 64x64x1x1] %onnx::Conv_923[FLOAT, 64x64x3x3] %onnx::Conv_926[FLOAT, 64x64x3x3] %onnx::Conv_929[FLOAT, 64x64x1x1] %onnx::Conv_932[FLOAT, 64x64x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 128x128x3x3] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x128x1x1] %onnx::Conv_959[FLOAT, 128x128x3x3] %onnx::Conv_962[FLOAT, 128x128x3x3] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 128x256x1x1] %onnx::Conv_974[FLOAT, 128x128x1x1] %onnx::Conv_977[FLOAT, 128x128x3x3] %onnx::Conv_980[FLOAT, 128x128x3x3] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_990[FLOAT, 256] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 256x256x3x3] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x256x1x1] %onnx::Conv_1013[FLOAT, 256x256x3x3] %onnx::Conv_1016[FLOAT, 256x256x3x3] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x256x1x1] %onnx::Conv_1025[FLOAT, 256x512x1x1] %onnx::Conv_1028[FLOAT, 256x256x1x1] %onnx::Conv_1031[FLOAT, 256x256x3x3] %onnx::Conv_1034[FLOAT, 256x256x3x3] %onnx::Conv_1037[FLOAT, 256x256x1x1] %onnx::Conv_1040[FLOAT, 256x256x1x1] ) { %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %onnx::Conv_987 = Identity(%onnx::Conv_879) %onnx::Conv_984 = Identity(%onnx::Conv_879) %onnx::Conv_981 = Identity(%onnx::Conv_879) %onnx::Conv_978 = Identity(%onnx::Conv_879) %onnx::Conv_975 = Identity(%onnx::Conv_879) %onnx::Conv_972 = Identity(%onnx::Conv_879) %onnx::Conv_969 = Identity(%onnx::Conv_879) %onnx::Conv_966 = Identity(%onnx::Conv_879) %onnx::Conv_963 = Identity(%onnx::Conv_879) %onnx::Conv_960 = Identity(%onnx::Conv_879) %onnx::Conv_957 = Identity(%onnx::Conv_879) %onnx::Conv_954 = Identity(%onnx::Conv_879) %onnx::Conv_951 = Identity(%onnx::Conv_879) %onnx::Conv_948 = Identity(%onnx::Conv_879) %onnx::Conv_945 = Identity(%onnx::Conv_879) %onnx::Conv_942 = Identity(%onnx::Conv_879) %onnx::Conv_939 = Identity(%onnx::Conv_879) %onnx::Conv_936 = Identity(%onnx::Conv_879) %onnx::Conv_933 = Identity(%onnx::Conv_882) %onnx::Conv_930 = Identity(%onnx::Conv_882) %onnx::Conv_927 = Identity(%onnx::Conv_882) %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_878, %onnx::Conv_879) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %876 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %876 }
val_accuracy
92.23758
1,744,316,416
5,878,154
{'zcp_epe_nas': 88.45194741342608, 'zcp_fisher': 39.54362869262695, 'zcp_flops': 27909062656.0, 'zcp_grad_norm': 127.51750946044922, 'zcp_grasp': 18.357666015625, 'zcp_jacov': -16.05587379135943, 'zcp_l2_norm': 947.2877807617188, 'zcp_nwot': 224.8156433342362, 'zcp_params': 5878154.0, 'zcp_plain': -0.016302317380905002, 'zcp_snip': 715.983154296875, 'zcp_synflow': 162.90273954873157, 'zcp_zen': 93.52432250976562, 'zcp_val_accuracy': 0.873597741127014}
NASBench101_312894
NASBench101
312894
bd4fcbc58bd9785041cf069f718c968a
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_989[FLOAT, 128x3x3x3] %onnx::Conv_990[FLOAT, 128] %onnx::Conv_992[FLOAT, 43x128x1x1] %onnx::Conv_993[FLOAT, 43] %onnx::Conv_995[FLOAT, 43x43x1x1] %onnx::Conv_998[FLOAT, 43x128x1x1] %onnx::Conv_1001[FLOAT, 43x43x1x1] %onnx::Conv_1004[FLOAT, 42x128x1x1] %onnx::Conv_1005[FLOAT, 42] %onnx::Conv_1007[FLOAT, 42x42x3x3] %onnx::Conv_1010[FLOAT, 128x128x1x1] %onnx::Conv_1013[FLOAT, 43x128x1x1] %onnx::Conv_1016[FLOAT, 43x43x1x1] %onnx::Conv_1019[FLOAT, 43x128x1x1] %onnx::Conv_1022[FLOAT, 43x43x1x1] %onnx::Conv_1025[FLOAT, 42x128x1x1] %onnx::Conv_1028[FLOAT, 42x42x3x3] %onnx::Conv_1031[FLOAT, 128x128x1x1] %onnx::Conv_1034[FLOAT, 43x128x1x1] %onnx::Conv_1037[FLOAT, 43x43x1x1] %onnx::Conv_1040[FLOAT, 43x128x1x1] %onnx::Conv_1043[FLOAT, 43x43x1x1] %onnx::Conv_1046[FLOAT, 42x128x1x1] %onnx::Conv_1049[FLOAT, 42x42x3x3] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 86x128x1x1] %onnx::Conv_1056[FLOAT, 86] %onnx::Conv_1058[FLOAT, 86x86x1x1] %onnx::Conv_1061[FLOAT, 85x128x1x1] %onnx::Conv_1062[FLOAT, 85] %onnx::Conv_1064[FLOAT, 85x85x1x1] %onnx::Conv_1067[FLOAT, 85x128x1x1] %onnx::Conv_1070[FLOAT, 85x85x3x3] %onnx::Conv_1073[FLOAT, 256x128x1x1] %onnx::Conv_1074[FLOAT, 256] %onnx::Conv_1076[FLOAT, 86x256x1x1] %onnx::Conv_1079[FLOAT, 86x86x1x1] %onnx::Conv_1082[FLOAT, 85x256x1x1] %onnx::Conv_1085[FLOAT, 85x85x1x1] %onnx::Conv_1088[FLOAT, 85x256x1x1] %onnx::Conv_1091[FLOAT, 85x85x3x3] %onnx::Conv_1094[FLOAT, 256x256x1x1] %onnx::Conv_1097[FLOAT, 86x256x1x1] %onnx::Conv_1100[FLOAT, 86x86x1x1] %onnx::Conv_1103[FLOAT, 85x256x1x1] %onnx::Conv_1106[FLOAT, 85x85x1x1] %onnx::Conv_1109[FLOAT, 85x256x1x1] %onnx::Conv_1112[FLOAT, 85x85x3x3] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1118[FLOAT, 171x256x1x1] %onnx::Conv_1119[FLOAT, 171] %onnx::Conv_1121[FLOAT, 171x171x1x1] %onnx::Conv_1124[FLOAT, 171x256x1x1] %onnx::Conv_1127[FLOAT, 171x171x1x1] %onnx::Conv_1130[FLOAT, 170x256x1x1] %onnx::Conv_1131[FLOAT, 170] %onnx::Conv_1133[FLOAT, 170x170x3x3] %onnx::Conv_1136[FLOAT, 512x256x1x1] %onnx::Conv_1137[FLOAT, 512] %onnx::Conv_1139[FLOAT, 171x512x1x1] %onnx::Conv_1142[FLOAT, 171x171x1x1] %onnx::Conv_1145[FLOAT, 171x512x1x1] %onnx::Conv_1148[FLOAT, 171x171x1x1] %onnx::Conv_1151[FLOAT, 170x512x1x1] %onnx::Conv_1154[FLOAT, 170x170x3x3] %onnx::Conv_1157[FLOAT, 512x512x1x1] %onnx::Conv_1160[FLOAT, 171x512x1x1] %onnx::Conv_1163[FLOAT, 171x171x1x1] %onnx::Conv_1166[FLOAT, 171x512x1x1] %onnx::Conv_1169[FLOAT, 171x171x1x1] %onnx::Conv_1172[FLOAT, 170x512x1x1] %onnx::Conv_1175[FLOAT, 170x170x3x3] %onnx::Conv_1178[FLOAT, 512x512x1x1] ) { %onnx::Conv_1179 = Identity(%onnx::Conv_1137) %onnx::Conv_1176 = Identity(%onnx::Conv_1131) %onnx::Conv_1173 = Identity(%onnx::Conv_1131) %onnx::Conv_1170 = Identity(%onnx::Conv_1119) %onnx::Conv_1167 = Identity(%onnx::Conv_1119) %onnx::Conv_1164 = Identity(%onnx::Conv_1119) %onnx::Conv_1161 = Identity(%onnx::Conv_1119) %onnx::Conv_1158 = Identity(%onnx::Conv_1137) %onnx::Conv_1155 = Identity(%onnx::Conv_1131) %onnx::Conv_1152 = Identity(%onnx::Conv_1131) %onnx::Conv_1149 = Identity(%onnx::Conv_1119) %onnx::Conv_1146 = Identity(%onnx::Conv_1119) %onnx::Conv_1143 = Identity(%onnx::Conv_1119) %onnx::Conv_1140 = Identity(%onnx::Conv_1119) %onnx::Conv_1134 = Identity(%onnx::Conv_1131) %onnx::Conv_1128 = Identity(%onnx::Conv_1119) %onnx::Conv_1125 = Identity(%onnx::Conv_1119) %onnx::Conv_1122 = Identity(%onnx::Conv_1119) %onnx::Conv_1116 = Identity(%onnx::Conv_1074) %onnx::Conv_1113 = Identity(%onnx::Conv_1062) %onnx::Conv_1110 = Identity(%onnx::Conv_1062) %onnx::Conv_1107 = Identity(%onnx::Conv_1062) %onnx::Conv_1104 = Identity(%onnx::Conv_1062) %onnx::Conv_1101 = Identity(%onnx::Conv_1056) %onnx::Conv_1098 = Identity(%onnx::Conv_1056) %onnx::Conv_1095 = Identity(%onnx::Conv_1074) %onnx::Conv_1092 = Identity(%onnx::Conv_1062) %onnx::Conv_1089 = Identity(%onnx::Conv_1062) %onnx::Conv_1086 = Identity(%onnx::Conv_1062) %onnx::Conv_1083 = Identity(%onnx::Conv_1062) %onnx::Conv_1080 = Identity(%onnx::Conv_1056) %onnx::Conv_1077 = Identity(%onnx::Conv_1056) %onnx::Conv_1071 = Identity(%onnx::Conv_1062) %onnx::Conv_1068 = Identity(%onnx::Conv_1062) %onnx::Conv_1065 = Identity(%onnx::Conv_1062) %onnx::Conv_1059 = Identity(%onnx::Conv_1056) %onnx::Conv_1053 = Identity(%onnx::Conv_990) %onnx::Conv_1050 = Identity(%onnx::Conv_1005) %onnx::Conv_1047 = Identity(%onnx::Conv_1005) %onnx::Conv_1044 = Identity(%onnx::Conv_993) %onnx::Conv_1041 = Identity(%onnx::Conv_993) %onnx::Conv_1038 = Identity(%onnx::Conv_993) %onnx::Conv_1035 = Identity(%onnx::Conv_993) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_1005) %onnx::Conv_1026 = Identity(%onnx::Conv_1005) %onnx::Conv_1023 = Identity(%onnx::Conv_993) %onnx::Conv_1020 = Identity(%onnx::Conv_993) %onnx::Conv_1017 = Identity(%onnx::Conv_993) %onnx::Conv_1014 = Identity(%onnx::Conv_993) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_1005) %onnx::Conv_1002 = Identity(%onnx::Conv_993) %onnx::Conv_999 = Identity(%onnx::Conv_993) %onnx::Conv_996 = Identity(%onnx::Conv_993) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_989, %onnx::Conv_990) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_5_output_0) %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_7_output_0, %/layers.1/Constant_8_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_9_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_10_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/Slice_1_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_5_output_0) %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_7_output_0, %/layers.2/Constant_8_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_9_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_10_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/Slice_1_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_5_output_0) %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_7_output_0, %/layers.3/Constant_8_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_9_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_10_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/Slice_1_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_6_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_6_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_6_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_5_output_0) %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_7_output_0, %/layers.9/Constant_8_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_9_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_10_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/Slice_1_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_5_output_0) %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_7_output_0, %/layers.10/Constant_8_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_9_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_10_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/Slice_1_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_5_output_0) %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_7_output_0, %/layers.11/Constant_8_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_9_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_10_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/Slice_1_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %987 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %987 }
val_accuracy
93.269229
926,457,088
3,015,080
{'zcp_epe_nas': 90.03687538962636, 'zcp_fisher': 0.311220675706863, 'zcp_flops': 14823313408.0, 'zcp_grad_norm': 14.685047149658203, 'zcp_grasp': -0.045317649841308004, 'zcp_jacov': -16.07276419374891, 'zcp_l2_norm': 1153.7591552734375, 'zcp_nwot': 224.55063882645095, 'zcp_params': 3015080.0, 'zcp_plain': 0.009641645476222, 'zcp_snip': 83.3890151977539, 'zcp_synflow': 85.1743522881481, 'zcp_zen': 105.28160858154297, 'zcp_val_accuracy': 0.8646835088729851}
NASBench101_145380
NASBench101
145380
57f7a5293df158f969941cb2ad7fae0f
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x1x1] %onnx::Conv_896[FLOAT, 128x128x3x3] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x3x3] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x3x3] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x3x3] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x3x3] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 256x128x1x1] %onnx::Conv_945[FLOAT, 256] %onnx::Conv_947[FLOAT, 256x256x1x1] %onnx::Conv_950[FLOAT, 256x256x3x3] %onnx::Conv_953[FLOAT, 256x128x1x1] %onnx::Conv_956[FLOAT, 256x256x1x1] %onnx::Conv_959[FLOAT, 256x256x3x3] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x3x3] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x3x3] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x3x3] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 512x256x1x1] %onnx::Conv_999[FLOAT, 512] %onnx::Conv_1001[FLOAT, 512x512x1x1] %onnx::Conv_1004[FLOAT, 512x512x3x3] %onnx::Conv_1007[FLOAT, 512x256x1x1] %onnx::Conv_1010[FLOAT, 512x512x1x1] %onnx::Conv_1013[FLOAT, 512x512x3x3] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x1x1] %onnx::Conv_1022[FLOAT, 512x512x3x3] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x1x1] %onnx::Conv_1031[FLOAT, 512x512x3x3] %onnx::Conv_1034[FLOAT, 512x512x1x1] %onnx::Conv_1037[FLOAT, 512x512x1x1] %onnx::Conv_1040[FLOAT, 512x512x3x3] %onnx::Conv_1043[FLOAT, 512x512x1x1] %onnx::Conv_1046[FLOAT, 512x512x1x1] %onnx::Conv_1049[FLOAT, 512x512x3x3] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_999) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_999) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1014 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_945) %onnx::Conv_993 = Identity(%onnx::Conv_945) %onnx::Conv_990 = Identity(%onnx::Conv_945) %onnx::Conv_987 = Identity(%onnx::Conv_945) %onnx::Conv_984 = Identity(%onnx::Conv_945) %onnx::Conv_981 = Identity(%onnx::Conv_945) %onnx::Conv_978 = Identity(%onnx::Conv_945) %onnx::Conv_975 = Identity(%onnx::Conv_945) %onnx::Conv_972 = Identity(%onnx::Conv_945) %onnx::Conv_969 = Identity(%onnx::Conv_945) %onnx::Conv_966 = Identity(%onnx::Conv_945) %onnx::Conv_963 = Identity(%onnx::Conv_945) %onnx::Conv_960 = Identity(%onnx::Conv_945) %onnx::Conv_957 = Identity(%onnx::Conv_945) %onnx::Conv_954 = Identity(%onnx::Conv_945) %onnx::Conv_951 = Identity(%onnx::Conv_945) %onnx::Conv_948 = Identity(%onnx::Conv_945) %onnx::Conv_942 = Identity(%onnx::Conv_888) %onnx::Conv_939 = Identity(%onnx::Conv_888) %onnx::Conv_936 = Identity(%onnx::Conv_888) %onnx::Conv_933 = Identity(%onnx::Conv_888) %onnx::Conv_930 = Identity(%onnx::Conv_888) %onnx::Conv_927 = Identity(%onnx::Conv_888) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_888) %onnx::Conv_918 = Identity(%onnx::Conv_888) %onnx::Conv_915 = Identity(%onnx::Conv_888) %onnx::Conv_912 = Identity(%onnx::Conv_888) %onnx::Conv_909 = Identity(%onnx::Conv_888) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_903 = Identity(%onnx::Conv_888) %onnx::Conv_900 = Identity(%onnx::Conv_888) %onnx::Conv_897 = Identity(%onnx::Conv_888) %onnx::Conv_894 = Identity(%onnx::Conv_888) %onnx::Conv_891 = Identity(%onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_7_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_7_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_7_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_7_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_7_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_7_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_7_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_7_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_7_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
88.661861
6,617,835,520
22,421,642
{'zcp_epe_nas': 98.76045602916064, 'zcp_fisher': 2430.613037109375, 'zcp_flops': 105885368320.0, 'zcp_grad_norm': 822.911376953125, 'zcp_grasp': -11313.6875, 'zcp_jacov': -16.055189317284622, 'zcp_l2_norm': 1242.3387451171875, 'zcp_nwot': 235.0316639233745, 'zcp_params': 22421642.0, 'zcp_plain': -0.026916969567537002, 'zcp_snip': 6111.86083984375, 'zcp_synflow': 161.94959607851004, 'zcp_zen': 112.55107116699219, 'zcp_val_accuracy': 0.911658644676208}
NASBench101_339222
NASBench101
339222
cd1fac61ebb43ffa08215fcde4589e01
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_761[FLOAT, 128x3x3x3] %onnx::Conv_762[FLOAT, 128] %onnx::Conv_764[FLOAT, 64x128x1x1] %onnx::Conv_765[FLOAT, 64] %onnx::Conv_767[FLOAT, 64x64x3x3] %onnx::Conv_770[FLOAT, 64x64x3x3] %onnx::Conv_773[FLOAT, 64x128x1x1] %onnx::Conv_776[FLOAT, 64x64x1x1] %onnx::Conv_779[FLOAT, 64x128x1x1] %onnx::Conv_782[FLOAT, 64x64x3x3] %onnx::Conv_785[FLOAT, 64x64x3x3] %onnx::Conv_788[FLOAT, 64x128x1x1] %onnx::Conv_791[FLOAT, 64x64x1x1] %onnx::Conv_794[FLOAT, 64x128x1x1] %onnx::Conv_797[FLOAT, 64x64x3x3] %onnx::Conv_800[FLOAT, 64x64x3x3] %onnx::Conv_803[FLOAT, 64x128x1x1] %onnx::Conv_806[FLOAT, 64x64x1x1] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 128x128x3x3] %onnx::Conv_815[FLOAT, 128x128x3x3] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x256x1x1] %onnx::Conv_827[FLOAT, 128x128x3x3] %onnx::Conv_830[FLOAT, 128x128x3x3] %onnx::Conv_833[FLOAT, 128x256x1x1] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x256x1x1] %onnx::Conv_842[FLOAT, 128x128x3x3] %onnx::Conv_845[FLOAT, 128x128x3x3] %onnx::Conv_848[FLOAT, 128x256x1x1] %onnx::Conv_851[FLOAT, 128x128x1x1] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_855[FLOAT, 256] %onnx::Conv_857[FLOAT, 256x256x3x3] %onnx::Conv_860[FLOAT, 256x256x3x3] %onnx::Conv_863[FLOAT, 256x256x1x1] %onnx::Conv_866[FLOAT, 256x256x1x1] %onnx::Conv_869[FLOAT, 256x512x1x1] %onnx::Conv_872[FLOAT, 256x256x3x3] %onnx::Conv_875[FLOAT, 256x256x3x3] %onnx::Conv_878[FLOAT, 256x512x1x1] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_884[FLOAT, 256x512x1x1] %onnx::Conv_887[FLOAT, 256x256x3x3] %onnx::Conv_890[FLOAT, 256x256x3x3] %onnx::Conv_893[FLOAT, 256x512x1x1] %onnx::Conv_896[FLOAT, 256x256x1x1] ) { %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_855) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_855) %onnx::Conv_867 = Identity(%onnx::Conv_855) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %onnx::Conv_852 = Identity(%onnx::Conv_762) %onnx::Conv_849 = Identity(%onnx::Conv_762) %onnx::Conv_846 = Identity(%onnx::Conv_762) %onnx::Conv_843 = Identity(%onnx::Conv_762) %onnx::Conv_840 = Identity(%onnx::Conv_762) %onnx::Conv_837 = Identity(%onnx::Conv_762) %onnx::Conv_834 = Identity(%onnx::Conv_762) %onnx::Conv_831 = Identity(%onnx::Conv_762) %onnx::Conv_828 = Identity(%onnx::Conv_762) %onnx::Conv_825 = Identity(%onnx::Conv_762) %onnx::Conv_822 = Identity(%onnx::Conv_762) %onnx::Conv_819 = Identity(%onnx::Conv_762) %onnx::Conv_816 = Identity(%onnx::Conv_762) %onnx::Conv_813 = Identity(%onnx::Conv_762) %onnx::Conv_810 = Identity(%onnx::Conv_762) %onnx::Conv_807 = Identity(%onnx::Conv_765) %onnx::Conv_804 = Identity(%onnx::Conv_765) %onnx::Conv_801 = Identity(%onnx::Conv_765) %onnx::Conv_798 = Identity(%onnx::Conv_765) %onnx::Conv_795 = Identity(%onnx::Conv_765) %onnx::Conv_792 = Identity(%onnx::Conv_765) %onnx::Conv_789 = Identity(%onnx::Conv_765) %onnx::Conv_786 = Identity(%onnx::Conv_765) %onnx::Conv_783 = Identity(%onnx::Conv_765) %onnx::Conv_780 = Identity(%onnx::Conv_765) %onnx::Conv_777 = Identity(%onnx::Conv_765) %onnx::Conv_774 = Identity(%onnx::Conv_765) %onnx::Conv_771 = Identity(%onnx::Conv_765) %onnx::Conv_768 = Identity(%onnx::Conv_765) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_761, %onnx::Conv_762) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %759 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %759 }
val_accuracy
91.656649
1,724,786,688
5,793,546
{'zcp_epe_nas': 128.08567389598676, 'zcp_fisher': 62.47475814819336, 'zcp_flops': 27596587008.0, 'zcp_grad_norm': 111.37541961669922, 'zcp_grasp': -5.80859375, 'zcp_jacov': -16.043538734441032, 'zcp_l2_norm': 844.5421752929688, 'zcp_nwot': 221.46152523179094, 'zcp_params': 5793546.0, 'zcp_plain': 0.058308247476816004, 'zcp_snip': 738.4248657226562, 'zcp_synflow': 101.4702963455218, 'zcp_zen': 91.57032775878906, 'zcp_val_accuracy': 0.9240785241127011}
NASBench101_9259
NASBench101
9259
058e6e3dbbc8761187f5f6db803f6ba9
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1028[FLOAT, 128x3x3x3] %onnx::Conv_1029[FLOAT, 128] %onnx::Conv_1031[FLOAT, 43x128x1x1] %onnx::Conv_1032[FLOAT, 43] %onnx::Conv_1034[FLOAT, 43x43x3x3] %onnx::Conv_1037[FLOAT, 43x43x1x1] %onnx::Conv_1040[FLOAT, 43x128x1x1] %onnx::Conv_1043[FLOAT, 43x43x1x1] %onnx::Conv_1046[FLOAT, 42x42x1x1] %onnx::Conv_1047[FLOAT, 42] %onnx::Conv_1049[FLOAT, 42x42x3x3] %onnx::Conv_1052[FLOAT, 43x128x1x1] %onnx::Conv_1055[FLOAT, 43x43x3x3] %onnx::Conv_1058[FLOAT, 43x43x1x1] %onnx::Conv_1061[FLOAT, 43x128x1x1] %onnx::Conv_1064[FLOAT, 43x43x1x1] %onnx::Conv_1067[FLOAT, 42x42x1x1] %onnx::Conv_1070[FLOAT, 42x42x3x3] %onnx::Conv_1073[FLOAT, 43x128x1x1] %onnx::Conv_1076[FLOAT, 43x43x3x3] %onnx::Conv_1079[FLOAT, 43x43x1x1] %onnx::Conv_1082[FLOAT, 43x128x1x1] %onnx::Conv_1085[FLOAT, 43x43x1x1] %onnx::Conv_1088[FLOAT, 42x42x1x1] %onnx::Conv_1091[FLOAT, 42x42x3x3] %onnx::Conv_1094[FLOAT, 86x128x1x1] %onnx::Conv_1095[FLOAT, 86] %onnx::Conv_1097[FLOAT, 86x86x3x3] %onnx::Conv_1100[FLOAT, 86x86x1x1] %onnx::Conv_1103[FLOAT, 85x128x1x1] %onnx::Conv_1104[FLOAT, 85] %onnx::Conv_1106[FLOAT, 85x85x1x1] %onnx::Conv_1109[FLOAT, 85x85x1x1] %onnx::Conv_1112[FLOAT, 85x85x3x3] %onnx::Conv_1115[FLOAT, 86x256x1x1] %onnx::Conv_1118[FLOAT, 86x86x3x3] %onnx::Conv_1121[FLOAT, 86x86x1x1] %onnx::Conv_1124[FLOAT, 85x256x1x1] %onnx::Conv_1127[FLOAT, 85x85x1x1] %onnx::Conv_1130[FLOAT, 85x85x1x1] %onnx::Conv_1133[FLOAT, 85x85x3x3] %onnx::Conv_1136[FLOAT, 86x256x1x1] %onnx::Conv_1139[FLOAT, 86x86x3x3] %onnx::Conv_1142[FLOAT, 86x86x1x1] %onnx::Conv_1145[FLOAT, 85x256x1x1] %onnx::Conv_1148[FLOAT, 85x85x1x1] %onnx::Conv_1151[FLOAT, 85x85x1x1] %onnx::Conv_1154[FLOAT, 85x85x3x3] %onnx::Conv_1157[FLOAT, 171x256x1x1] %onnx::Conv_1158[FLOAT, 171] %onnx::Conv_1160[FLOAT, 171x171x3x3] %onnx::Conv_1163[FLOAT, 171x171x1x1] %onnx::Conv_1166[FLOAT, 171x256x1x1] %onnx::Conv_1169[FLOAT, 171x171x1x1] %onnx::Conv_1172[FLOAT, 170x170x1x1] %onnx::Conv_1173[FLOAT, 170] %onnx::Conv_1175[FLOAT, 170x170x3x3] %onnx::Conv_1178[FLOAT, 171x512x1x1] %onnx::Conv_1181[FLOAT, 171x171x3x3] %onnx::Conv_1184[FLOAT, 171x171x1x1] %onnx::Conv_1187[FLOAT, 171x512x1x1] %onnx::Conv_1190[FLOAT, 171x171x1x1] %onnx::Conv_1193[FLOAT, 170x170x1x1] %onnx::Conv_1196[FLOAT, 170x170x3x3] %onnx::Conv_1199[FLOAT, 171x512x1x1] %onnx::Conv_1202[FLOAT, 171x171x3x3] %onnx::Conv_1205[FLOAT, 171x171x1x1] %onnx::Conv_1208[FLOAT, 171x512x1x1] %onnx::Conv_1211[FLOAT, 171x171x1x1] %onnx::Conv_1214[FLOAT, 170x170x1x1] %onnx::Conv_1217[FLOAT, 170x170x3x3] ) { %onnx::Conv_1218 = Identity(%onnx::Conv_1173) %onnx::Conv_1215 = Identity(%onnx::Conv_1173) %onnx::Conv_1212 = Identity(%onnx::Conv_1158) %onnx::Conv_1209 = Identity(%onnx::Conv_1158) %onnx::Conv_1206 = Identity(%onnx::Conv_1158) %onnx::Conv_1203 = Identity(%onnx::Conv_1158) %onnx::Conv_1200 = Identity(%onnx::Conv_1158) %onnx::Conv_1197 = Identity(%onnx::Conv_1173) %onnx::Conv_1194 = Identity(%onnx::Conv_1173) %onnx::Conv_1191 = Identity(%onnx::Conv_1158) %onnx::Conv_1188 = Identity(%onnx::Conv_1158) %onnx::Conv_1185 = Identity(%onnx::Conv_1158) %onnx::Conv_1182 = Identity(%onnx::Conv_1158) %onnx::Conv_1179 = Identity(%onnx::Conv_1158) %onnx::Conv_1176 = Identity(%onnx::Conv_1173) %onnx::Conv_1170 = Identity(%onnx::Conv_1158) %onnx::Conv_1167 = Identity(%onnx::Conv_1158) %onnx::Conv_1164 = Identity(%onnx::Conv_1158) %onnx::Conv_1161 = Identity(%onnx::Conv_1158) %onnx::Conv_1155 = Identity(%onnx::Conv_1104) %onnx::Conv_1152 = Identity(%onnx::Conv_1104) %onnx::Conv_1149 = Identity(%onnx::Conv_1104) %onnx::Conv_1146 = Identity(%onnx::Conv_1104) %onnx::Conv_1143 = Identity(%onnx::Conv_1095) %onnx::Conv_1140 = Identity(%onnx::Conv_1095) %onnx::Conv_1137 = Identity(%onnx::Conv_1095) %onnx::Conv_1134 = Identity(%onnx::Conv_1104) %onnx::Conv_1131 = Identity(%onnx::Conv_1104) %onnx::Conv_1128 = Identity(%onnx::Conv_1104) %onnx::Conv_1125 = Identity(%onnx::Conv_1104) %onnx::Conv_1122 = Identity(%onnx::Conv_1095) %onnx::Conv_1119 = Identity(%onnx::Conv_1095) %onnx::Conv_1116 = Identity(%onnx::Conv_1095) %onnx::Conv_1113 = Identity(%onnx::Conv_1104) %onnx::Conv_1110 = Identity(%onnx::Conv_1104) %onnx::Conv_1107 = Identity(%onnx::Conv_1104) %onnx::Conv_1101 = Identity(%onnx::Conv_1095) %onnx::Conv_1098 = Identity(%onnx::Conv_1095) %onnx::Conv_1092 = Identity(%onnx::Conv_1047) %onnx::Conv_1089 = Identity(%onnx::Conv_1047) %onnx::Conv_1086 = Identity(%onnx::Conv_1032) %onnx::Conv_1083 = Identity(%onnx::Conv_1032) %onnx::Conv_1080 = Identity(%onnx::Conv_1032) %onnx::Conv_1077 = Identity(%onnx::Conv_1032) %onnx::Conv_1074 = Identity(%onnx::Conv_1032) %onnx::Conv_1071 = Identity(%onnx::Conv_1047) %onnx::Conv_1068 = Identity(%onnx::Conv_1047) %onnx::Conv_1065 = Identity(%onnx::Conv_1032) %onnx::Conv_1062 = Identity(%onnx::Conv_1032) %onnx::Conv_1059 = Identity(%onnx::Conv_1032) %onnx::Conv_1056 = Identity(%onnx::Conv_1032) %onnx::Conv_1053 = Identity(%onnx::Conv_1032) %onnx::Conv_1050 = Identity(%onnx::Conv_1047) %onnx::Conv_1044 = Identity(%onnx::Conv_1032) %onnx::Conv_1041 = Identity(%onnx::Conv_1032) %onnx::Conv_1038 = Identity(%onnx::Conv_1032) %onnx::Conv_1035 = Identity(%onnx::Conv_1032) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_8_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_8_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_8_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_6_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_8_output_0, %/layers.5/Constant_9_output_0, %/layers.5/Constant_7_output_0, %/layers.5/Constant_10_output_0) %/layers.5/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_11_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_12_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_6_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_8_output_0, %/layers.6/Constant_9_output_0, %/layers.6/Constant_7_output_0, %/layers.6/Constant_10_output_0) %/layers.6/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_11_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_12_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_6_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_8_output_0, %/layers.7/Constant_9_output_0, %/layers.7/Constant_7_output_0, %/layers.7/Constant_10_output_0) %/layers.7/Constant_11_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_11_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_12_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_8_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_8_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_8_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %1026 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1026 }
val_accuracy
92.487979
904,203,392
3,007,813
{'zcp_epe_nas': 70.45663784468897, 'zcp_fisher': 58.50809860229492, 'zcp_flops': 14467254272.0, 'zcp_grad_norm': 160.4024200439453, 'zcp_grasp': 32.78076171875, 'zcp_jacov': -16.06888443890025, 'zcp_l2_norm': 1005.1842651367188, 'zcp_nwot': 221.0073446177662, 'zcp_params': 3007813.0, 'zcp_plain': -0.004046063870191, 'zcp_snip': 729.0015258789062, 'zcp_synflow': 130.25321024849032, 'zcp_zen': 94.87049102783203, 'zcp_val_accuracy': 0.9325921535491941}
NASBench101_262580
NASBench101
262580
9f02a65691fb63f1d0bbc2d2716d8356
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x3x3] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x3x3] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x3x3] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x1x1] %onnx::Conv_944[FLOAT, 256x128x1x1] %onnx::Conv_945[FLOAT, 256] %onnx::Conv_947[FLOAT, 256x256x3x3] %onnx::Conv_950[FLOAT, 256x128x1x1] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x128x1x1] %onnx::Conv_959[FLOAT, 256x128x1x1] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x3x3] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x3x3] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 512x256x1x1] %onnx::Conv_999[FLOAT, 512] %onnx::Conv_1001[FLOAT, 512x512x3x3] %onnx::Conv_1004[FLOAT, 512x256x1x1] %onnx::Conv_1007[FLOAT, 512x512x1x1] %onnx::Conv_1010[FLOAT, 512x256x1x1] %onnx::Conv_1013[FLOAT, 512x256x1x1] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x3x3] %onnx::Conv_1022[FLOAT, 512x512x1x1] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x1x1] %onnx::Conv_1031[FLOAT, 512x512x1x1] %onnx::Conv_1034[FLOAT, 512x512x1x1] %onnx::Conv_1037[FLOAT, 512x512x3x3] %onnx::Conv_1040[FLOAT, 512x512x1x1] %onnx::Conv_1043[FLOAT, 512x512x1x1] %onnx::Conv_1046[FLOAT, 512x512x1x1] %onnx::Conv_1049[FLOAT, 512x512x1x1] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_999) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_999) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1014 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_945) %onnx::Conv_993 = Identity(%onnx::Conv_945) %onnx::Conv_990 = Identity(%onnx::Conv_945) %onnx::Conv_987 = Identity(%onnx::Conv_945) %onnx::Conv_984 = Identity(%onnx::Conv_945) %onnx::Conv_981 = Identity(%onnx::Conv_945) %onnx::Conv_978 = Identity(%onnx::Conv_945) %onnx::Conv_975 = Identity(%onnx::Conv_945) %onnx::Conv_972 = Identity(%onnx::Conv_945) %onnx::Conv_969 = Identity(%onnx::Conv_945) %onnx::Conv_966 = Identity(%onnx::Conv_945) %onnx::Conv_963 = Identity(%onnx::Conv_945) %onnx::Conv_960 = Identity(%onnx::Conv_945) %onnx::Conv_957 = Identity(%onnx::Conv_945) %onnx::Conv_954 = Identity(%onnx::Conv_945) %onnx::Conv_951 = Identity(%onnx::Conv_945) %onnx::Conv_948 = Identity(%onnx::Conv_945) %onnx::Conv_942 = Identity(%onnx::Conv_888) %onnx::Conv_939 = Identity(%onnx::Conv_888) %onnx::Conv_936 = Identity(%onnx::Conv_888) %onnx::Conv_933 = Identity(%onnx::Conv_888) %onnx::Conv_930 = Identity(%onnx::Conv_888) %onnx::Conv_927 = Identity(%onnx::Conv_888) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_888) %onnx::Conv_918 = Identity(%onnx::Conv_888) %onnx::Conv_915 = Identity(%onnx::Conv_888) %onnx::Conv_912 = Identity(%onnx::Conv_888) %onnx::Conv_909 = Identity(%onnx::Conv_888) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_903 = Identity(%onnx::Conv_888) %onnx::Conv_900 = Identity(%onnx::Conv_888) %onnx::Conv_897 = Identity(%onnx::Conv_888) %onnx::Conv_894 = Identity(%onnx::Conv_888) %onnx::Conv_891 = Identity(%onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
90.284455
4,134,807,552
13,836,426
{'zcp_epe_nas': 118.74242864231219, 'zcp_fisher': 44.56767654418945, 'zcp_flops': 66156920832.0, 'zcp_grad_norm': 161.68336486816406, 'zcp_grasp': -183.423828125, 'zcp_jacov': -16.048457668993436, 'zcp_l2_norm': 1210.572021484375, 'zcp_nwot': 234.69129087410846, 'zcp_params': 13836426.0, 'zcp_plain': 0.455123335123062, 'zcp_snip': 1308.7852783203125, 'zcp_synflow': 69.99928047844946, 'zcp_zen': 117.17782592773438, 'zcp_val_accuracy': 0.9198718070983881}
NASBench101_224476
NASBench101
224476
8803f3c7353ed1b56f4e847cfaca9a5d
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_869[FLOAT, 128x3x3x3] %onnx::Conv_870[FLOAT, 128] %onnx::Conv_872[FLOAT, 128x128x1x1] %onnx::Conv_875[FLOAT, 128x128x3x3] %onnx::Conv_878[FLOAT, 128x128x1x1] %onnx::Conv_881[FLOAT, 128x128x1x1] %onnx::Conv_884[FLOAT, 128x128x1x1] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x3x3] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x3x3] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 256x128x1x1] %onnx::Conv_927[FLOAT, 256] %onnx::Conv_929[FLOAT, 256x256x3x3] %onnx::Conv_932[FLOAT, 256x256x1x1] %onnx::Conv_935[FLOAT, 256x256x1x1] %onnx::Conv_938[FLOAT, 256x256x1x1] %onnx::Conv_941[FLOAT, 256x256x1x1] %onnx::Conv_944[FLOAT, 256x256x1x1] %onnx::Conv_947[FLOAT, 256x256x3x3] %onnx::Conv_950[FLOAT, 256x256x1x1] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x256x1x1] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x3x3] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 512x256x1x1] %onnx::Conv_981[FLOAT, 512] %onnx::Conv_983[FLOAT, 512x512x3x3] %onnx::Conv_986[FLOAT, 512x512x1x1] %onnx::Conv_989[FLOAT, 512x512x1x1] %onnx::Conv_992[FLOAT, 512x512x1x1] %onnx::Conv_995[FLOAT, 512x512x1x1] %onnx::Conv_998[FLOAT, 512x512x1x1] %onnx::Conv_1001[FLOAT, 512x512x3x3] %onnx::Conv_1004[FLOAT, 512x512x1x1] %onnx::Conv_1007[FLOAT, 512x512x1x1] %onnx::Conv_1010[FLOAT, 512x512x1x1] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x3x3] %onnx::Conv_1022[FLOAT, 512x512x1x1] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x1x1] %onnx::Conv_1031[FLOAT, 512x512x1x1] ) { %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %onnx::Conv_978 = Identity(%onnx::Conv_927) %onnx::Conv_975 = Identity(%onnx::Conv_927) %onnx::Conv_972 = Identity(%onnx::Conv_927) %onnx::Conv_969 = Identity(%onnx::Conv_927) %onnx::Conv_966 = Identity(%onnx::Conv_927) %onnx::Conv_963 = Identity(%onnx::Conv_927) %onnx::Conv_960 = Identity(%onnx::Conv_927) %onnx::Conv_957 = Identity(%onnx::Conv_927) %onnx::Conv_954 = Identity(%onnx::Conv_927) %onnx::Conv_951 = Identity(%onnx::Conv_927) %onnx::Conv_948 = Identity(%onnx::Conv_927) %onnx::Conv_945 = Identity(%onnx::Conv_927) %onnx::Conv_942 = Identity(%onnx::Conv_927) %onnx::Conv_939 = Identity(%onnx::Conv_927) %onnx::Conv_936 = Identity(%onnx::Conv_927) %onnx::Conv_933 = Identity(%onnx::Conv_927) %onnx::Conv_930 = Identity(%onnx::Conv_927) %onnx::Conv_924 = Identity(%onnx::Conv_870) %onnx::Conv_921 = Identity(%onnx::Conv_870) %onnx::Conv_918 = Identity(%onnx::Conv_870) %onnx::Conv_915 = Identity(%onnx::Conv_870) %onnx::Conv_912 = Identity(%onnx::Conv_870) %onnx::Conv_909 = Identity(%onnx::Conv_870) %onnx::Conv_906 = Identity(%onnx::Conv_870) %onnx::Conv_903 = Identity(%onnx::Conv_870) %onnx::Conv_900 = Identity(%onnx::Conv_870) %onnx::Conv_897 = Identity(%onnx::Conv_870) %onnx::Conv_894 = Identity(%onnx::Conv_870) %onnx::Conv_891 = Identity(%onnx::Conv_870) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_870) %onnx::Conv_882 = Identity(%onnx::Conv_870) %onnx::Conv_879 = Identity(%onnx::Conv_870) %onnx::Conv_876 = Identity(%onnx::Conv_870) %onnx::Conv_873 = Identity(%onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_869, %onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %867 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %867 }
val_accuracy
89.953929
4,235,470,848
14,327,946
{'zcp_epe_nas': 102.85201923601808, 'zcp_fisher': 2051.989990234375, 'zcp_flops': 67767533568.0, 'zcp_grad_norm': 716.18212890625, 'zcp_grasp': 240.84375, 'zcp_jacov': -16.062683842388257, 'zcp_l2_norm': 1258.829345703125, 'zcp_nwot': 235.22800619973106, 'zcp_params': 14327946.0, 'zcp_plain': 0.032361663877964006, 'zcp_snip': 5208.4443359375, 'zcp_synflow': 172.42706281414453, 'zcp_zen': 100.04165649414062, 'zcp_val_accuracy': 0.887419879436492}
NASBench101_125744
NASBench101
125744
4bf4eaf379e404246fff0725ec907ba1
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_779[FLOAT, 128x3x3x3] %onnx::Conv_780[FLOAT, 128] %onnx::Conv_782[FLOAT, 128x128x1x1] %onnx::Conv_785[FLOAT, 128x128x1x1] %onnx::Conv_788[FLOAT, 128x128x1x1] %onnx::Conv_791[FLOAT, 128x128x3x3] %onnx::Conv_794[FLOAT, 128x128x1x1] %onnx::Conv_797[FLOAT, 128x128x1x1] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 128x128x1x1] %onnx::Conv_806[FLOAT, 128x128x3x3] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 128x128x1x1] %onnx::Conv_815[FLOAT, 128x128x1x1] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x3x3] %onnx::Conv_824[FLOAT, 128x128x1x1] %onnx::Conv_827[FLOAT, 256x128x1x1] %onnx::Conv_828[FLOAT, 256] %onnx::Conv_830[FLOAT, 256x256x1x1] %onnx::Conv_833[FLOAT, 256x256x1x1] %onnx::Conv_836[FLOAT, 256x256x3x3] %onnx::Conv_839[FLOAT, 256x256x1x1] %onnx::Conv_842[FLOAT, 256x256x1x1] %onnx::Conv_845[FLOAT, 256x256x1x1] %onnx::Conv_848[FLOAT, 256x256x1x1] %onnx::Conv_851[FLOAT, 256x256x3x3] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_857[FLOAT, 256x256x1x1] %onnx::Conv_860[FLOAT, 256x256x1x1] %onnx::Conv_863[FLOAT, 256x256x1x1] %onnx::Conv_866[FLOAT, 256x256x3x3] %onnx::Conv_869[FLOAT, 256x256x1x1] %onnx::Conv_872[FLOAT, 512x256x1x1] %onnx::Conv_873[FLOAT, 512] %onnx::Conv_875[FLOAT, 512x512x1x1] %onnx::Conv_878[FLOAT, 512x512x1x1] %onnx::Conv_881[FLOAT, 512x512x3x3] %onnx::Conv_884[FLOAT, 512x512x1x1] %onnx::Conv_887[FLOAT, 512x512x1x1] %onnx::Conv_890[FLOAT, 512x512x1x1] %onnx::Conv_893[FLOAT, 512x512x1x1] %onnx::Conv_896[FLOAT, 512x512x3x3] %onnx::Conv_899[FLOAT, 512x512x1x1] %onnx::Conv_902[FLOAT, 512x512x1x1] %onnx::Conv_905[FLOAT, 512x512x1x1] %onnx::Conv_908[FLOAT, 512x512x1x1] %onnx::Conv_911[FLOAT, 512x512x3x3] %onnx::Conv_914[FLOAT, 512x512x1x1] ) { %onnx::Conv_915 = Identity(%onnx::Conv_873) %onnx::Conv_912 = Identity(%onnx::Conv_873) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_873) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_873) %onnx::Conv_897 = Identity(%onnx::Conv_873) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_873) %onnx::Conv_885 = Identity(%onnx::Conv_873) %onnx::Conv_882 = Identity(%onnx::Conv_873) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %onnx::Conv_870 = Identity(%onnx::Conv_828) %onnx::Conv_867 = Identity(%onnx::Conv_828) %onnx::Conv_864 = Identity(%onnx::Conv_828) %onnx::Conv_861 = Identity(%onnx::Conv_828) %onnx::Conv_858 = Identity(%onnx::Conv_828) %onnx::Conv_855 = Identity(%onnx::Conv_828) %onnx::Conv_852 = Identity(%onnx::Conv_828) %onnx::Conv_849 = Identity(%onnx::Conv_828) %onnx::Conv_846 = Identity(%onnx::Conv_828) %onnx::Conv_843 = Identity(%onnx::Conv_828) %onnx::Conv_840 = Identity(%onnx::Conv_828) %onnx::Conv_837 = Identity(%onnx::Conv_828) %onnx::Conv_834 = Identity(%onnx::Conv_828) %onnx::Conv_831 = Identity(%onnx::Conv_828) %onnx::Conv_825 = Identity(%onnx::Conv_780) %onnx::Conv_822 = Identity(%onnx::Conv_780) %onnx::Conv_819 = Identity(%onnx::Conv_780) %onnx::Conv_816 = Identity(%onnx::Conv_780) %onnx::Conv_813 = Identity(%onnx::Conv_780) %onnx::Conv_810 = Identity(%onnx::Conv_780) %onnx::Conv_807 = Identity(%onnx::Conv_780) %onnx::Conv_804 = Identity(%onnx::Conv_780) %onnx::Conv_801 = Identity(%onnx::Conv_780) %onnx::Conv_798 = Identity(%onnx::Conv_780) %onnx::Conv_795 = Identity(%onnx::Conv_780) %onnx::Conv_792 = Identity(%onnx::Conv_780) %onnx::Conv_789 = Identity(%onnx::Conv_780) %onnx::Conv_786 = Identity(%onnx::Conv_780) %onnx::Conv_783 = Identity(%onnx::Conv_780) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_779, %onnx::Conv_780) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %777 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %777 }
val_accuracy
85.316509
3,927,975,936
13,290,378
{'zcp_epe_nas': 122.58008829894504, 'zcp_fisher': 274.4679260253906, 'zcp_flops': 62847614976.0, 'zcp_grad_norm': 329.0768127441406, 'zcp_grasp': 77.171875, 'zcp_jacov': -16.038921673212272, 'zcp_l2_norm': 1046.1622314453125, 'zcp_nwot': 232.53228469942218, 'zcp_params': 13290378.0, 'zcp_plain': -0.01141648273915, 'zcp_snip': 2346.7255859375, 'zcp_synflow': 145.84625982251742, 'zcp_zen': 88.33163452148438, 'zcp_val_accuracy': 0.932191491127014}
NASBench101_301693
NASBench101
301693
b683b6475de7dcf90f6067670b2ba087
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_833[FLOAT, 128x3x3x3] %onnx::Conv_834[FLOAT, 128] %onnx::Conv_836[FLOAT, 64x128x1x1] %onnx::Conv_837[FLOAT, 64] %onnx::Conv_839[FLOAT, 64x64x1x1] %onnx::Conv_842[FLOAT, 64x64x1x1] %onnx::Conv_845[FLOAT, 64x64x3x3] %onnx::Conv_848[FLOAT, 64x64x3x3] %onnx::Conv_851[FLOAT, 128x128x1x1] %onnx::Conv_854[FLOAT, 64x128x1x1] %onnx::Conv_857[FLOAT, 64x64x1x1] %onnx::Conv_860[FLOAT, 64x64x1x1] %onnx::Conv_863[FLOAT, 64x64x3x3] %onnx::Conv_866[FLOAT, 64x64x3x3] %onnx::Conv_869[FLOAT, 128x128x1x1] %onnx::Conv_872[FLOAT, 64x128x1x1] %onnx::Conv_875[FLOAT, 64x64x1x1] %onnx::Conv_878[FLOAT, 64x64x1x1] %onnx::Conv_881[FLOAT, 64x64x3x3] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x1x1] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x3x3] %onnx::Conv_902[FLOAT, 128x128x3x3] %onnx::Conv_905[FLOAT, 256x128x1x1] %onnx::Conv_906[FLOAT, 256] %onnx::Conv_908[FLOAT, 128x256x1x1] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x3x3] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 256x256x1x1] %onnx::Conv_926[FLOAT, 128x256x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x3x3] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 256x256x1x1] %onnx::Conv_944[FLOAT, 256x256x1x1] %onnx::Conv_947[FLOAT, 256x256x1x1] %onnx::Conv_950[FLOAT, 256x256x1x1] %onnx::Conv_953[FLOAT, 256x256x3x3] %onnx::Conv_956[FLOAT, 256x256x3x3] %onnx::Conv_959[FLOAT, 512x256x1x1] %onnx::Conv_960[FLOAT, 512] %onnx::Conv_962[FLOAT, 256x512x1x1] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 256x256x3x3] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 512x512x1x1] %onnx::Conv_980[FLOAT, 256x512x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x3x3] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 512x512x1x1] ) { %onnx::Conv_996 = Identity(%onnx::Conv_960) %onnx::Conv_993 = Identity(%onnx::Conv_906) %onnx::Conv_990 = Identity(%onnx::Conv_906) %onnx::Conv_987 = Identity(%onnx::Conv_906) %onnx::Conv_984 = Identity(%onnx::Conv_906) %onnx::Conv_981 = Identity(%onnx::Conv_906) %onnx::Conv_978 = Identity(%onnx::Conv_960) %onnx::Conv_975 = Identity(%onnx::Conv_906) %onnx::Conv_972 = Identity(%onnx::Conv_906) %onnx::Conv_969 = Identity(%onnx::Conv_906) %onnx::Conv_966 = Identity(%onnx::Conv_906) %onnx::Conv_963 = Identity(%onnx::Conv_906) %onnx::Conv_957 = Identity(%onnx::Conv_906) %onnx::Conv_954 = Identity(%onnx::Conv_906) %onnx::Conv_951 = Identity(%onnx::Conv_906) %onnx::Conv_948 = Identity(%onnx::Conv_906) %onnx::Conv_945 = Identity(%onnx::Conv_906) %onnx::Conv_942 = Identity(%onnx::Conv_906) %onnx::Conv_939 = Identity(%onnx::Conv_834) %onnx::Conv_936 = Identity(%onnx::Conv_834) %onnx::Conv_933 = Identity(%onnx::Conv_834) %onnx::Conv_930 = Identity(%onnx::Conv_834) %onnx::Conv_927 = Identity(%onnx::Conv_834) %onnx::Conv_924 = Identity(%onnx::Conv_906) %onnx::Conv_921 = Identity(%onnx::Conv_834) %onnx::Conv_918 = Identity(%onnx::Conv_834) %onnx::Conv_915 = Identity(%onnx::Conv_834) %onnx::Conv_912 = Identity(%onnx::Conv_834) %onnx::Conv_909 = Identity(%onnx::Conv_834) %onnx::Conv_903 = Identity(%onnx::Conv_834) %onnx::Conv_900 = Identity(%onnx::Conv_834) %onnx::Conv_897 = Identity(%onnx::Conv_834) %onnx::Conv_894 = Identity(%onnx::Conv_834) %onnx::Conv_891 = Identity(%onnx::Conv_834) %onnx::Conv_888 = Identity(%onnx::Conv_834) %onnx::Conv_885 = Identity(%onnx::Conv_837) %onnx::Conv_882 = Identity(%onnx::Conv_837) %onnx::Conv_879 = Identity(%onnx::Conv_837) %onnx::Conv_876 = Identity(%onnx::Conv_837) %onnx::Conv_873 = Identity(%onnx::Conv_837) %onnx::Conv_870 = Identity(%onnx::Conv_834) %onnx::Conv_867 = Identity(%onnx::Conv_837) %onnx::Conv_864 = Identity(%onnx::Conv_837) %onnx::Conv_861 = Identity(%onnx::Conv_837) %onnx::Conv_858 = Identity(%onnx::Conv_837) %onnx::Conv_855 = Identity(%onnx::Conv_837) %onnx::Conv_852 = Identity(%onnx::Conv_834) %onnx::Conv_849 = Identity(%onnx::Conv_837) %onnx::Conv_846 = Identity(%onnx::Conv_837) %onnx::Conv_843 = Identity(%onnx::Conv_837) %onnx::Conv_840 = Identity(%onnx::Conv_837) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_833, %onnx::Conv_834) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_4_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_4_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_4_output_0) %831 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %831 }
val_accuracy
92.437899
1,940,006,912
6,491,146
{'zcp_epe_nas': 138.19182486426783, 'zcp_fisher': 13.457831382751465, 'zcp_flops': 31040110592.0, 'zcp_grad_norm': 93.89264678955078, 'zcp_grasp': 20.6728515625, 'zcp_jacov': -16.05977467351032, 'zcp_l2_norm': 993.9918823242188, 'zcp_nwot': 227.13829168800447, 'zcp_params': 6491146.0, 'zcp_plain': 0.11249510198831501, 'zcp_snip': 521.781494140625, 'zcp_synflow': 139.5607262230985, 'zcp_zen': 95.24723815917969, 'zcp_val_accuracy': 0.928485572338104}
NASBench101_302225
NASBench101
302225
b6d8b70f501c010102cc0412e30d0ef3
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_788[FLOAT, 128x3x3x3] %onnx::Conv_789[FLOAT, 128] %onnx::Conv_791[FLOAT, 128x128x1x1] %onnx::Conv_794[FLOAT, 128x128x3x3] %onnx::Conv_797[FLOAT, 128x128x3x3] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 128x128x1x1] %onnx::Conv_806[FLOAT, 128x128x1x1] %onnx::Conv_809[FLOAT, 128x128x3x3] %onnx::Conv_812[FLOAT, 128x128x3x3] %onnx::Conv_815[FLOAT, 128x128x1x1] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x128x3x3] %onnx::Conv_827[FLOAT, 128x128x3x3] %onnx::Conv_830[FLOAT, 128x128x1x1] %onnx::Conv_833[FLOAT, 128x128x1x1] %onnx::Conv_836[FLOAT, 256x128x1x1] %onnx::Conv_837[FLOAT, 256] %onnx::Conv_839[FLOAT, 256x256x3x3] %onnx::Conv_842[FLOAT, 256x256x3x3] %onnx::Conv_845[FLOAT, 256x128x1x1] %onnx::Conv_848[FLOAT, 256x128x1x1] %onnx::Conv_851[FLOAT, 256x256x1x1] %onnx::Conv_854[FLOAT, 256x256x3x3] %onnx::Conv_857[FLOAT, 256x256x3x3] %onnx::Conv_860[FLOAT, 256x256x1x1] %onnx::Conv_863[FLOAT, 256x256x1x1] %onnx::Conv_866[FLOAT, 256x256x1x1] %onnx::Conv_869[FLOAT, 256x256x3x3] %onnx::Conv_872[FLOAT, 256x256x3x3] %onnx::Conv_875[FLOAT, 256x256x1x1] %onnx::Conv_878[FLOAT, 256x256x1x1] %onnx::Conv_881[FLOAT, 512x256x1x1] %onnx::Conv_882[FLOAT, 512] %onnx::Conv_884[FLOAT, 512x512x3x3] %onnx::Conv_887[FLOAT, 512x512x3x3] %onnx::Conv_890[FLOAT, 512x256x1x1] %onnx::Conv_893[FLOAT, 512x256x1x1] %onnx::Conv_896[FLOAT, 512x512x1x1] %onnx::Conv_899[FLOAT, 512x512x3x3] %onnx::Conv_902[FLOAT, 512x512x3x3] %onnx::Conv_905[FLOAT, 512x512x1x1] %onnx::Conv_908[FLOAT, 512x512x1x1] %onnx::Conv_911[FLOAT, 512x512x1x1] %onnx::Conv_914[FLOAT, 512x512x3x3] %onnx::Conv_917[FLOAT, 512x512x3x3] %onnx::Conv_920[FLOAT, 512x512x1x1] %onnx::Conv_923[FLOAT, 512x512x1x1] ) { %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %onnx::Conv_879 = Identity(%onnx::Conv_837) %onnx::Conv_876 = Identity(%onnx::Conv_837) %onnx::Conv_873 = Identity(%onnx::Conv_837) %onnx::Conv_870 = Identity(%onnx::Conv_837) %onnx::Conv_867 = Identity(%onnx::Conv_837) %onnx::Conv_864 = Identity(%onnx::Conv_837) %onnx::Conv_861 = Identity(%onnx::Conv_837) %onnx::Conv_858 = Identity(%onnx::Conv_837) %onnx::Conv_855 = Identity(%onnx::Conv_837) %onnx::Conv_852 = Identity(%onnx::Conv_837) %onnx::Conv_849 = Identity(%onnx::Conv_837) %onnx::Conv_846 = Identity(%onnx::Conv_837) %onnx::Conv_843 = Identity(%onnx::Conv_837) %onnx::Conv_840 = Identity(%onnx::Conv_837) %onnx::Conv_834 = Identity(%onnx::Conv_789) %onnx::Conv_831 = Identity(%onnx::Conv_789) %onnx::Conv_828 = Identity(%onnx::Conv_789) %onnx::Conv_825 = Identity(%onnx::Conv_789) %onnx::Conv_822 = Identity(%onnx::Conv_789) %onnx::Conv_819 = Identity(%onnx::Conv_789) %onnx::Conv_816 = Identity(%onnx::Conv_789) %onnx::Conv_813 = Identity(%onnx::Conv_789) %onnx::Conv_810 = Identity(%onnx::Conv_789) %onnx::Conv_807 = Identity(%onnx::Conv_789) %onnx::Conv_804 = Identity(%onnx::Conv_789) %onnx::Conv_801 = Identity(%onnx::Conv_789) %onnx::Conv_798 = Identity(%onnx::Conv_789) %onnx::Conv_795 = Identity(%onnx::Conv_789) %onnx::Conv_792 = Identity(%onnx::Conv_789) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_788, %onnx::Conv_789) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.5/maxpool/MaxPool_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_6_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.5/maxpool/MaxPool_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_6_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.5/maxpool/MaxPool_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_6_output_0) %786 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %786 }
val_accuracy
88.882214
6,276,786,176
21,220,234
{'zcp_epe_nas': 137.28111832038428, 'zcp_fisher': 362.01617431640625, 'zcp_flops': 100428578816.0, 'zcp_grad_norm': 344.1007385253906, 'zcp_grasp': -489.62890625, 'zcp_jacov': -16.04474774191838, 'zcp_l2_norm': 1014.5097045898438, 'zcp_nwot': 232.1120633416675, 'zcp_params': 21220234.0, 'zcp_plain': 0.47076579928398105, 'zcp_snip': 2932.67529296875, 'zcp_synflow': 103.69169641277072, 'zcp_zen': 109.22671508789062, 'zcp_val_accuracy': 0.926282048225402}
NASBench101_118748
NASBench101
118748
47b5ddcc213cd48ac3d210584baa8e28
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_851[FLOAT, 128x3x3x3] %onnx::Conv_852[FLOAT, 128] %onnx::Conv_854[FLOAT, 64x128x1x1] %onnx::Conv_855[FLOAT, 64] %onnx::Conv_857[FLOAT, 64x64x1x1] %onnx::Conv_860[FLOAT, 64x128x1x1] %onnx::Conv_863[FLOAT, 64x64x1x1] %onnx::Conv_866[FLOAT, 64x128x1x1] %onnx::Conv_869[FLOAT, 64x64x3x3] %onnx::Conv_872[FLOAT, 64x128x1x1] %onnx::Conv_875[FLOAT, 64x64x1x1] %onnx::Conv_878[FLOAT, 64x128x1x1] %onnx::Conv_881[FLOAT, 64x64x1x1] %onnx::Conv_884[FLOAT, 64x128x1x1] %onnx::Conv_887[FLOAT, 64x64x3x3] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x128x1x1] %onnx::Conv_899[FLOAT, 64x64x1x1] %onnx::Conv_902[FLOAT, 64x128x1x1] %onnx::Conv_905[FLOAT, 64x64x3x3] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x3x3] %onnx::Conv_926[FLOAT, 128x256x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x256x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x256x1x1] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 128x256x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x256x1x1] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x256x1x1] %onnx::Conv_959[FLOAT, 128x128x3x3] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_963[FLOAT, 256] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x3x3] %onnx::Conv_980[FLOAT, 256x512x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x512x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x512x1x1] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 256x512x1x1] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x512x1x1] %onnx::Conv_1007[FLOAT, 256x256x1x1] %onnx::Conv_1010[FLOAT, 256x512x1x1] %onnx::Conv_1013[FLOAT, 256x256x3x3] ) { %onnx::Conv_1014 = Identity(%onnx::Conv_963) %onnx::Conv_1011 = Identity(%onnx::Conv_963) %onnx::Conv_1008 = Identity(%onnx::Conv_963) %onnx::Conv_1005 = Identity(%onnx::Conv_963) %onnx::Conv_1002 = Identity(%onnx::Conv_963) %onnx::Conv_999 = Identity(%onnx::Conv_963) %onnx::Conv_996 = Identity(%onnx::Conv_963) %onnx::Conv_993 = Identity(%onnx::Conv_963) %onnx::Conv_990 = Identity(%onnx::Conv_963) %onnx::Conv_987 = Identity(%onnx::Conv_963) %onnx::Conv_984 = Identity(%onnx::Conv_963) %onnx::Conv_981 = Identity(%onnx::Conv_963) %onnx::Conv_978 = Identity(%onnx::Conv_963) %onnx::Conv_975 = Identity(%onnx::Conv_963) %onnx::Conv_972 = Identity(%onnx::Conv_963) %onnx::Conv_969 = Identity(%onnx::Conv_963) %onnx::Conv_966 = Identity(%onnx::Conv_963) %onnx::Conv_960 = Identity(%onnx::Conv_852) %onnx::Conv_957 = Identity(%onnx::Conv_852) %onnx::Conv_954 = Identity(%onnx::Conv_852) %onnx::Conv_951 = Identity(%onnx::Conv_852) %onnx::Conv_948 = Identity(%onnx::Conv_852) %onnx::Conv_945 = Identity(%onnx::Conv_852) %onnx::Conv_942 = Identity(%onnx::Conv_852) %onnx::Conv_939 = Identity(%onnx::Conv_852) %onnx::Conv_936 = Identity(%onnx::Conv_852) %onnx::Conv_933 = Identity(%onnx::Conv_852) %onnx::Conv_930 = Identity(%onnx::Conv_852) %onnx::Conv_927 = Identity(%onnx::Conv_852) %onnx::Conv_924 = Identity(%onnx::Conv_852) %onnx::Conv_921 = Identity(%onnx::Conv_852) %onnx::Conv_918 = Identity(%onnx::Conv_852) %onnx::Conv_915 = Identity(%onnx::Conv_852) %onnx::Conv_912 = Identity(%onnx::Conv_852) %onnx::Conv_909 = Identity(%onnx::Conv_852) %onnx::Conv_906 = Identity(%onnx::Conv_855) %onnx::Conv_903 = Identity(%onnx::Conv_855) %onnx::Conv_900 = Identity(%onnx::Conv_855) %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_855) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_855) %onnx::Conv_867 = Identity(%onnx::Conv_855) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_851, %onnx::Conv_852) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %849 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %849 }
val_accuracy
92.487979
1,257,777,152
4,166,026
{'zcp_epe_nas': 69.95743825064454, 'zcp_fisher': 24.074716567993164, 'zcp_flops': 20124434432.0, 'zcp_grad_norm': 94.57144927978516, 'zcp_grasp': -7.9193115234375, 'zcp_jacov': -16.041374123897377, 'zcp_l2_norm': 1041.3519287109375, 'zcp_nwot': 224.72746807312632, 'zcp_params': 4166026.0, 'zcp_plain': 0.001756042009219, 'zcp_snip': 586.9741821289062, 'zcp_synflow': 87.52179523739744, 'zcp_zen': 92.67622375488281, 'zcp_val_accuracy': 0.9228765964508051}
NASBench101_218253
NASBench101
218253
843c48a0dfcc6efa226a75790e6ca45f
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x3x3] %onnx::Conv_896[FLOAT, 128x128x3x3] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x3x3] %onnx::Conv_914[FLOAT, 128x128x3x3] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x3x3] %onnx::Conv_932[FLOAT, 128x128x3x3] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x1x1] %onnx::Conv_944[FLOAT, 256x128x1x1] %onnx::Conv_945[FLOAT, 256] %onnx::Conv_947[FLOAT, 256x256x3x3] %onnx::Conv_950[FLOAT, 256x256x3x3] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x128x1x1] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x3x3] %onnx::Conv_968[FLOAT, 256x256x3x3] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x3x3] %onnx::Conv_986[FLOAT, 256x256x3x3] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 512x256x1x1] %onnx::Conv_999[FLOAT, 512] %onnx::Conv_1001[FLOAT, 512x512x3x3] %onnx::Conv_1004[FLOAT, 512x512x3x3] %onnx::Conv_1007[FLOAT, 512x512x1x1] %onnx::Conv_1010[FLOAT, 512x256x1x1] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x3x3] %onnx::Conv_1022[FLOAT, 512x512x3x3] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x1x1] %onnx::Conv_1031[FLOAT, 512x512x1x1] %onnx::Conv_1034[FLOAT, 512x512x1x1] %onnx::Conv_1037[FLOAT, 512x512x3x3] %onnx::Conv_1040[FLOAT, 512x512x3x3] %onnx::Conv_1043[FLOAT, 512x512x1x1] %onnx::Conv_1046[FLOAT, 512x512x1x1] %onnx::Conv_1049[FLOAT, 512x512x1x1] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_999) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_999) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1014 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_945) %onnx::Conv_993 = Identity(%onnx::Conv_945) %onnx::Conv_990 = Identity(%onnx::Conv_945) %onnx::Conv_987 = Identity(%onnx::Conv_945) %onnx::Conv_984 = Identity(%onnx::Conv_945) %onnx::Conv_981 = Identity(%onnx::Conv_945) %onnx::Conv_978 = Identity(%onnx::Conv_945) %onnx::Conv_975 = Identity(%onnx::Conv_945) %onnx::Conv_972 = Identity(%onnx::Conv_945) %onnx::Conv_969 = Identity(%onnx::Conv_945) %onnx::Conv_966 = Identity(%onnx::Conv_945) %onnx::Conv_963 = Identity(%onnx::Conv_945) %onnx::Conv_960 = Identity(%onnx::Conv_945) %onnx::Conv_957 = Identity(%onnx::Conv_945) %onnx::Conv_954 = Identity(%onnx::Conv_945) %onnx::Conv_951 = Identity(%onnx::Conv_945) %onnx::Conv_948 = Identity(%onnx::Conv_945) %onnx::Conv_942 = Identity(%onnx::Conv_888) %onnx::Conv_939 = Identity(%onnx::Conv_888) %onnx::Conv_936 = Identity(%onnx::Conv_888) %onnx::Conv_933 = Identity(%onnx::Conv_888) %onnx::Conv_930 = Identity(%onnx::Conv_888) %onnx::Conv_927 = Identity(%onnx::Conv_888) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_888) %onnx::Conv_918 = Identity(%onnx::Conv_888) %onnx::Conv_915 = Identity(%onnx::Conv_888) %onnx::Conv_912 = Identity(%onnx::Conv_888) %onnx::Conv_909 = Identity(%onnx::Conv_888) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_903 = Identity(%onnx::Conv_888) %onnx::Conv_900 = Identity(%onnx::Conv_888) %onnx::Conv_897 = Identity(%onnx::Conv_888) %onnx::Conv_894 = Identity(%onnx::Conv_888) %onnx::Conv_891 = Identity(%onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_7_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_7_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_7_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
93.689907
6,617,835,520
22,421,642
{'zcp_epe_nas': 176.21359566103226, 'zcp_fisher': 92.75724029541016, 'zcp_flops': 105885368320.0, 'zcp_grad_norm': 179.75338745117188, 'zcp_grasp': -59.73193359375, 'zcp_jacov': -16.05137765527695, 'zcp_l2_norm': 1241.880126953125, 'zcp_nwot': 235.30500445167786, 'zcp_params': 22421642.0, 'zcp_plain': 0.014433352276682002, 'zcp_snip': 1390.66552734375, 'zcp_synflow': 133.86754781066435, 'zcp_zen': 113.1714096069336, 'zcp_val_accuracy': 0.912960708141326}
NASBench101_402295
NASBench101
402295
f338507f80e8755231a96326caded807
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_905[FLOAT, 128x3x3x3] %onnx::Conv_906[FLOAT, 128] %onnx::Conv_908[FLOAT, 43x128x1x1] %onnx::Conv_909[FLOAT, 43] %onnx::Conv_911[FLOAT, 43x43x1x1] %onnx::Conv_914[FLOAT, 43x128x1x1] %onnx::Conv_917[FLOAT, 43x43x1x1] %onnx::Conv_920[FLOAT, 43x43x3x3] %onnx::Conv_923[FLOAT, 42x42x1x1] %onnx::Conv_924[FLOAT, 42] %onnx::Conv_926[FLOAT, 43x128x1x1] %onnx::Conv_929[FLOAT, 43x43x1x1] %onnx::Conv_932[FLOAT, 43x128x1x1] %onnx::Conv_935[FLOAT, 43x43x1x1] %onnx::Conv_938[FLOAT, 43x43x3x3] %onnx::Conv_941[FLOAT, 42x42x1x1] %onnx::Conv_944[FLOAT, 43x128x1x1] %onnx::Conv_947[FLOAT, 43x43x1x1] %onnx::Conv_950[FLOAT, 43x128x1x1] %onnx::Conv_953[FLOAT, 43x43x1x1] %onnx::Conv_956[FLOAT, 43x43x3x3] %onnx::Conv_959[FLOAT, 42x42x1x1] %onnx::Conv_962[FLOAT, 86x128x1x1] %onnx::Conv_963[FLOAT, 86] %onnx::Conv_965[FLOAT, 86x86x1x1] %onnx::Conv_968[FLOAT, 85x128x1x1] %onnx::Conv_969[FLOAT, 85] %onnx::Conv_971[FLOAT, 85x85x1x1] %onnx::Conv_974[FLOAT, 85x85x3x3] %onnx::Conv_977[FLOAT, 85x85x1x1] %onnx::Conv_980[FLOAT, 86x256x1x1] %onnx::Conv_983[FLOAT, 86x86x1x1] %onnx::Conv_986[FLOAT, 85x256x1x1] %onnx::Conv_989[FLOAT, 85x85x1x1] %onnx::Conv_992[FLOAT, 85x85x3x3] %onnx::Conv_995[FLOAT, 85x85x1x1] %onnx::Conv_998[FLOAT, 86x256x1x1] %onnx::Conv_1001[FLOAT, 86x86x1x1] %onnx::Conv_1004[FLOAT, 85x256x1x1] %onnx::Conv_1007[FLOAT, 85x85x1x1] %onnx::Conv_1010[FLOAT, 85x85x3x3] %onnx::Conv_1013[FLOAT, 85x85x1x1] %onnx::Conv_1016[FLOAT, 171x256x1x1] %onnx::Conv_1017[FLOAT, 171] %onnx::Conv_1019[FLOAT, 171x171x1x1] %onnx::Conv_1022[FLOAT, 171x256x1x1] %onnx::Conv_1025[FLOAT, 171x171x1x1] %onnx::Conv_1028[FLOAT, 171x171x3x3] %onnx::Conv_1031[FLOAT, 170x170x1x1] %onnx::Conv_1032[FLOAT, 170] %onnx::Conv_1034[FLOAT, 171x512x1x1] %onnx::Conv_1037[FLOAT, 171x171x1x1] %onnx::Conv_1040[FLOAT, 171x512x1x1] %onnx::Conv_1043[FLOAT, 171x171x1x1] %onnx::Conv_1046[FLOAT, 171x171x3x3] %onnx::Conv_1049[FLOAT, 170x170x1x1] %onnx::Conv_1052[FLOAT, 171x512x1x1] %onnx::Conv_1055[FLOAT, 171x171x1x1] %onnx::Conv_1058[FLOAT, 171x512x1x1] %onnx::Conv_1061[FLOAT, 171x171x1x1] %onnx::Conv_1064[FLOAT, 171x171x3x3] %onnx::Conv_1067[FLOAT, 170x170x1x1] ) { %onnx::Conv_1068 = Identity(%onnx::Conv_1032) %onnx::Conv_1065 = Identity(%onnx::Conv_1017) %onnx::Conv_1062 = Identity(%onnx::Conv_1017) %onnx::Conv_1059 = Identity(%onnx::Conv_1017) %onnx::Conv_1056 = Identity(%onnx::Conv_1017) %onnx::Conv_1053 = Identity(%onnx::Conv_1017) %onnx::Conv_1050 = Identity(%onnx::Conv_1032) %onnx::Conv_1047 = Identity(%onnx::Conv_1017) %onnx::Conv_1044 = Identity(%onnx::Conv_1017) %onnx::Conv_1041 = Identity(%onnx::Conv_1017) %onnx::Conv_1038 = Identity(%onnx::Conv_1017) %onnx::Conv_1035 = Identity(%onnx::Conv_1017) %onnx::Conv_1029 = Identity(%onnx::Conv_1017) %onnx::Conv_1026 = Identity(%onnx::Conv_1017) %onnx::Conv_1023 = Identity(%onnx::Conv_1017) %onnx::Conv_1020 = Identity(%onnx::Conv_1017) %onnx::Conv_1014 = Identity(%onnx::Conv_969) %onnx::Conv_1011 = Identity(%onnx::Conv_969) %onnx::Conv_1008 = Identity(%onnx::Conv_969) %onnx::Conv_1005 = Identity(%onnx::Conv_969) %onnx::Conv_1002 = Identity(%onnx::Conv_963) %onnx::Conv_999 = Identity(%onnx::Conv_963) %onnx::Conv_996 = Identity(%onnx::Conv_969) %onnx::Conv_993 = Identity(%onnx::Conv_969) %onnx::Conv_990 = Identity(%onnx::Conv_969) %onnx::Conv_987 = Identity(%onnx::Conv_969) %onnx::Conv_984 = Identity(%onnx::Conv_963) %onnx::Conv_981 = Identity(%onnx::Conv_963) %onnx::Conv_978 = Identity(%onnx::Conv_969) %onnx::Conv_975 = Identity(%onnx::Conv_969) %onnx::Conv_972 = Identity(%onnx::Conv_969) %onnx::Conv_966 = Identity(%onnx::Conv_963) %onnx::Conv_960 = Identity(%onnx::Conv_924) %onnx::Conv_957 = Identity(%onnx::Conv_909) %onnx::Conv_954 = Identity(%onnx::Conv_909) %onnx::Conv_951 = Identity(%onnx::Conv_909) %onnx::Conv_948 = Identity(%onnx::Conv_909) %onnx::Conv_945 = Identity(%onnx::Conv_909) %onnx::Conv_942 = Identity(%onnx::Conv_924) %onnx::Conv_939 = Identity(%onnx::Conv_909) %onnx::Conv_936 = Identity(%onnx::Conv_909) %onnx::Conv_933 = Identity(%onnx::Conv_909) %onnx::Conv_930 = Identity(%onnx::Conv_909) %onnx::Conv_927 = Identity(%onnx::Conv_909) %onnx::Conv_921 = Identity(%onnx::Conv_909) %onnx::Conv_918 = Identity(%onnx::Conv_909) %onnx::Conv_915 = Identity(%onnx::Conv_909) %onnx::Conv_912 = Identity(%onnx::Conv_909) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_905, %onnx::Conv_906) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %903 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %903 }
val_accuracy
87.990785
602,718,848
1,978,405
{'zcp_epe_nas': 74.39253086927474, 'zcp_fisher': 244.38800048828125, 'zcp_flops': 9643501568.0, 'zcp_grad_norm': 302.8487548828125, 'zcp_grasp': -591.693359375, 'zcp_jacov': -16.057090571753186, 'zcp_l2_norm': 883.9342041015625, 'zcp_nwot': 218.6767647515608, 'zcp_params': 1978405.0, 'zcp_plain': 0.027786215767264002, 'zcp_snip': 1337.201416015625, 'zcp_synflow': 122.90345433979324, 'zcp_zen': 80.89988708496094, 'zcp_val_accuracy': 0.9057492017745971}
NASBench101_169280
NASBench101
169280
667ef5a7e5aefc080805d236724fa37c
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_839[FLOAT, 128x3x3x3] %onnx::Conv_840[FLOAT, 128] %onnx::Conv_842[FLOAT, 43x128x1x1] %onnx::Conv_843[FLOAT, 43] %onnx::Conv_845[FLOAT, 43x43x3x3] %onnx::Conv_848[FLOAT, 43x43x1x1] %onnx::Conv_851[FLOAT, 43x43x3x3] %onnx::Conv_854[FLOAT, 42x42x1x1] %onnx::Conv_855[FLOAT, 42] %onnx::Conv_857[FLOAT, 43x128x1x1] %onnx::Conv_860[FLOAT, 43x43x3x3] %onnx::Conv_863[FLOAT, 43x43x1x1] %onnx::Conv_866[FLOAT, 43x43x3x3] %onnx::Conv_869[FLOAT, 42x42x1x1] %onnx::Conv_872[FLOAT, 43x128x1x1] %onnx::Conv_875[FLOAT, 43x43x3x3] %onnx::Conv_878[FLOAT, 43x43x1x1] %onnx::Conv_881[FLOAT, 43x43x3x3] %onnx::Conv_884[FLOAT, 42x42x1x1] %onnx::Conv_887[FLOAT, 86x128x1x1] %onnx::Conv_888[FLOAT, 86] %onnx::Conv_890[FLOAT, 86x86x3x3] %onnx::Conv_893[FLOAT, 86x86x1x1] %onnx::Conv_896[FLOAT, 85x85x3x3] %onnx::Conv_897[FLOAT, 85] %onnx::Conv_899[FLOAT, 85x85x1x1] %onnx::Conv_902[FLOAT, 86x256x1x1] %onnx::Conv_905[FLOAT, 86x86x3x3] %onnx::Conv_908[FLOAT, 86x86x1x1] %onnx::Conv_911[FLOAT, 85x85x3x3] %onnx::Conv_914[FLOAT, 85x85x1x1] %onnx::Conv_917[FLOAT, 86x256x1x1] %onnx::Conv_920[FLOAT, 86x86x3x3] %onnx::Conv_923[FLOAT, 86x86x1x1] %onnx::Conv_926[FLOAT, 85x85x3x3] %onnx::Conv_929[FLOAT, 85x85x1x1] %onnx::Conv_932[FLOAT, 171x256x1x1] %onnx::Conv_933[FLOAT, 171] %onnx::Conv_935[FLOAT, 171x171x3x3] %onnx::Conv_938[FLOAT, 171x171x1x1] %onnx::Conv_941[FLOAT, 171x171x3x3] %onnx::Conv_944[FLOAT, 170x170x1x1] %onnx::Conv_945[FLOAT, 170] %onnx::Conv_947[FLOAT, 171x512x1x1] %onnx::Conv_950[FLOAT, 171x171x3x3] %onnx::Conv_953[FLOAT, 171x171x1x1] %onnx::Conv_956[FLOAT, 171x171x3x3] %onnx::Conv_959[FLOAT, 170x170x1x1] %onnx::Conv_962[FLOAT, 171x512x1x1] %onnx::Conv_965[FLOAT, 171x171x3x3] %onnx::Conv_968[FLOAT, 171x171x1x1] %onnx::Conv_971[FLOAT, 171x171x3x3] %onnx::Conv_974[FLOAT, 170x170x1x1] ) { %onnx::Conv_975 = Identity(%onnx::Conv_945) %onnx::Conv_972 = Identity(%onnx::Conv_933) %onnx::Conv_969 = Identity(%onnx::Conv_933) %onnx::Conv_966 = Identity(%onnx::Conv_933) %onnx::Conv_963 = Identity(%onnx::Conv_933) %onnx::Conv_960 = Identity(%onnx::Conv_945) %onnx::Conv_957 = Identity(%onnx::Conv_933) %onnx::Conv_954 = Identity(%onnx::Conv_933) %onnx::Conv_951 = Identity(%onnx::Conv_933) %onnx::Conv_948 = Identity(%onnx::Conv_933) %onnx::Conv_942 = Identity(%onnx::Conv_933) %onnx::Conv_939 = Identity(%onnx::Conv_933) %onnx::Conv_936 = Identity(%onnx::Conv_933) %onnx::Conv_930 = Identity(%onnx::Conv_897) %onnx::Conv_927 = Identity(%onnx::Conv_897) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_888) %onnx::Conv_918 = Identity(%onnx::Conv_888) %onnx::Conv_915 = Identity(%onnx::Conv_897) %onnx::Conv_912 = Identity(%onnx::Conv_897) %onnx::Conv_909 = Identity(%onnx::Conv_888) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_903 = Identity(%onnx::Conv_888) %onnx::Conv_900 = Identity(%onnx::Conv_897) %onnx::Conv_894 = Identity(%onnx::Conv_888) %onnx::Conv_891 = Identity(%onnx::Conv_888) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_843) %onnx::Conv_879 = Identity(%onnx::Conv_843) %onnx::Conv_876 = Identity(%onnx::Conv_843) %onnx::Conv_873 = Identity(%onnx::Conv_843) %onnx::Conv_870 = Identity(%onnx::Conv_855) %onnx::Conv_867 = Identity(%onnx::Conv_843) %onnx::Conv_864 = Identity(%onnx::Conv_843) %onnx::Conv_861 = Identity(%onnx::Conv_843) %onnx::Conv_858 = Identity(%onnx::Conv_843) %onnx::Conv_852 = Identity(%onnx::Conv_843) %onnx::Conv_849 = Identity(%onnx::Conv_843) %onnx::Conv_846 = Identity(%onnx::Conv_843) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_839, %onnx::Conv_840) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_7_output_0) %/layers.1/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_8_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_7_output_0) %/layers.2/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_8_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_7_output_0) %/layers.3/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_8_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_5_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_6_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_9_output_0, %/layers.5/Constant_10_output_0, %/layers.5/Constant_8_output_0, %/layers.5/Constant_11_output_0) %/layers.5/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_12_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_5_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_6_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_9_output_0, %/layers.6/Constant_10_output_0, %/layers.6/Constant_8_output_0, %/layers.6/Constant_11_output_0) %/layers.6/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_12_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_5_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_6_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_9_output_0, %/layers.7/Constant_10_output_0, %/layers.7/Constant_8_output_0, %/layers.7/Constant_11_output_0) %/layers.7/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_12_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_7_output_0) %/layers.9/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_8_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_7_output_0) %/layers.10/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_8_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_7_output_0) %/layers.11/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_8_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %837 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %837 }
val_accuracy
90.174282
783,052,416
2,611,002
{'zcp_epe_nas': 125.5869518152491, 'zcp_fisher': 62.6676025390625, 'zcp_flops': 12528838656.0, 'zcp_grad_norm': 131.41819763183594, 'zcp_grasp': 42.4248046875, 'zcp_jacov': -16.0570006491916, 'zcp_l2_norm': 688.6771240234375, 'zcp_nwot': 215.85296701127072, 'zcp_params': 2611002.0, 'zcp_plain': -0.00022669608006200002, 'zcp_snip': 623.27392578125, 'zcp_synflow': 118.75445439706772, 'zcp_zen': 77.91243743896484, 'zcp_val_accuracy': 0.9143629670143121}
NASBench101_328790
NASBench101
328790
c6e1ec34d254a98d6f5a444b427a1c7b
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_689[FLOAT, 128x3x3x3] %onnx::Conv_690[FLOAT, 128] %onnx::Conv_692[FLOAT, 64x128x1x1] %onnx::Conv_693[FLOAT, 64] %onnx::Conv_695[FLOAT, 64x64x3x3] %onnx::Conv_698[FLOAT, 64x128x1x1] %onnx::Conv_701[FLOAT, 64x64x1x1] %onnx::Conv_704[FLOAT, 64x128x1x1] %onnx::Conv_707[FLOAT, 64x64x3x3] %onnx::Conv_710[FLOAT, 64x128x1x1] %onnx::Conv_713[FLOAT, 64x64x1x1] %onnx::Conv_716[FLOAT, 64x128x1x1] %onnx::Conv_719[FLOAT, 64x64x3x3] %onnx::Conv_722[FLOAT, 64x128x1x1] %onnx::Conv_725[FLOAT, 64x64x1x1] %onnx::Conv_728[FLOAT, 128x128x1x1] %onnx::Conv_731[FLOAT, 128x128x3x3] %onnx::Conv_734[FLOAT, 128x128x1x1] %onnx::Conv_737[FLOAT, 128x128x1x1] %onnx::Conv_740[FLOAT, 128x256x1x1] %onnx::Conv_743[FLOAT, 128x128x3x3] %onnx::Conv_746[FLOAT, 128x256x1x1] %onnx::Conv_749[FLOAT, 128x128x1x1] %onnx::Conv_752[FLOAT, 128x256x1x1] %onnx::Conv_755[FLOAT, 128x128x3x3] %onnx::Conv_758[FLOAT, 128x256x1x1] %onnx::Conv_761[FLOAT, 128x128x1x1] %onnx::Conv_764[FLOAT, 256x256x1x1] %onnx::Conv_765[FLOAT, 256] %onnx::Conv_767[FLOAT, 256x256x3x3] %onnx::Conv_770[FLOAT, 256x256x1x1] %onnx::Conv_773[FLOAT, 256x256x1x1] %onnx::Conv_776[FLOAT, 256x512x1x1] %onnx::Conv_779[FLOAT, 256x256x3x3] %onnx::Conv_782[FLOAT, 256x512x1x1] %onnx::Conv_785[FLOAT, 256x256x1x1] %onnx::Conv_788[FLOAT, 256x512x1x1] %onnx::Conv_791[FLOAT, 256x256x3x3] %onnx::Conv_794[FLOAT, 256x512x1x1] %onnx::Conv_797[FLOAT, 256x256x1x1] ) { %onnx::Conv_798 = Identity(%onnx::Conv_765) %onnx::Conv_795 = Identity(%onnx::Conv_765) %onnx::Conv_792 = Identity(%onnx::Conv_765) %onnx::Conv_789 = Identity(%onnx::Conv_765) %onnx::Conv_786 = Identity(%onnx::Conv_765) %onnx::Conv_783 = Identity(%onnx::Conv_765) %onnx::Conv_780 = Identity(%onnx::Conv_765) %onnx::Conv_777 = Identity(%onnx::Conv_765) %onnx::Conv_774 = Identity(%onnx::Conv_765) %onnx::Conv_771 = Identity(%onnx::Conv_765) %onnx::Conv_768 = Identity(%onnx::Conv_765) %onnx::Conv_762 = Identity(%onnx::Conv_690) %onnx::Conv_759 = Identity(%onnx::Conv_690) %onnx::Conv_756 = Identity(%onnx::Conv_690) %onnx::Conv_753 = Identity(%onnx::Conv_690) %onnx::Conv_750 = Identity(%onnx::Conv_690) %onnx::Conv_747 = Identity(%onnx::Conv_690) %onnx::Conv_744 = Identity(%onnx::Conv_690) %onnx::Conv_741 = Identity(%onnx::Conv_690) %onnx::Conv_738 = Identity(%onnx::Conv_690) %onnx::Conv_735 = Identity(%onnx::Conv_690) %onnx::Conv_732 = Identity(%onnx::Conv_690) %onnx::Conv_729 = Identity(%onnx::Conv_690) %onnx::Conv_726 = Identity(%onnx::Conv_693) %onnx::Conv_723 = Identity(%onnx::Conv_693) %onnx::Conv_720 = Identity(%onnx::Conv_693) %onnx::Conv_717 = Identity(%onnx::Conv_693) %onnx::Conv_714 = Identity(%onnx::Conv_693) %onnx::Conv_711 = Identity(%onnx::Conv_693) %onnx::Conv_708 = Identity(%onnx::Conv_693) %onnx::Conv_705 = Identity(%onnx::Conv_693) %onnx::Conv_702 = Identity(%onnx::Conv_693) %onnx::Conv_699 = Identity(%onnx::Conv_693) %onnx::Conv_696 = Identity(%onnx::Conv_693) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_689, %onnx::Conv_690) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %687 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %687 }
val_accuracy
90.104169
1,042,556,928
3,468,426
{'zcp_epe_nas': 65.56658791117471, 'zcp_fisher': 43.797645568847656, 'zcp_flops': 16680910848.0, 'zcp_grad_norm': 115.19821166992188, 'zcp_grasp': -53.63037109375, 'zcp_jacov': -16.055522558419202, 'zcp_l2_norm': 694.5105590820312, 'zcp_nwot': 218.15996118605864, 'zcp_params': 3468426.0, 'zcp_plain': 0.166184529662132, 'zcp_snip': 653.9052124023438, 'zcp_synflow': 85.72004736457524, 'zcp_zen': 71.69795227050781, 'zcp_val_accuracy': 0.9200721383094781}
NASBench101_12415
NASBench101
12415
077667b22cc200447ef0ae6db106fbf5
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_779[FLOAT, 128x3x3x3] %onnx::Conv_780[FLOAT, 128] %onnx::Conv_782[FLOAT, 64x128x1x1] %onnx::Conv_783[FLOAT, 64] %onnx::Conv_785[FLOAT, 64x64x3x3] %onnx::Conv_788[FLOAT, 64x64x1x1] %onnx::Conv_791[FLOAT, 64x64x3x3] %onnx::Conv_794[FLOAT, 128x128x1x1] %onnx::Conv_797[FLOAT, 64x128x1x1] %onnx::Conv_800[FLOAT, 64x64x3x3] %onnx::Conv_803[FLOAT, 64x64x1x1] %onnx::Conv_806[FLOAT, 64x64x3x3] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 64x128x1x1] %onnx::Conv_815[FLOAT, 64x64x3x3] %onnx::Conv_818[FLOAT, 64x64x1x1] %onnx::Conv_821[FLOAT, 64x64x3x3] %onnx::Conv_824[FLOAT, 128x128x1x1] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x128x3x3] %onnx::Conv_833[FLOAT, 128x128x1x1] %onnx::Conv_836[FLOAT, 128x128x3x3] %onnx::Conv_839[FLOAT, 256x128x1x1] %onnx::Conv_840[FLOAT, 256] %onnx::Conv_842[FLOAT, 128x256x1x1] %onnx::Conv_845[FLOAT, 128x128x3x3] %onnx::Conv_848[FLOAT, 128x128x1x1] %onnx::Conv_851[FLOAT, 128x128x3x3] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_857[FLOAT, 128x256x1x1] %onnx::Conv_860[FLOAT, 128x128x3x3] %onnx::Conv_863[FLOAT, 128x128x1x1] %onnx::Conv_866[FLOAT, 128x128x3x3] %onnx::Conv_869[FLOAT, 256x256x1x1] %onnx::Conv_872[FLOAT, 256x256x1x1] %onnx::Conv_875[FLOAT, 256x256x3x3] %onnx::Conv_878[FLOAT, 256x256x1x1] %onnx::Conv_881[FLOAT, 256x256x3x3] %onnx::Conv_884[FLOAT, 512x256x1x1] %onnx::Conv_885[FLOAT, 512] %onnx::Conv_887[FLOAT, 256x512x1x1] %onnx::Conv_890[FLOAT, 256x256x3x3] %onnx::Conv_893[FLOAT, 256x256x1x1] %onnx::Conv_896[FLOAT, 256x256x3x3] %onnx::Conv_899[FLOAT, 512x512x1x1] %onnx::Conv_902[FLOAT, 256x512x1x1] %onnx::Conv_905[FLOAT, 256x256x3x3] %onnx::Conv_908[FLOAT, 256x256x1x1] %onnx::Conv_911[FLOAT, 256x256x3x3] %onnx::Conv_914[FLOAT, 512x512x1x1] ) { %onnx::Conv_915 = Identity(%onnx::Conv_885) %onnx::Conv_912 = Identity(%onnx::Conv_840) %onnx::Conv_909 = Identity(%onnx::Conv_840) %onnx::Conv_906 = Identity(%onnx::Conv_840) %onnx::Conv_903 = Identity(%onnx::Conv_840) %onnx::Conv_900 = Identity(%onnx::Conv_885) %onnx::Conv_897 = Identity(%onnx::Conv_840) %onnx::Conv_894 = Identity(%onnx::Conv_840) %onnx::Conv_891 = Identity(%onnx::Conv_840) %onnx::Conv_888 = Identity(%onnx::Conv_840) %onnx::Conv_882 = Identity(%onnx::Conv_840) %onnx::Conv_879 = Identity(%onnx::Conv_840) %onnx::Conv_876 = Identity(%onnx::Conv_840) %onnx::Conv_873 = Identity(%onnx::Conv_840) %onnx::Conv_870 = Identity(%onnx::Conv_840) %onnx::Conv_867 = Identity(%onnx::Conv_780) %onnx::Conv_864 = Identity(%onnx::Conv_780) %onnx::Conv_861 = Identity(%onnx::Conv_780) %onnx::Conv_858 = Identity(%onnx::Conv_780) %onnx::Conv_855 = Identity(%onnx::Conv_840) %onnx::Conv_852 = Identity(%onnx::Conv_780) %onnx::Conv_849 = Identity(%onnx::Conv_780) %onnx::Conv_846 = Identity(%onnx::Conv_780) %onnx::Conv_843 = Identity(%onnx::Conv_780) %onnx::Conv_837 = Identity(%onnx::Conv_780) %onnx::Conv_834 = Identity(%onnx::Conv_780) %onnx::Conv_831 = Identity(%onnx::Conv_780) %onnx::Conv_828 = Identity(%onnx::Conv_780) %onnx::Conv_825 = Identity(%onnx::Conv_780) %onnx::Conv_822 = Identity(%onnx::Conv_783) %onnx::Conv_819 = Identity(%onnx::Conv_783) %onnx::Conv_816 = Identity(%onnx::Conv_783) %onnx::Conv_813 = Identity(%onnx::Conv_783) %onnx::Conv_810 = Identity(%onnx::Conv_780) %onnx::Conv_807 = Identity(%onnx::Conv_783) %onnx::Conv_804 = Identity(%onnx::Conv_783) %onnx::Conv_801 = Identity(%onnx::Conv_783) %onnx::Conv_798 = Identity(%onnx::Conv_783) %onnx::Conv_795 = Identity(%onnx::Conv_780) %onnx::Conv_792 = Identity(%onnx::Conv_783) %onnx::Conv_789 = Identity(%onnx::Conv_783) %onnx::Conv_786 = Identity(%onnx::Conv_783) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_779, %onnx::Conv_780) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %777 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %777 }
val_accuracy
92.598158
1,861,756,928
6,230,410
{'zcp_epe_nas': 125.1148064070045, 'zcp_fisher': 245.55661010742188, 'zcp_flops': 29788110848.0, 'zcp_grad_norm': 292.9205627441406, 'zcp_grasp': -139.6875, 'zcp_jacov': -16.0506445305806, 'zcp_l2_norm': 844.4508666992188, 'zcp_nwot': 224.42925373378526, 'zcp_params': 6230410.0, 'zcp_plain': 0.097837969660758, 'zcp_snip': 1689.7225341796875, 'zcp_synflow': 123.47265285888166, 'zcp_zen': 91.62018585205078, 'zcp_val_accuracy': 0.9249799847602841}
NASBench101_28962
NASBench101
28962
1180338b18d1029a6ca04bf2a2cd45c2
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_617[FLOAT, 128x3x3x3] %onnx::Conv_618[FLOAT, 128] %onnx::Conv_620[FLOAT, 64x128x1x1] %onnx::Conv_621[FLOAT, 64] %onnx::Conv_623[FLOAT, 64x64x1x1] %onnx::Conv_626[FLOAT, 64x64x1x1] %onnx::Conv_629[FLOAT, 64x64x3x3] %onnx::Conv_632[FLOAT, 64x128x1x1] %onnx::Conv_635[FLOAT, 64x64x1x1] %onnx::Conv_638[FLOAT, 64x64x1x1] %onnx::Conv_641[FLOAT, 64x64x3x3] %onnx::Conv_644[FLOAT, 64x128x1x1] %onnx::Conv_647[FLOAT, 64x64x1x1] %onnx::Conv_650[FLOAT, 64x64x1x1] %onnx::Conv_653[FLOAT, 64x64x3x3] %onnx::Conv_656[FLOAT, 128x128x1x1] %onnx::Conv_659[FLOAT, 128x128x1x1] %onnx::Conv_662[FLOAT, 128x128x1x1] %onnx::Conv_665[FLOAT, 128x128x3x3] %onnx::Conv_668[FLOAT, 128x256x1x1] %onnx::Conv_671[FLOAT, 128x128x1x1] %onnx::Conv_674[FLOAT, 128x128x1x1] %onnx::Conv_677[FLOAT, 128x128x3x3] %onnx::Conv_680[FLOAT, 128x256x1x1] %onnx::Conv_683[FLOAT, 128x128x1x1] %onnx::Conv_686[FLOAT, 128x128x1x1] %onnx::Conv_689[FLOAT, 128x128x3x3] %onnx::Conv_692[FLOAT, 256x256x1x1] %onnx::Conv_693[FLOAT, 256] %onnx::Conv_695[FLOAT, 256x256x1x1] %onnx::Conv_698[FLOAT, 256x256x1x1] %onnx::Conv_701[FLOAT, 256x256x3x3] %onnx::Conv_704[FLOAT, 256x512x1x1] %onnx::Conv_707[FLOAT, 256x256x1x1] %onnx::Conv_710[FLOAT, 256x256x1x1] %onnx::Conv_713[FLOAT, 256x256x3x3] %onnx::Conv_716[FLOAT, 256x512x1x1] %onnx::Conv_719[FLOAT, 256x256x1x1] %onnx::Conv_722[FLOAT, 256x256x1x1] %onnx::Conv_725[FLOAT, 256x256x3x3] ) { %onnx::Conv_726 = Identity(%onnx::Conv_693) %onnx::Conv_723 = Identity(%onnx::Conv_693) %onnx::Conv_720 = Identity(%onnx::Conv_693) %onnx::Conv_717 = Identity(%onnx::Conv_693) %onnx::Conv_714 = Identity(%onnx::Conv_693) %onnx::Conv_711 = Identity(%onnx::Conv_693) %onnx::Conv_708 = Identity(%onnx::Conv_693) %onnx::Conv_705 = Identity(%onnx::Conv_693) %onnx::Conv_702 = Identity(%onnx::Conv_693) %onnx::Conv_699 = Identity(%onnx::Conv_693) %onnx::Conv_696 = Identity(%onnx::Conv_693) %onnx::Conv_690 = Identity(%onnx::Conv_618) %onnx::Conv_687 = Identity(%onnx::Conv_618) %onnx::Conv_684 = Identity(%onnx::Conv_618) %onnx::Conv_681 = Identity(%onnx::Conv_618) %onnx::Conv_678 = Identity(%onnx::Conv_618) %onnx::Conv_675 = Identity(%onnx::Conv_618) %onnx::Conv_672 = Identity(%onnx::Conv_618) %onnx::Conv_669 = Identity(%onnx::Conv_618) %onnx::Conv_666 = Identity(%onnx::Conv_618) %onnx::Conv_663 = Identity(%onnx::Conv_618) %onnx::Conv_660 = Identity(%onnx::Conv_618) %onnx::Conv_657 = Identity(%onnx::Conv_618) %onnx::Conv_654 = Identity(%onnx::Conv_621) %onnx::Conv_651 = Identity(%onnx::Conv_621) %onnx::Conv_648 = Identity(%onnx::Conv_621) %onnx::Conv_645 = Identity(%onnx::Conv_621) %onnx::Conv_642 = Identity(%onnx::Conv_621) %onnx::Conv_639 = Identity(%onnx::Conv_621) %onnx::Conv_636 = Identity(%onnx::Conv_621) %onnx::Conv_633 = Identity(%onnx::Conv_621) %onnx::Conv_630 = Identity(%onnx::Conv_621) %onnx::Conv_627 = Identity(%onnx::Conv_621) %onnx::Conv_624 = Identity(%onnx::Conv_621) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_617, %onnx::Conv_618) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_620, %onnx::Conv_621) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_623, %onnx::Conv_624) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_626, %onnx::Conv_627) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_629, %onnx::Conv_630) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_632, %onnx::Conv_633) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_635, %onnx::Conv_636) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %615 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %615 }
val_accuracy
91.376203
983,836,672
3,292,298
{'zcp_epe_nas': 86.94319864557774, 'zcp_fisher': 44.99204635620117, 'zcp_flops': 15741386752.0, 'zcp_grad_norm': 127.41443634033203, 'zcp_grasp': -41.650146484375, 'zcp_jacov': -16.05574174104442, 'zcp_l2_norm': 648.7321166992188, 'zcp_nwot': 218.5630001852587, 'zcp_params': 3292298.0, 'zcp_plain': 0.023000197485089, 'zcp_snip': 656.2005615234375, 'zcp_synflow': 107.27853847788865, 'zcp_zen': 61.55157470703125, 'zcp_val_accuracy': 0.9149639606475831}
NASBench101_357658
NASBench101
357658
d82cafb2f572ab0eac66a7b3657ff4e1
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1076[FLOAT, 128x3x3x3] %onnx::Conv_1077[FLOAT, 128] %onnx::Conv_1079[FLOAT, 128x128x1x1] %onnx::Conv_1082[FLOAT, 128x128x1x1] %onnx::Conv_1085[FLOAT, 128x128x1x1] %onnx::Conv_1088[FLOAT, 128x128x3x3] %onnx::Conv_1091[FLOAT, 128x128x1x1] %onnx::Conv_1094[FLOAT, 128x128x1x1] %onnx::Conv_1097[FLOAT, 128x128x1x1] %onnx::Conv_1100[FLOAT, 128x128x1x1] %onnx::Conv_1103[FLOAT, 128x128x1x1] %onnx::Conv_1106[FLOAT, 128x128x1x1] %onnx::Conv_1109[FLOAT, 128x128x1x1] %onnx::Conv_1112[FLOAT, 128x128x3x3] %onnx::Conv_1115[FLOAT, 128x128x1x1] %onnx::Conv_1118[FLOAT, 128x128x1x1] %onnx::Conv_1121[FLOAT, 128x128x1x1] %onnx::Conv_1124[FLOAT, 128x128x1x1] %onnx::Conv_1127[FLOAT, 128x128x1x1] %onnx::Conv_1130[FLOAT, 128x128x1x1] %onnx::Conv_1133[FLOAT, 128x128x1x1] %onnx::Conv_1136[FLOAT, 128x128x3x3] %onnx::Conv_1139[FLOAT, 128x128x1x1] %onnx::Conv_1142[FLOAT, 128x128x1x1] %onnx::Conv_1145[FLOAT, 128x128x1x1] %onnx::Conv_1148[FLOAT, 128x128x1x1] %onnx::Conv_1151[FLOAT, 256x128x1x1] %onnx::Conv_1152[FLOAT, 256] %onnx::Conv_1154[FLOAT, 256x256x1x1] %onnx::Conv_1157[FLOAT, 256x128x1x1] %onnx::Conv_1160[FLOAT, 256x256x3x3] %onnx::Conv_1163[FLOAT, 256x256x1x1] %onnx::Conv_1166[FLOAT, 256x256x1x1] %onnx::Conv_1169[FLOAT, 256x256x1x1] %onnx::Conv_1172[FLOAT, 256x128x1x1] %onnx::Conv_1175[FLOAT, 256x256x1x1] %onnx::Conv_1178[FLOAT, 256x256x1x1] %onnx::Conv_1181[FLOAT, 256x256x1x1] %onnx::Conv_1184[FLOAT, 256x256x3x3] %onnx::Conv_1187[FLOAT, 256x256x1x1] %onnx::Conv_1190[FLOAT, 256x256x1x1] %onnx::Conv_1193[FLOAT, 256x256x1x1] %onnx::Conv_1196[FLOAT, 256x256x1x1] %onnx::Conv_1199[FLOAT, 256x256x1x1] %onnx::Conv_1202[FLOAT, 256x256x1x1] %onnx::Conv_1205[FLOAT, 256x256x1x1] %onnx::Conv_1208[FLOAT, 256x256x3x3] %onnx::Conv_1211[FLOAT, 256x256x1x1] %onnx::Conv_1214[FLOAT, 256x256x1x1] %onnx::Conv_1217[FLOAT, 256x256x1x1] %onnx::Conv_1220[FLOAT, 256x256x1x1] %onnx::Conv_1223[FLOAT, 512x256x1x1] %onnx::Conv_1224[FLOAT, 512] %onnx::Conv_1226[FLOAT, 512x512x1x1] %onnx::Conv_1229[FLOAT, 512x256x1x1] %onnx::Conv_1232[FLOAT, 512x512x3x3] %onnx::Conv_1235[FLOAT, 512x512x1x1] %onnx::Conv_1238[FLOAT, 512x512x1x1] %onnx::Conv_1241[FLOAT, 512x512x1x1] %onnx::Conv_1244[FLOAT, 512x256x1x1] %onnx::Conv_1247[FLOAT, 512x512x1x1] %onnx::Conv_1250[FLOAT, 512x512x1x1] %onnx::Conv_1253[FLOAT, 512x512x1x1] %onnx::Conv_1256[FLOAT, 512x512x3x3] %onnx::Conv_1259[FLOAT, 512x512x1x1] %onnx::Conv_1262[FLOAT, 512x512x1x1] %onnx::Conv_1265[FLOAT, 512x512x1x1] %onnx::Conv_1268[FLOAT, 512x512x1x1] %onnx::Conv_1271[FLOAT, 512x512x1x1] %onnx::Conv_1274[FLOAT, 512x512x1x1] %onnx::Conv_1277[FLOAT, 512x512x1x1] %onnx::Conv_1280[FLOAT, 512x512x3x3] %onnx::Conv_1283[FLOAT, 512x512x1x1] %onnx::Conv_1286[FLOAT, 512x512x1x1] %onnx::Conv_1289[FLOAT, 512x512x1x1] %onnx::Conv_1292[FLOAT, 512x512x1x1] ) { %onnx::Conv_1293 = Identity(%onnx::Conv_1224) %onnx::Conv_1290 = Identity(%onnx::Conv_1224) %onnx::Conv_1287 = Identity(%onnx::Conv_1224) %onnx::Conv_1284 = Identity(%onnx::Conv_1224) %onnx::Conv_1281 = Identity(%onnx::Conv_1224) %onnx::Conv_1278 = Identity(%onnx::Conv_1224) %onnx::Conv_1275 = Identity(%onnx::Conv_1224) %onnx::Conv_1272 = Identity(%onnx::Conv_1224) %onnx::Conv_1269 = Identity(%onnx::Conv_1224) %onnx::Conv_1266 = Identity(%onnx::Conv_1224) %onnx::Conv_1263 = Identity(%onnx::Conv_1224) %onnx::Conv_1260 = Identity(%onnx::Conv_1224) %onnx::Conv_1257 = Identity(%onnx::Conv_1224) %onnx::Conv_1254 = Identity(%onnx::Conv_1224) %onnx::Conv_1251 = Identity(%onnx::Conv_1224) %onnx::Conv_1248 = Identity(%onnx::Conv_1224) %onnx::Conv_1245 = Identity(%onnx::Conv_1224) %onnx::Conv_1242 = Identity(%onnx::Conv_1224) %onnx::Conv_1239 = Identity(%onnx::Conv_1224) %onnx::Conv_1236 = Identity(%onnx::Conv_1224) %onnx::Conv_1233 = Identity(%onnx::Conv_1224) %onnx::Conv_1230 = Identity(%onnx::Conv_1224) %onnx::Conv_1227 = Identity(%onnx::Conv_1224) %onnx::Conv_1221 = Identity(%onnx::Conv_1152) %onnx::Conv_1218 = Identity(%onnx::Conv_1152) %onnx::Conv_1215 = Identity(%onnx::Conv_1152) %onnx::Conv_1212 = Identity(%onnx::Conv_1152) %onnx::Conv_1209 = Identity(%onnx::Conv_1152) %onnx::Conv_1206 = Identity(%onnx::Conv_1152) %onnx::Conv_1203 = Identity(%onnx::Conv_1152) %onnx::Conv_1200 = Identity(%onnx::Conv_1152) %onnx::Conv_1197 = Identity(%onnx::Conv_1152) %onnx::Conv_1194 = Identity(%onnx::Conv_1152) %onnx::Conv_1191 = Identity(%onnx::Conv_1152) %onnx::Conv_1188 = Identity(%onnx::Conv_1152) %onnx::Conv_1185 = Identity(%onnx::Conv_1152) %onnx::Conv_1182 = Identity(%onnx::Conv_1152) %onnx::Conv_1179 = Identity(%onnx::Conv_1152) %onnx::Conv_1176 = Identity(%onnx::Conv_1152) %onnx::Conv_1173 = Identity(%onnx::Conv_1152) %onnx::Conv_1170 = Identity(%onnx::Conv_1152) %onnx::Conv_1167 = Identity(%onnx::Conv_1152) %onnx::Conv_1164 = Identity(%onnx::Conv_1152) %onnx::Conv_1161 = Identity(%onnx::Conv_1152) %onnx::Conv_1158 = Identity(%onnx::Conv_1152) %onnx::Conv_1155 = Identity(%onnx::Conv_1152) %onnx::Conv_1149 = Identity(%onnx::Conv_1077) %onnx::Conv_1146 = Identity(%onnx::Conv_1077) %onnx::Conv_1143 = Identity(%onnx::Conv_1077) %onnx::Conv_1140 = Identity(%onnx::Conv_1077) %onnx::Conv_1137 = Identity(%onnx::Conv_1077) %onnx::Conv_1134 = Identity(%onnx::Conv_1077) %onnx::Conv_1131 = Identity(%onnx::Conv_1077) %onnx::Conv_1128 = Identity(%onnx::Conv_1077) %onnx::Conv_1125 = Identity(%onnx::Conv_1077) %onnx::Conv_1122 = Identity(%onnx::Conv_1077) %onnx::Conv_1119 = Identity(%onnx::Conv_1077) %onnx::Conv_1116 = Identity(%onnx::Conv_1077) %onnx::Conv_1113 = Identity(%onnx::Conv_1077) %onnx::Conv_1110 = Identity(%onnx::Conv_1077) %onnx::Conv_1107 = Identity(%onnx::Conv_1077) %onnx::Conv_1104 = Identity(%onnx::Conv_1077) %onnx::Conv_1101 = Identity(%onnx::Conv_1077) %onnx::Conv_1098 = Identity(%onnx::Conv_1077) %onnx::Conv_1095 = Identity(%onnx::Conv_1077) %onnx::Conv_1092 = Identity(%onnx::Conv_1077) %onnx::Conv_1089 = Identity(%onnx::Conv_1077) %onnx::Conv_1086 = Identity(%onnx::Conv_1077) %onnx::Conv_1083 = Identity(%onnx::Conv_1077) %onnx::Conv_1080 = Identity(%onnx::Conv_1077) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_7_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_1220, %onnx::Conv_1221) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_7_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1223, %onnx::Conv_1224) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1226, %onnx::Conv_1227) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1229, %onnx::Conv_1230) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1232, %onnx::Conv_1233) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1235, %onnx::Conv_1236) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1238, %onnx::Conv_1239) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1241, %onnx::Conv_1242) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1244, %onnx::Conv_1245) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1247, %onnx::Conv_1248) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1250, %onnx::Conv_1251) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1253, %onnx::Conv_1254) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1256, %onnx::Conv_1257) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1259, %onnx::Conv_1260) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1262, %onnx::Conv_1263) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1265, %onnx::Conv_1266) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1268, %onnx::Conv_1269) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1271, %onnx::Conv_1272) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1274, %onnx::Conv_1275) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1277, %onnx::Conv_1278) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1280, %onnx::Conv_1281) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1283, %onnx::Conv_1284) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1286, %onnx::Conv_1287) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1289, %onnx::Conv_1290) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1292, %onnx::Conv_1293) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_7_output_0) %1074 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1074 }
val_accuracy
94.340944
4,783,351,808
16,075,402
{'zcp_epe_nas': 130.54019856587055, 'zcp_fisher': 6.236943244934082, 'zcp_flops': 76533628928.0, 'zcp_grad_norm': 71.36641693115234, 'zcp_grasp': -2.0863037109375, 'zcp_jacov': -16.06088210698985, 'zcp_l2_norm': 1650.5201416015625, 'zcp_nwot': 239.89305999569208, 'zcp_params': 16075402.0, 'zcp_plain': -0.040021583437919006, 'zcp_snip': 545.5018310546875, 'zcp_synflow': 136.39611733906563, 'zcp_zen': 131.74691772460938, 'zcp_val_accuracy': 0.8813101053237911}
NASBench101_311383
NASBench101
311383
bc67239bd9adac0b32a93ad2de92025e
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_977[FLOAT, 128x3x3x3] %onnx::Conv_978[FLOAT, 128] %onnx::Conv_980[FLOAT, 64x128x1x1] %onnx::Conv_981[FLOAT, 64] %onnx::Conv_983[FLOAT, 64x64x3x3] %onnx::Conv_986[FLOAT, 64x64x1x1] %onnx::Conv_989[FLOAT, 64x64x1x1] %onnx::Conv_992[FLOAT, 64x128x1x1] %onnx::Conv_995[FLOAT, 64x64x3x3] %onnx::Conv_998[FLOAT, 64x64x3x3] %onnx::Conv_1001[FLOAT, 64x128x1x1] %onnx::Conv_1004[FLOAT, 64x64x3x3] %onnx::Conv_1007[FLOAT, 64x64x1x1] %onnx::Conv_1010[FLOAT, 64x64x1x1] %onnx::Conv_1013[FLOAT, 64x128x1x1] %onnx::Conv_1016[FLOAT, 64x64x3x3] %onnx::Conv_1019[FLOAT, 64x64x3x3] %onnx::Conv_1022[FLOAT, 64x128x1x1] %onnx::Conv_1025[FLOAT, 64x64x3x3] %onnx::Conv_1028[FLOAT, 64x64x1x1] %onnx::Conv_1031[FLOAT, 64x64x1x1] %onnx::Conv_1034[FLOAT, 64x128x1x1] %onnx::Conv_1037[FLOAT, 64x64x3x3] %onnx::Conv_1040[FLOAT, 64x64x3x3] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 128x128x3x3] %onnx::Conv_1049[FLOAT, 128x128x1x1] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x128x1x1] %onnx::Conv_1058[FLOAT, 128x128x3x3] %onnx::Conv_1061[FLOAT, 128x128x3x3] %onnx::Conv_1064[FLOAT, 128x256x1x1] %onnx::Conv_1067[FLOAT, 128x128x3x3] %onnx::Conv_1070[FLOAT, 128x128x1x1] %onnx::Conv_1073[FLOAT, 128x128x1x1] %onnx::Conv_1076[FLOAT, 128x256x1x1] %onnx::Conv_1079[FLOAT, 128x128x3x3] %onnx::Conv_1082[FLOAT, 128x128x3x3] %onnx::Conv_1085[FLOAT, 128x256x1x1] %onnx::Conv_1088[FLOAT, 128x128x3x3] %onnx::Conv_1091[FLOAT, 128x128x1x1] %onnx::Conv_1094[FLOAT, 128x128x1x1] %onnx::Conv_1097[FLOAT, 128x256x1x1] %onnx::Conv_1100[FLOAT, 128x128x3x3] %onnx::Conv_1103[FLOAT, 128x128x3x3] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1107[FLOAT, 256] %onnx::Conv_1109[FLOAT, 256x256x3x3] %onnx::Conv_1112[FLOAT, 256x256x1x1] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1118[FLOAT, 256x256x1x1] %onnx::Conv_1121[FLOAT, 256x256x3x3] %onnx::Conv_1124[FLOAT, 256x256x3x3] %onnx::Conv_1127[FLOAT, 256x512x1x1] %onnx::Conv_1130[FLOAT, 256x256x3x3] %onnx::Conv_1133[FLOAT, 256x256x1x1] %onnx::Conv_1136[FLOAT, 256x256x1x1] %onnx::Conv_1139[FLOAT, 256x512x1x1] %onnx::Conv_1142[FLOAT, 256x256x3x3] %onnx::Conv_1145[FLOAT, 256x256x3x3] %onnx::Conv_1148[FLOAT, 256x512x1x1] %onnx::Conv_1151[FLOAT, 256x256x3x3] %onnx::Conv_1154[FLOAT, 256x256x1x1] %onnx::Conv_1157[FLOAT, 256x256x1x1] %onnx::Conv_1160[FLOAT, 256x512x1x1] %onnx::Conv_1163[FLOAT, 256x256x3x3] %onnx::Conv_1166[FLOAT, 256x256x3x3] ) { %onnx::Conv_1167 = Identity(%onnx::Conv_1107) %onnx::Conv_1164 = Identity(%onnx::Conv_1107) %onnx::Conv_1161 = Identity(%onnx::Conv_1107) %onnx::Conv_1158 = Identity(%onnx::Conv_1107) %onnx::Conv_1155 = Identity(%onnx::Conv_1107) %onnx::Conv_1152 = Identity(%onnx::Conv_1107) %onnx::Conv_1149 = Identity(%onnx::Conv_1107) %onnx::Conv_1146 = Identity(%onnx::Conv_1107) %onnx::Conv_1143 = Identity(%onnx::Conv_1107) %onnx::Conv_1140 = Identity(%onnx::Conv_1107) %onnx::Conv_1137 = Identity(%onnx::Conv_1107) %onnx::Conv_1134 = Identity(%onnx::Conv_1107) %onnx::Conv_1131 = Identity(%onnx::Conv_1107) %onnx::Conv_1128 = Identity(%onnx::Conv_1107) %onnx::Conv_1125 = Identity(%onnx::Conv_1107) %onnx::Conv_1122 = Identity(%onnx::Conv_1107) %onnx::Conv_1119 = Identity(%onnx::Conv_1107) %onnx::Conv_1116 = Identity(%onnx::Conv_1107) %onnx::Conv_1113 = Identity(%onnx::Conv_1107) %onnx::Conv_1110 = Identity(%onnx::Conv_1107) %onnx::Conv_1104 = Identity(%onnx::Conv_978) %onnx::Conv_1101 = Identity(%onnx::Conv_978) %onnx::Conv_1098 = Identity(%onnx::Conv_978) %onnx::Conv_1095 = Identity(%onnx::Conv_978) %onnx::Conv_1092 = Identity(%onnx::Conv_978) %onnx::Conv_1089 = Identity(%onnx::Conv_978) %onnx::Conv_1086 = Identity(%onnx::Conv_978) %onnx::Conv_1083 = Identity(%onnx::Conv_978) %onnx::Conv_1080 = Identity(%onnx::Conv_978) %onnx::Conv_1077 = Identity(%onnx::Conv_978) %onnx::Conv_1074 = Identity(%onnx::Conv_978) %onnx::Conv_1071 = Identity(%onnx::Conv_978) %onnx::Conv_1068 = Identity(%onnx::Conv_978) %onnx::Conv_1065 = Identity(%onnx::Conv_978) %onnx::Conv_1062 = Identity(%onnx::Conv_978) %onnx::Conv_1059 = Identity(%onnx::Conv_978) %onnx::Conv_1056 = Identity(%onnx::Conv_978) %onnx::Conv_1053 = Identity(%onnx::Conv_978) %onnx::Conv_1050 = Identity(%onnx::Conv_978) %onnx::Conv_1047 = Identity(%onnx::Conv_978) %onnx::Conv_1044 = Identity(%onnx::Conv_978) %onnx::Conv_1041 = Identity(%onnx::Conv_981) %onnx::Conv_1038 = Identity(%onnx::Conv_981) %onnx::Conv_1035 = Identity(%onnx::Conv_981) %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_977, %onnx::Conv_978) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %975 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %975 }
val_accuracy
92.858571
2,485,266,432
8,379,402
{'zcp_epe_nas': 111.43078771540083, 'zcp_fisher': 326.497802734375, 'zcp_flops': 39764262912.0, 'zcp_grad_norm': 343.8336486816406, 'zcp_grasp': -812.03515625, 'zcp_jacov': -16.06433132647961, 'zcp_l2_norm': 1144.849853515625, 'zcp_nwot': 226.78033846513455, 'zcp_params': 8379402.0, 'zcp_plain': 0.011352046392858, 'zcp_snip': 1911.3057861328125, 'zcp_synflow': 172.73915384964369, 'zcp_zen': 116.371826171875, 'zcp_val_accuracy': 0.9355969429016111}
NASBench101_191255
NASBench101
191255
73ac150937367858ef79656548af1d31
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_860[FLOAT, 128x3x3x3] %onnx::Conv_861[FLOAT, 128] %onnx::Conv_863[FLOAT, 64x128x1x1] %onnx::Conv_864[FLOAT, 64] %onnx::Conv_866[FLOAT, 64x128x1x1] %onnx::Conv_869[FLOAT, 64x64x3x3] %onnx::Conv_872[FLOAT, 64x64x3x3] %onnx::Conv_875[FLOAT, 64x128x1x1] %onnx::Conv_878[FLOAT, 64x64x1x1] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_884[FLOAT, 64x128x1x1] %onnx::Conv_887[FLOAT, 64x64x3x3] %onnx::Conv_890[FLOAT, 64x64x3x3] %onnx::Conv_893[FLOAT, 64x128x1x1] %onnx::Conv_896[FLOAT, 64x64x1x1] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x128x1x1] %onnx::Conv_905[FLOAT, 64x64x3x3] %onnx::Conv_908[FLOAT, 64x64x3x3] %onnx::Conv_911[FLOAT, 64x128x1x1] %onnx::Conv_914[FLOAT, 64x64x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x3x3] %onnx::Conv_926[FLOAT, 128x128x3x3] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x256x1x1] %onnx::Conv_938[FLOAT, 128x256x1x1] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 128x128x3x3] %onnx::Conv_947[FLOAT, 128x256x1x1] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x256x1x1] %onnx::Conv_959[FLOAT, 128x128x3x3] %onnx::Conv_962[FLOAT, 128x128x3x3] %onnx::Conv_965[FLOAT, 128x256x1x1] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_972[FLOAT, 256] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x3x3] %onnx::Conv_980[FLOAT, 256x256x3x3] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x512x1x1] %onnx::Conv_992[FLOAT, 256x512x1x1] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 256x256x3x3] %onnx::Conv_1001[FLOAT, 256x512x1x1] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x512x1x1] %onnx::Conv_1013[FLOAT, 256x256x3x3] %onnx::Conv_1016[FLOAT, 256x256x3x3] %onnx::Conv_1019[FLOAT, 256x512x1x1] %onnx::Conv_1022[FLOAT, 256x256x1x1] ) { %onnx::Conv_1023 = Identity(%onnx::Conv_972) %onnx::Conv_1020 = Identity(%onnx::Conv_972) %onnx::Conv_1017 = Identity(%onnx::Conv_972) %onnx::Conv_1014 = Identity(%onnx::Conv_972) %onnx::Conv_1011 = Identity(%onnx::Conv_972) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_972) %onnx::Conv_1002 = Identity(%onnx::Conv_972) %onnx::Conv_999 = Identity(%onnx::Conv_972) %onnx::Conv_996 = Identity(%onnx::Conv_972) %onnx::Conv_993 = Identity(%onnx::Conv_972) %onnx::Conv_990 = Identity(%onnx::Conv_972) %onnx::Conv_987 = Identity(%onnx::Conv_972) %onnx::Conv_984 = Identity(%onnx::Conv_972) %onnx::Conv_981 = Identity(%onnx::Conv_972) %onnx::Conv_978 = Identity(%onnx::Conv_972) %onnx::Conv_975 = Identity(%onnx::Conv_972) %onnx::Conv_969 = Identity(%onnx::Conv_861) %onnx::Conv_966 = Identity(%onnx::Conv_861) %onnx::Conv_963 = Identity(%onnx::Conv_861) %onnx::Conv_960 = Identity(%onnx::Conv_861) %onnx::Conv_957 = Identity(%onnx::Conv_861) %onnx::Conv_954 = Identity(%onnx::Conv_861) %onnx::Conv_951 = Identity(%onnx::Conv_861) %onnx::Conv_948 = Identity(%onnx::Conv_861) %onnx::Conv_945 = Identity(%onnx::Conv_861) %onnx::Conv_942 = Identity(%onnx::Conv_861) %onnx::Conv_939 = Identity(%onnx::Conv_861) %onnx::Conv_936 = Identity(%onnx::Conv_861) %onnx::Conv_933 = Identity(%onnx::Conv_861) %onnx::Conv_930 = Identity(%onnx::Conv_861) %onnx::Conv_927 = Identity(%onnx::Conv_861) %onnx::Conv_924 = Identity(%onnx::Conv_861) %onnx::Conv_921 = Identity(%onnx::Conv_861) %onnx::Conv_918 = Identity(%onnx::Conv_861) %onnx::Conv_915 = Identity(%onnx::Conv_864) %onnx::Conv_912 = Identity(%onnx::Conv_864) %onnx::Conv_909 = Identity(%onnx::Conv_864) %onnx::Conv_906 = Identity(%onnx::Conv_864) %onnx::Conv_903 = Identity(%onnx::Conv_864) %onnx::Conv_900 = Identity(%onnx::Conv_864) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_864) %onnx::Conv_888 = Identity(%onnx::Conv_864) %onnx::Conv_885 = Identity(%onnx::Conv_864) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_864) %onnx::Conv_873 = Identity(%onnx::Conv_864) %onnx::Conv_870 = Identity(%onnx::Conv_864) %onnx::Conv_867 = Identity(%onnx::Conv_864) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_860, %onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %858 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %858 }
val_accuracy
92.367786
1,861,756,928
6,230,410
{'zcp_epe_nas': 72.96008487358797, 'zcp_fisher': 18.919721603393555, 'zcp_flops': 29788110848.0, 'zcp_grad_norm': 83.4131851196289, 'zcp_grasp': 2.27899169921875, 'zcp_jacov': -16.044058962512803, 'zcp_l2_norm': 1040.6676025390625, 'zcp_nwot': 224.25402085313291, 'zcp_params': 6230410.0, 'zcp_plain': -0.029501855373382003, 'zcp_snip': 560.4251708984375, 'zcp_synflow': 85.77549732327769, 'zcp_zen': 105.93730926513672, 'zcp_val_accuracy': 0.8839142918586731}
NASBench101_186348
NASBench101
186348
70a8a3a2596daa44c3a1becf0043a4d0
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_869[FLOAT, 128x3x3x3] %onnx::Conv_870[FLOAT, 128] %onnx::Conv_872[FLOAT, 64x128x1x1] %onnx::Conv_873[FLOAT, 64] %onnx::Conv_875[FLOAT, 64x64x1x1] %onnx::Conv_878[FLOAT, 64x64x1x1] %onnx::Conv_881[FLOAT, 64x64x3x3] %onnx::Conv_884[FLOAT, 64x64x1x1] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x64x1x1] %onnx::Conv_899[FLOAT, 64x64x3x3] %onnx::Conv_902[FLOAT, 64x64x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x1x1] %onnx::Conv_914[FLOAT, 64x64x1x1] %onnx::Conv_917[FLOAT, 64x64x3x3] %onnx::Conv_920[FLOAT, 64x64x1x1] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x3x3] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 256x128x1x1] %onnx::Conv_942[FLOAT, 256] %onnx::Conv_944[FLOAT, 128x256x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x128x3x3] %onnx::Conv_956[FLOAT, 128x128x1x1] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 128x128x3x3] %onnx::Conv_974[FLOAT, 128x128x1x1] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x3x3] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 512x256x1x1] %onnx::Conv_996[FLOAT, 512] %onnx::Conv_998[FLOAT, 256x512x1x1] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x256x3x3] %onnx::Conv_1010[FLOAT, 256x256x1x1] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x256x1x1] %onnx::Conv_1025[FLOAT, 256x256x3x3] %onnx::Conv_1028[FLOAT, 256x256x1x1] %onnx::Conv_1031[FLOAT, 512x512x1x1] ) { %onnx::Conv_1032 = Identity(%onnx::Conv_996) %onnx::Conv_1029 = Identity(%onnx::Conv_942) %onnx::Conv_1026 = Identity(%onnx::Conv_942) %onnx::Conv_1023 = Identity(%onnx::Conv_942) %onnx::Conv_1020 = Identity(%onnx::Conv_942) %onnx::Conv_1017 = Identity(%onnx::Conv_942) %onnx::Conv_1014 = Identity(%onnx::Conv_996) %onnx::Conv_1011 = Identity(%onnx::Conv_942) %onnx::Conv_1008 = Identity(%onnx::Conv_942) %onnx::Conv_1005 = Identity(%onnx::Conv_942) %onnx::Conv_1002 = Identity(%onnx::Conv_942) %onnx::Conv_999 = Identity(%onnx::Conv_942) %onnx::Conv_993 = Identity(%onnx::Conv_942) %onnx::Conv_990 = Identity(%onnx::Conv_942) %onnx::Conv_987 = Identity(%onnx::Conv_942) %onnx::Conv_984 = Identity(%onnx::Conv_942) %onnx::Conv_981 = Identity(%onnx::Conv_942) %onnx::Conv_978 = Identity(%onnx::Conv_942) %onnx::Conv_975 = Identity(%onnx::Conv_870) %onnx::Conv_972 = Identity(%onnx::Conv_870) %onnx::Conv_969 = Identity(%onnx::Conv_870) %onnx::Conv_966 = Identity(%onnx::Conv_870) %onnx::Conv_963 = Identity(%onnx::Conv_870) %onnx::Conv_960 = Identity(%onnx::Conv_942) %onnx::Conv_957 = Identity(%onnx::Conv_870) %onnx::Conv_954 = Identity(%onnx::Conv_870) %onnx::Conv_951 = Identity(%onnx::Conv_870) %onnx::Conv_948 = Identity(%onnx::Conv_870) %onnx::Conv_945 = Identity(%onnx::Conv_870) %onnx::Conv_939 = Identity(%onnx::Conv_870) %onnx::Conv_936 = Identity(%onnx::Conv_870) %onnx::Conv_933 = Identity(%onnx::Conv_870) %onnx::Conv_930 = Identity(%onnx::Conv_870) %onnx::Conv_927 = Identity(%onnx::Conv_870) %onnx::Conv_924 = Identity(%onnx::Conv_870) %onnx::Conv_921 = Identity(%onnx::Conv_873) %onnx::Conv_918 = Identity(%onnx::Conv_873) %onnx::Conv_915 = Identity(%onnx::Conv_873) %onnx::Conv_912 = Identity(%onnx::Conv_873) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_870) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_873) %onnx::Conv_897 = Identity(%onnx::Conv_873) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_873) %onnx::Conv_882 = Identity(%onnx::Conv_873) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_869, %onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %867 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %867 }
val_accuracy
92.608172
1,336,027,136
4,426,762
{'zcp_epe_nas': 94.72436368014203, 'zcp_fisher': 21.098371505737305, 'zcp_flops': 21376434176.0, 'zcp_grad_norm': 110.23509979248047, 'zcp_grasp': -1.0638427734375, 'zcp_jacov': -16.056067717409938, 'zcp_l2_norm': 993.8837890625, 'zcp_nwot': 227.06410301705316, 'zcp_params': 4426762.0, 'zcp_plain': 0.024382896721363, 'zcp_snip': 637.3738403320312, 'zcp_synflow': 109.94818974970502, 'zcp_zen': 91.28511047363281, 'zcp_val_accuracy': 0.9328926205635071}
NASBench101_48987
NASBench101
48987
1dbb7fdb3def69b84f3d6edc94929738
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_842[FLOAT, 128x3x3x3] %onnx::Conv_843[FLOAT, 128] %onnx::Conv_845[FLOAT, 64x128x1x1] %onnx::Conv_846[FLOAT, 64] %onnx::Conv_848[FLOAT, 64x64x1x1] %onnx::Conv_851[FLOAT, 64x128x1x1] %onnx::Conv_854[FLOAT, 64x64x3x3] %onnx::Conv_857[FLOAT, 64x128x1x1] %onnx::Conv_860[FLOAT, 64x64x3x3] %onnx::Conv_863[FLOAT, 64x128x1x1] %onnx::Conv_866[FLOAT, 64x64x1x1] %onnx::Conv_869[FLOAT, 64x128x1x1] %onnx::Conv_872[FLOAT, 64x64x3x3] %onnx::Conv_875[FLOAT, 64x128x1x1] %onnx::Conv_878[FLOAT, 64x64x3x3] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_884[FLOAT, 64x64x1x1] %onnx::Conv_887[FLOAT, 64x128x1x1] %onnx::Conv_890[FLOAT, 64x64x3x3] %onnx::Conv_893[FLOAT, 64x128x1x1] %onnx::Conv_896[FLOAT, 64x64x3x3] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x3x3] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x3x3] %onnx::Conv_917[FLOAT, 128x256x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x256x1x1] %onnx::Conv_926[FLOAT, 128x128x3x3] %onnx::Conv_929[FLOAT, 128x256x1x1] %onnx::Conv_932[FLOAT, 128x128x3x3] %onnx::Conv_935[FLOAT, 128x256x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x256x1x1] %onnx::Conv_944[FLOAT, 128x128x3x3] %onnx::Conv_947[FLOAT, 128x256x1x1] %onnx::Conv_950[FLOAT, 128x128x3x3] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_954[FLOAT, 256] %onnx::Conv_956[FLOAT, 256x256x1x1] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x3x3] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x3x3] %onnx::Conv_971[FLOAT, 256x512x1x1] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x512x1x1] %onnx::Conv_980[FLOAT, 256x256x3x3] %onnx::Conv_983[FLOAT, 256x512x1x1] %onnx::Conv_986[FLOAT, 256x256x3x3] %onnx::Conv_989[FLOAT, 256x512x1x1] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x512x1x1] %onnx::Conv_998[FLOAT, 256x256x3x3] %onnx::Conv_1001[FLOAT, 256x512x1x1] %onnx::Conv_1004[FLOAT, 256x256x3x3] ) { %onnx::Conv_1005 = Identity(%onnx::Conv_954) %onnx::Conv_1002 = Identity(%onnx::Conv_954) %onnx::Conv_999 = Identity(%onnx::Conv_954) %onnx::Conv_996 = Identity(%onnx::Conv_954) %onnx::Conv_993 = Identity(%onnx::Conv_954) %onnx::Conv_990 = Identity(%onnx::Conv_954) %onnx::Conv_987 = Identity(%onnx::Conv_954) %onnx::Conv_984 = Identity(%onnx::Conv_954) %onnx::Conv_981 = Identity(%onnx::Conv_954) %onnx::Conv_978 = Identity(%onnx::Conv_954) %onnx::Conv_975 = Identity(%onnx::Conv_954) %onnx::Conv_972 = Identity(%onnx::Conv_954) %onnx::Conv_969 = Identity(%onnx::Conv_954) %onnx::Conv_966 = Identity(%onnx::Conv_954) %onnx::Conv_963 = Identity(%onnx::Conv_954) %onnx::Conv_960 = Identity(%onnx::Conv_954) %onnx::Conv_957 = Identity(%onnx::Conv_954) %onnx::Conv_951 = Identity(%onnx::Conv_843) %onnx::Conv_948 = Identity(%onnx::Conv_843) %onnx::Conv_945 = Identity(%onnx::Conv_843) %onnx::Conv_942 = Identity(%onnx::Conv_843) %onnx::Conv_939 = Identity(%onnx::Conv_843) %onnx::Conv_936 = Identity(%onnx::Conv_843) %onnx::Conv_933 = Identity(%onnx::Conv_843) %onnx::Conv_930 = Identity(%onnx::Conv_843) %onnx::Conv_927 = Identity(%onnx::Conv_843) %onnx::Conv_924 = Identity(%onnx::Conv_843) %onnx::Conv_921 = Identity(%onnx::Conv_843) %onnx::Conv_918 = Identity(%onnx::Conv_843) %onnx::Conv_915 = Identity(%onnx::Conv_843) %onnx::Conv_912 = Identity(%onnx::Conv_843) %onnx::Conv_909 = Identity(%onnx::Conv_843) %onnx::Conv_906 = Identity(%onnx::Conv_843) %onnx::Conv_903 = Identity(%onnx::Conv_843) %onnx::Conv_900 = Identity(%onnx::Conv_843) %onnx::Conv_897 = Identity(%onnx::Conv_846) %onnx::Conv_894 = Identity(%onnx::Conv_846) %onnx::Conv_891 = Identity(%onnx::Conv_846) %onnx::Conv_888 = Identity(%onnx::Conv_846) %onnx::Conv_885 = Identity(%onnx::Conv_846) %onnx::Conv_882 = Identity(%onnx::Conv_846) %onnx::Conv_879 = Identity(%onnx::Conv_846) %onnx::Conv_876 = Identity(%onnx::Conv_846) %onnx::Conv_873 = Identity(%onnx::Conv_846) %onnx::Conv_870 = Identity(%onnx::Conv_846) %onnx::Conv_867 = Identity(%onnx::Conv_846) %onnx::Conv_864 = Identity(%onnx::Conv_846) %onnx::Conv_861 = Identity(%onnx::Conv_846) %onnx::Conv_858 = Identity(%onnx::Conv_846) %onnx::Conv_855 = Identity(%onnx::Conv_846) %onnx::Conv_852 = Identity(%onnx::Conv_846) %onnx::Conv_849 = Identity(%onnx::Conv_846) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_842, %onnx::Conv_843) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %840 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %840 }
val_accuracy
93.279248
1,861,756,928
6,230,410
{'zcp_epe_nas': 75.06481490730012, 'zcp_fisher': 5.475151538848877, 'zcp_flops': 29788110848.0, 'zcp_grad_norm': 41.815067291259766, 'zcp_grasp': -0.17828369140625, 'zcp_jacov': -16.057046924189066, 'zcp_l2_norm': 1040.9915771484375, 'zcp_nwot': 224.25613079798924, 'zcp_params': 6230410.0, 'zcp_plain': -0.027744634076952, 'zcp_snip': 288.31207275390625, 'zcp_synflow': 94.31873106645203, 'zcp_zen': 103.48287200927734, 'zcp_val_accuracy': 0.917568087577819}
NASBench101_176934
NASBench101
176934
6b2075ec446416ba9c16d72adc05493e
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_617[FLOAT, 128x3x3x3] %onnx::Conv_618[FLOAT, 128] %onnx::Conv_620[FLOAT, 43x128x1x1] %onnx::Conv_621[FLOAT, 43] %onnx::Conv_623[FLOAT, 43x43x3x3] %onnx::Conv_626[FLOAT, 43x43x3x3] %onnx::Conv_629[FLOAT, 43x128x1x1] %onnx::Conv_632[FLOAT, 43x43x3x3] %onnx::Conv_635[FLOAT, 43x43x3x3] %onnx::Conv_638[FLOAT, 43x128x1x1] %onnx::Conv_641[FLOAT, 43x43x3x3] %onnx::Conv_644[FLOAT, 43x43x3x3] %onnx::Conv_647[FLOAT, 86x128x1x1] %onnx::Conv_648[FLOAT, 86] %onnx::Conv_650[FLOAT, 86x86x3x3] %onnx::Conv_653[FLOAT, 85x85x3x3] %onnx::Conv_654[FLOAT, 85] %onnx::Conv_656[FLOAT, 86x256x1x1] %onnx::Conv_659[FLOAT, 86x86x3x3] %onnx::Conv_662[FLOAT, 85x85x3x3] %onnx::Conv_665[FLOAT, 86x256x1x1] %onnx::Conv_668[FLOAT, 86x86x3x3] %onnx::Conv_671[FLOAT, 85x85x3x3] %onnx::Conv_674[FLOAT, 171x256x1x1] %onnx::Conv_675[FLOAT, 171] %onnx::Conv_677[FLOAT, 171x171x3x3] %onnx::Conv_680[FLOAT, 171x171x3x3] %onnx::Conv_683[FLOAT, 171x512x1x1] %onnx::Conv_686[FLOAT, 171x171x3x3] %onnx::Conv_689[FLOAT, 171x171x3x3] %onnx::Conv_692[FLOAT, 171x512x1x1] %onnx::Conv_695[FLOAT, 171x171x3x3] %onnx::Conv_698[FLOAT, 171x171x3x3] ) { %onnx::Conv_699 = Identity(%onnx::Conv_675) %onnx::Conv_696 = Identity(%onnx::Conv_675) %onnx::Conv_693 = Identity(%onnx::Conv_675) %onnx::Conv_690 = Identity(%onnx::Conv_675) %onnx::Conv_687 = Identity(%onnx::Conv_675) %onnx::Conv_684 = Identity(%onnx::Conv_675) %onnx::Conv_681 = Identity(%onnx::Conv_675) %onnx::Conv_678 = Identity(%onnx::Conv_675) %onnx::Conv_672 = Identity(%onnx::Conv_654) %onnx::Conv_669 = Identity(%onnx::Conv_648) %onnx::Conv_666 = Identity(%onnx::Conv_648) %onnx::Conv_663 = Identity(%onnx::Conv_654) %onnx::Conv_660 = Identity(%onnx::Conv_648) %onnx::Conv_657 = Identity(%onnx::Conv_648) %onnx::Conv_651 = Identity(%onnx::Conv_648) %onnx::Conv_645 = Identity(%onnx::Conv_621) %onnx::Conv_642 = Identity(%onnx::Conv_621) %onnx::Conv_639 = Identity(%onnx::Conv_621) %onnx::Conv_636 = Identity(%onnx::Conv_621) %onnx::Conv_633 = Identity(%onnx::Conv_621) %onnx::Conv_630 = Identity(%onnx::Conv_621) %onnx::Conv_627 = Identity(%onnx::Conv_621) %onnx::Conv_624 = Identity(%onnx::Conv_621) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_617, %onnx::Conv_618) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_620, %onnx::Conv_621) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_623, %onnx::Conv_624) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_626, %onnx::Conv_627) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_629, %onnx::Conv_630) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_632, %onnx::Conv_633) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_635, %onnx::Conv_636) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %615 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %615 }
val_accuracy
91.025639
712,406,784
2,378,295
{'zcp_epe_nas': 137.0992794554665, 'zcp_fisher': 149.3625946044922, 'zcp_flops': 11398508544.0, 'zcp_grad_norm': 207.2805633544922, 'zcp_grasp': 55.8837890625, 'zcp_jacov': -16.059232543808236, 'zcp_l2_norm': 444.4432678222656, 'zcp_nwot': 208.35732445953965, 'zcp_params': 2378295.0, 'zcp_plain': 0.068781748414039, 'zcp_snip': 939.5100708007812, 'zcp_synflow': 95.00234001527016, 'zcp_zen': 59.038978576660156, 'zcp_val_accuracy': 0.875500798225402}
NASBench101_200684
NASBench101
200684
7981ce2562c2eb670ef19effd0dd358a
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_725[FLOAT, 128x3x3x3] %onnx::Conv_726[FLOAT, 128] %onnx::Conv_728[FLOAT, 64x128x1x1] %onnx::Conv_729[FLOAT, 64] %onnx::Conv_731[FLOAT, 64x64x3x3] %onnx::Conv_734[FLOAT, 64x128x1x1] %onnx::Conv_737[FLOAT, 64x128x1x1] %onnx::Conv_740[FLOAT, 64x64x1x1] %onnx::Conv_743[FLOAT, 64x128x1x1] %onnx::Conv_746[FLOAT, 64x64x3x3] %onnx::Conv_749[FLOAT, 64x128x1x1] %onnx::Conv_752[FLOAT, 64x128x1x1] %onnx::Conv_755[FLOAT, 64x64x1x1] %onnx::Conv_758[FLOAT, 64x128x1x1] %onnx::Conv_761[FLOAT, 64x64x3x3] %onnx::Conv_764[FLOAT, 64x128x1x1] %onnx::Conv_767[FLOAT, 64x128x1x1] %onnx::Conv_770[FLOAT, 64x64x1x1] %onnx::Conv_773[FLOAT, 128x128x1x1] %onnx::Conv_776[FLOAT, 128x128x3x3] %onnx::Conv_779[FLOAT, 128x128x1x1] %onnx::Conv_782[FLOAT, 128x128x1x1] %onnx::Conv_785[FLOAT, 128x128x1x1] %onnx::Conv_788[FLOAT, 128x256x1x1] %onnx::Conv_791[FLOAT, 128x128x3x3] %onnx::Conv_794[FLOAT, 128x256x1x1] %onnx::Conv_797[FLOAT, 128x256x1x1] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 128x256x1x1] %onnx::Conv_806[FLOAT, 128x128x3x3] %onnx::Conv_809[FLOAT, 128x256x1x1] %onnx::Conv_812[FLOAT, 128x256x1x1] %onnx::Conv_815[FLOAT, 128x128x1x1] %onnx::Conv_818[FLOAT, 256x256x1x1] %onnx::Conv_819[FLOAT, 256] %onnx::Conv_821[FLOAT, 256x256x3x3] %onnx::Conv_824[FLOAT, 256x256x1x1] %onnx::Conv_827[FLOAT, 256x256x1x1] %onnx::Conv_830[FLOAT, 256x256x1x1] %onnx::Conv_833[FLOAT, 256x512x1x1] %onnx::Conv_836[FLOAT, 256x256x3x3] %onnx::Conv_839[FLOAT, 256x512x1x1] %onnx::Conv_842[FLOAT, 256x512x1x1] %onnx::Conv_845[FLOAT, 256x256x1x1] %onnx::Conv_848[FLOAT, 256x512x1x1] %onnx::Conv_851[FLOAT, 256x256x3x3] %onnx::Conv_854[FLOAT, 256x512x1x1] %onnx::Conv_857[FLOAT, 256x512x1x1] %onnx::Conv_860[FLOAT, 256x256x1x1] ) { %onnx::Conv_861 = Identity(%onnx::Conv_819) %onnx::Conv_858 = Identity(%onnx::Conv_819) %onnx::Conv_855 = Identity(%onnx::Conv_819) %onnx::Conv_852 = Identity(%onnx::Conv_819) %onnx::Conv_849 = Identity(%onnx::Conv_819) %onnx::Conv_846 = Identity(%onnx::Conv_819) %onnx::Conv_843 = Identity(%onnx::Conv_819) %onnx::Conv_840 = Identity(%onnx::Conv_819) %onnx::Conv_837 = Identity(%onnx::Conv_819) %onnx::Conv_834 = Identity(%onnx::Conv_819) %onnx::Conv_831 = Identity(%onnx::Conv_819) %onnx::Conv_828 = Identity(%onnx::Conv_819) %onnx::Conv_825 = Identity(%onnx::Conv_819) %onnx::Conv_822 = Identity(%onnx::Conv_819) %onnx::Conv_816 = Identity(%onnx::Conv_726) %onnx::Conv_813 = Identity(%onnx::Conv_726) %onnx::Conv_810 = Identity(%onnx::Conv_726) %onnx::Conv_807 = Identity(%onnx::Conv_726) %onnx::Conv_804 = Identity(%onnx::Conv_726) %onnx::Conv_801 = Identity(%onnx::Conv_726) %onnx::Conv_798 = Identity(%onnx::Conv_726) %onnx::Conv_795 = Identity(%onnx::Conv_726) %onnx::Conv_792 = Identity(%onnx::Conv_726) %onnx::Conv_789 = Identity(%onnx::Conv_726) %onnx::Conv_786 = Identity(%onnx::Conv_726) %onnx::Conv_783 = Identity(%onnx::Conv_726) %onnx::Conv_780 = Identity(%onnx::Conv_726) %onnx::Conv_777 = Identity(%onnx::Conv_726) %onnx::Conv_774 = Identity(%onnx::Conv_726) %onnx::Conv_771 = Identity(%onnx::Conv_729) %onnx::Conv_768 = Identity(%onnx::Conv_729) %onnx::Conv_765 = Identity(%onnx::Conv_729) %onnx::Conv_762 = Identity(%onnx::Conv_729) %onnx::Conv_759 = Identity(%onnx::Conv_729) %onnx::Conv_756 = Identity(%onnx::Conv_729) %onnx::Conv_753 = Identity(%onnx::Conv_729) %onnx::Conv_750 = Identity(%onnx::Conv_729) %onnx::Conv_747 = Identity(%onnx::Conv_729) %onnx::Conv_744 = Identity(%onnx::Conv_729) %onnx::Conv_741 = Identity(%onnx::Conv_729) %onnx::Conv_738 = Identity(%onnx::Conv_729) %onnx::Conv_735 = Identity(%onnx::Conv_729) %onnx::Conv_732 = Identity(%onnx::Conv_729) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_725, %onnx::Conv_726) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %723 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %723 }
val_accuracy
93.379408
1,179,527,168
3,905,290
{'zcp_epe_nas': 105.65570206652266, 'zcp_fisher': 2.967270851135254, 'zcp_flops': 18872434688.0, 'zcp_grad_norm': 35.5915641784668, 'zcp_grasp': -0.12440490722656201, 'zcp_jacov': -16.044193310421576, 'zcp_l2_norm': 890.543701171875, 'zcp_nwot': 222.17651319643545, 'zcp_params': 3905290.0, 'zcp_plain': -0.0038204686716190005, 'zcp_snip': 233.6387176513672, 'zcp_synflow': 67.0276885069116, 'zcp_zen': 81.08765411376953, 'zcp_val_accuracy': 0.9230769276618951}
NASBench101_135926
NASBench101
135926
5231f7c0cec41d65babc8a1bcc49d132
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_869[FLOAT, 128x3x3x3] %onnx::Conv_870[FLOAT, 128] %onnx::Conv_872[FLOAT, 64x128x1x1] %onnx::Conv_873[FLOAT, 64] %onnx::Conv_875[FLOAT, 64x64x1x1] %onnx::Conv_878[FLOAT, 64x64x1x1] %onnx::Conv_881[FLOAT, 64x64x1x1] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x64x1x1] %onnx::Conv_899[FLOAT, 64x64x1x1] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x1x1] %onnx::Conv_914[FLOAT, 64x64x1x1] %onnx::Conv_917[FLOAT, 64x64x1x1] %onnx::Conv_920[FLOAT, 64x64x3x3] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 256x128x1x1] %onnx::Conv_942[FLOAT, 256] %onnx::Conv_944[FLOAT, 128x256x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x128x3x3] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 512x256x1x1] %onnx::Conv_996[FLOAT, 512] %onnx::Conv_998[FLOAT, 256x512x1x1] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x256x1x1] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x256x1x1] %onnx::Conv_1025[FLOAT, 256x256x1x1] %onnx::Conv_1028[FLOAT, 256x256x3x3] %onnx::Conv_1031[FLOAT, 512x512x1x1] ) { %onnx::Conv_1032 = Identity(%onnx::Conv_996) %onnx::Conv_1029 = Identity(%onnx::Conv_942) %onnx::Conv_1026 = Identity(%onnx::Conv_942) %onnx::Conv_1023 = Identity(%onnx::Conv_942) %onnx::Conv_1020 = Identity(%onnx::Conv_942) %onnx::Conv_1017 = Identity(%onnx::Conv_942) %onnx::Conv_1014 = Identity(%onnx::Conv_996) %onnx::Conv_1011 = Identity(%onnx::Conv_942) %onnx::Conv_1008 = Identity(%onnx::Conv_942) %onnx::Conv_1005 = Identity(%onnx::Conv_942) %onnx::Conv_1002 = Identity(%onnx::Conv_942) %onnx::Conv_999 = Identity(%onnx::Conv_942) %onnx::Conv_993 = Identity(%onnx::Conv_942) %onnx::Conv_990 = Identity(%onnx::Conv_942) %onnx::Conv_987 = Identity(%onnx::Conv_942) %onnx::Conv_984 = Identity(%onnx::Conv_942) %onnx::Conv_981 = Identity(%onnx::Conv_942) %onnx::Conv_978 = Identity(%onnx::Conv_942) %onnx::Conv_975 = Identity(%onnx::Conv_870) %onnx::Conv_972 = Identity(%onnx::Conv_870) %onnx::Conv_969 = Identity(%onnx::Conv_870) %onnx::Conv_966 = Identity(%onnx::Conv_870) %onnx::Conv_963 = Identity(%onnx::Conv_870) %onnx::Conv_960 = Identity(%onnx::Conv_942) %onnx::Conv_957 = Identity(%onnx::Conv_870) %onnx::Conv_954 = Identity(%onnx::Conv_870) %onnx::Conv_951 = Identity(%onnx::Conv_870) %onnx::Conv_948 = Identity(%onnx::Conv_870) %onnx::Conv_945 = Identity(%onnx::Conv_870) %onnx::Conv_939 = Identity(%onnx::Conv_870) %onnx::Conv_936 = Identity(%onnx::Conv_870) %onnx::Conv_933 = Identity(%onnx::Conv_870) %onnx::Conv_930 = Identity(%onnx::Conv_870) %onnx::Conv_927 = Identity(%onnx::Conv_870) %onnx::Conv_924 = Identity(%onnx::Conv_870) %onnx::Conv_921 = Identity(%onnx::Conv_873) %onnx::Conv_918 = Identity(%onnx::Conv_873) %onnx::Conv_915 = Identity(%onnx::Conv_873) %onnx::Conv_912 = Identity(%onnx::Conv_873) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_870) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_873) %onnx::Conv_897 = Identity(%onnx::Conv_873) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_873) %onnx::Conv_882 = Identity(%onnx::Conv_873) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_869, %onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %867 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %867 }
val_accuracy
90.835339
1,336,027,136
4,426,762
{'zcp_epe_nas': 135.93528408497946, 'zcp_fisher': 61.6866340637207, 'zcp_flops': 21376434176.0, 'zcp_grad_norm': 178.0252227783203, 'zcp_grasp': -50.291259765625, 'zcp_jacov': -16.050702069539618, 'zcp_l2_norm': 993.726806640625, 'zcp_nwot': 226.8748458575633, 'zcp_params': 4426762.0, 'zcp_plain': 0.039202298969030006, 'zcp_snip': 1019.2474365234375, 'zcp_synflow': 131.05488134813368, 'zcp_zen': 96.13536071777344, 'zcp_val_accuracy': 0.9318910241127011}
NASBench101_317563
NASBench101
317563
c025196b2b2e8759a005b75cbc3cf03d
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_704[FLOAT, 128x3x3x3] %onnx::Conv_705[FLOAT, 128] %onnx::Conv_707[FLOAT, 43x128x1x1] %onnx::Conv_708[FLOAT, 43] %onnx::Conv_710[FLOAT, 43x43x1x1] %onnx::Conv_713[FLOAT, 42x128x1x1] %onnx::Conv_714[FLOAT, 42] %onnx::Conv_716[FLOAT, 42x42x3x3] %onnx::Conv_719[FLOAT, 43x128x1x1] %onnx::Conv_722[FLOAT, 43x43x1x1] %onnx::Conv_725[FLOAT, 42x128x1x1] %onnx::Conv_728[FLOAT, 42x42x3x3] %onnx::Conv_731[FLOAT, 43x128x1x1] %onnx::Conv_734[FLOAT, 43x43x1x1] %onnx::Conv_737[FLOAT, 42x128x1x1] %onnx::Conv_740[FLOAT, 42x42x3x3] %onnx::Conv_743[FLOAT, 86x128x1x1] %onnx::Conv_744[FLOAT, 86] %onnx::Conv_746[FLOAT, 86x86x1x1] %onnx::Conv_749[FLOAT, 85x128x1x1] %onnx::Conv_750[FLOAT, 85] %onnx::Conv_752[FLOAT, 85x85x3x3] %onnx::Conv_755[FLOAT, 86x256x1x1] %onnx::Conv_758[FLOAT, 86x86x1x1] %onnx::Conv_761[FLOAT, 85x256x1x1] %onnx::Conv_764[FLOAT, 85x85x3x3] %onnx::Conv_767[FLOAT, 86x256x1x1] %onnx::Conv_770[FLOAT, 86x86x1x1] %onnx::Conv_773[FLOAT, 85x256x1x1] %onnx::Conv_776[FLOAT, 85x85x3x3] %onnx::Conv_779[FLOAT, 171x256x1x1] %onnx::Conv_780[FLOAT, 171] %onnx::Conv_782[FLOAT, 171x171x1x1] %onnx::Conv_785[FLOAT, 170x256x1x1] %onnx::Conv_786[FLOAT, 170] %onnx::Conv_788[FLOAT, 170x170x3x3] %onnx::Conv_791[FLOAT, 171x512x1x1] %onnx::Conv_794[FLOAT, 171x171x1x1] %onnx::Conv_797[FLOAT, 170x512x1x1] %onnx::Conv_800[FLOAT, 170x170x3x3] %onnx::Conv_803[FLOAT, 171x512x1x1] %onnx::Conv_806[FLOAT, 171x171x1x1] %onnx::Conv_809[FLOAT, 170x512x1x1] %onnx::Conv_812[FLOAT, 170x170x3x3] ) { %onnx::Conv_813 = Identity(%onnx::Conv_786) %onnx::Conv_810 = Identity(%onnx::Conv_786) %onnx::Conv_807 = Identity(%onnx::Conv_780) %onnx::Conv_804 = Identity(%onnx::Conv_780) %onnx::Conv_801 = Identity(%onnx::Conv_786) %onnx::Conv_798 = Identity(%onnx::Conv_786) %onnx::Conv_795 = Identity(%onnx::Conv_780) %onnx::Conv_792 = Identity(%onnx::Conv_780) %onnx::Conv_789 = Identity(%onnx::Conv_786) %onnx::Conv_783 = Identity(%onnx::Conv_780) %onnx::Conv_777 = Identity(%onnx::Conv_750) %onnx::Conv_774 = Identity(%onnx::Conv_750) %onnx::Conv_771 = Identity(%onnx::Conv_744) %onnx::Conv_768 = Identity(%onnx::Conv_744) %onnx::Conv_765 = Identity(%onnx::Conv_750) %onnx::Conv_762 = Identity(%onnx::Conv_750) %onnx::Conv_759 = Identity(%onnx::Conv_744) %onnx::Conv_756 = Identity(%onnx::Conv_744) %onnx::Conv_753 = Identity(%onnx::Conv_750) %onnx::Conv_747 = Identity(%onnx::Conv_744) %onnx::Conv_741 = Identity(%onnx::Conv_714) %onnx::Conv_738 = Identity(%onnx::Conv_714) %onnx::Conv_735 = Identity(%onnx::Conv_708) %onnx::Conv_732 = Identity(%onnx::Conv_708) %onnx::Conv_729 = Identity(%onnx::Conv_714) %onnx::Conv_726 = Identity(%onnx::Conv_714) %onnx::Conv_723 = Identity(%onnx::Conv_708) %onnx::Conv_720 = Identity(%onnx::Conv_708) %onnx::Conv_717 = Identity(%onnx::Conv_714) %onnx::Conv_711 = Identity(%onnx::Conv_708) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_704, %onnx::Conv_705) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_1_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_5_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_1_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_5_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_1_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_5_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Slice_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0, %/layers.5/Constant_7_output_0, %/layers.5/Constant_5_output_0, %/layers.5/Constant_8_output_0) %/layers.5/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_9_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Slice_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0, %/layers.6/Constant_7_output_0, %/layers.6/Constant_5_output_0, %/layers.6/Constant_8_output_0) %/layers.6/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_9_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Slice_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0, %/layers.7/Constant_7_output_0, %/layers.7/Constant_5_output_0, %/layers.7/Constant_8_output_0) %/layers.7/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_9_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_1_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_5_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_1_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_5_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_1_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_5_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %702 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %702 }
val_accuracy
91.215944
525,460,864
1,733,027
{'zcp_epe_nas': 57.6950668263747, 'zcp_fisher': 5.554206848144531, 'zcp_flops': 8407373824.0, 'zcp_grad_norm': 46.1482048034668, 'zcp_grasp': -1.377532958984375, 'zcp_jacov': -16.062902792648064, 'zcp_l2_norm': 639.641845703125, 'zcp_nwot': 212.11506058283072, 'zcp_params': 1733027.0, 'zcp_plain': 0.048123363405466, 'zcp_snip': 223.43336486816406, 'zcp_synflow': 79.6102844333182, 'zcp_zen': 65.29940032958984, 'zcp_val_accuracy': 0.93359375}
NASBench101_336050
NASBench101
336050
cb364099f53a67fe31f767ce6ad07adb
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_671[FLOAT, 128x3x3x3] %onnx::Conv_672[FLOAT, 128] %onnx::Conv_674[FLOAT, 64x128x1x1] %onnx::Conv_675[FLOAT, 64] %onnx::Conv_677[FLOAT, 64x64x1x1] %onnx::Conv_680[FLOAT, 64x64x1x1] %onnx::Conv_683[FLOAT, 128x128x1x1] %onnx::Conv_686[FLOAT, 64x128x1x1] %onnx::Conv_689[FLOAT, 64x64x1x1] %onnx::Conv_692[FLOAT, 64x64x1x1] %onnx::Conv_695[FLOAT, 128x128x1x1] %onnx::Conv_698[FLOAT, 64x128x1x1] %onnx::Conv_701[FLOAT, 64x64x1x1] %onnx::Conv_704[FLOAT, 64x64x1x1] %onnx::Conv_707[FLOAT, 128x128x1x1] %onnx::Conv_710[FLOAT, 128x128x1x1] %onnx::Conv_713[FLOAT, 128x128x1x1] %onnx::Conv_716[FLOAT, 128x128x1x1] %onnx::Conv_719[FLOAT, 256x128x1x1] %onnx::Conv_720[FLOAT, 256] %onnx::Conv_722[FLOAT, 128x256x1x1] %onnx::Conv_725[FLOAT, 128x128x1x1] %onnx::Conv_728[FLOAT, 128x128x1x1] %onnx::Conv_731[FLOAT, 256x256x1x1] %onnx::Conv_734[FLOAT, 128x256x1x1] %onnx::Conv_737[FLOAT, 128x128x1x1] %onnx::Conv_740[FLOAT, 128x128x1x1] %onnx::Conv_743[FLOAT, 256x256x1x1] %onnx::Conv_746[FLOAT, 256x256x1x1] %onnx::Conv_749[FLOAT, 256x256x1x1] %onnx::Conv_752[FLOAT, 256x256x1x1] %onnx::Conv_755[FLOAT, 512x256x1x1] %onnx::Conv_756[FLOAT, 512] %onnx::Conv_758[FLOAT, 256x512x1x1] %onnx::Conv_761[FLOAT, 256x256x1x1] %onnx::Conv_764[FLOAT, 256x256x1x1] %onnx::Conv_767[FLOAT, 512x512x1x1] %onnx::Conv_770[FLOAT, 256x512x1x1] %onnx::Conv_773[FLOAT, 256x256x1x1] %onnx::Conv_776[FLOAT, 256x256x1x1] %onnx::Conv_779[FLOAT, 512x512x1x1] ) { %onnx::Conv_780 = Identity(%onnx::Conv_756) %onnx::Conv_777 = Identity(%onnx::Conv_720) %onnx::Conv_774 = Identity(%onnx::Conv_720) %onnx::Conv_771 = Identity(%onnx::Conv_720) %onnx::Conv_768 = Identity(%onnx::Conv_756) %onnx::Conv_765 = Identity(%onnx::Conv_720) %onnx::Conv_762 = Identity(%onnx::Conv_720) %onnx::Conv_759 = Identity(%onnx::Conv_720) %onnx::Conv_753 = Identity(%onnx::Conv_720) %onnx::Conv_750 = Identity(%onnx::Conv_720) %onnx::Conv_747 = Identity(%onnx::Conv_720) %onnx::Conv_744 = Identity(%onnx::Conv_720) %onnx::Conv_741 = Identity(%onnx::Conv_672) %onnx::Conv_738 = Identity(%onnx::Conv_672) %onnx::Conv_735 = Identity(%onnx::Conv_672) %onnx::Conv_732 = Identity(%onnx::Conv_720) %onnx::Conv_729 = Identity(%onnx::Conv_672) %onnx::Conv_726 = Identity(%onnx::Conv_672) %onnx::Conv_723 = Identity(%onnx::Conv_672) %onnx::Conv_717 = Identity(%onnx::Conv_672) %onnx::Conv_714 = Identity(%onnx::Conv_672) %onnx::Conv_711 = Identity(%onnx::Conv_672) %onnx::Conv_708 = Identity(%onnx::Conv_672) %onnx::Conv_705 = Identity(%onnx::Conv_675) %onnx::Conv_702 = Identity(%onnx::Conv_675) %onnx::Conv_699 = Identity(%onnx::Conv_675) %onnx::Conv_696 = Identity(%onnx::Conv_672) %onnx::Conv_693 = Identity(%onnx::Conv_675) %onnx::Conv_690 = Identity(%onnx::Conv_675) %onnx::Conv_687 = Identity(%onnx::Conv_675) %onnx::Conv_684 = Identity(%onnx::Conv_672) %onnx::Conv_681 = Identity(%onnx::Conv_675) %onnx::Conv_678 = Identity(%onnx::Conv_675) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_671, %onnx::Conv_672) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_4_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_4_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_4_output_0) %669 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %669 }
val_accuracy
88.561696
575,547,392
1,840,906
{'zcp_epe_nas': 100.96799167700851, 'zcp_fisher': 26.7130184173584, 'zcp_flops': 9208758272.0, 'zcp_grad_norm': 102.6463851928711, 'zcp_grasp': -57.67822265625, 'zcp_jacov': -16.059812640912334, 'zcp_l2_norm': 695.350830078125, 'zcp_nwot': 221.7057750425255, 'zcp_params': 1840906.0, 'zcp_plain': 0.173343151807785, 'zcp_snip': 568.6473388671875, 'zcp_synflow': 75.76008644275414, 'zcp_zen': 61.650184631347656, 'zcp_val_accuracy': 0.8812099099159241}
NASBench101_54232
NASBench101
54232
20fbb1ed7e7ea36a3c2bb81aaddc8153
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_842[FLOAT, 128x3x3x3] %onnx::Conv_843[FLOAT, 128] %onnx::Conv_845[FLOAT, 64x128x1x1] %onnx::Conv_846[FLOAT, 64] %onnx::Conv_848[FLOAT, 64x64x3x3] %onnx::Conv_851[FLOAT, 64x128x1x1] %onnx::Conv_854[FLOAT, 64x64x3x3] %onnx::Conv_857[FLOAT, 64x64x3x3] %onnx::Conv_860[FLOAT, 128x128x1x1] %onnx::Conv_863[FLOAT, 64x128x1x1] %onnx::Conv_866[FLOAT, 64x64x3x3] %onnx::Conv_869[FLOAT, 64x128x1x1] %onnx::Conv_872[FLOAT, 64x64x3x3] %onnx::Conv_875[FLOAT, 64x64x3x3] %onnx::Conv_878[FLOAT, 128x128x1x1] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 64x128x1x1] %onnx::Conv_890[FLOAT, 64x64x3x3] %onnx::Conv_893[FLOAT, 64x64x3x3] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x3x3] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x3x3] %onnx::Conv_911[FLOAT, 128x128x3x3] %onnx::Conv_914[FLOAT, 256x128x1x1] %onnx::Conv_915[FLOAT, 256] %onnx::Conv_917[FLOAT, 128x256x1x1] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 128x256x1x1] %onnx::Conv_926[FLOAT, 128x128x3x3] %onnx::Conv_929[FLOAT, 128x128x3x3] %onnx::Conv_932[FLOAT, 256x256x1x1] %onnx::Conv_935[FLOAT, 128x256x1x1] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x256x1x1] %onnx::Conv_944[FLOAT, 128x128x3x3] %onnx::Conv_947[FLOAT, 128x128x3x3] %onnx::Conv_950[FLOAT, 256x256x1x1] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x256x3x3] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x3x3] %onnx::Conv_965[FLOAT, 256x256x3x3] %onnx::Conv_968[FLOAT, 512x256x1x1] %onnx::Conv_969[FLOAT, 512] %onnx::Conv_971[FLOAT, 256x512x1x1] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 256x512x1x1] %onnx::Conv_980[FLOAT, 256x256x3x3] %onnx::Conv_983[FLOAT, 256x256x3x3] %onnx::Conv_986[FLOAT, 512x512x1x1] %onnx::Conv_989[FLOAT, 256x512x1x1] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x512x1x1] %onnx::Conv_998[FLOAT, 256x256x3x3] %onnx::Conv_1001[FLOAT, 256x256x3x3] %onnx::Conv_1004[FLOAT, 512x512x1x1] ) { %onnx::Conv_1005 = Identity(%onnx::Conv_969) %onnx::Conv_1002 = Identity(%onnx::Conv_915) %onnx::Conv_999 = Identity(%onnx::Conv_915) %onnx::Conv_996 = Identity(%onnx::Conv_915) %onnx::Conv_993 = Identity(%onnx::Conv_915) %onnx::Conv_990 = Identity(%onnx::Conv_915) %onnx::Conv_987 = Identity(%onnx::Conv_969) %onnx::Conv_984 = Identity(%onnx::Conv_915) %onnx::Conv_981 = Identity(%onnx::Conv_915) %onnx::Conv_978 = Identity(%onnx::Conv_915) %onnx::Conv_975 = Identity(%onnx::Conv_915) %onnx::Conv_972 = Identity(%onnx::Conv_915) %onnx::Conv_966 = Identity(%onnx::Conv_915) %onnx::Conv_963 = Identity(%onnx::Conv_915) %onnx::Conv_960 = Identity(%onnx::Conv_915) %onnx::Conv_957 = Identity(%onnx::Conv_915) %onnx::Conv_954 = Identity(%onnx::Conv_915) %onnx::Conv_951 = Identity(%onnx::Conv_915) %onnx::Conv_948 = Identity(%onnx::Conv_843) %onnx::Conv_945 = Identity(%onnx::Conv_843) %onnx::Conv_942 = Identity(%onnx::Conv_843) %onnx::Conv_939 = Identity(%onnx::Conv_843) %onnx::Conv_936 = Identity(%onnx::Conv_843) %onnx::Conv_933 = Identity(%onnx::Conv_915) %onnx::Conv_930 = Identity(%onnx::Conv_843) %onnx::Conv_927 = Identity(%onnx::Conv_843) %onnx::Conv_924 = Identity(%onnx::Conv_843) %onnx::Conv_921 = Identity(%onnx::Conv_843) %onnx::Conv_918 = Identity(%onnx::Conv_843) %onnx::Conv_912 = Identity(%onnx::Conv_843) %onnx::Conv_909 = Identity(%onnx::Conv_843) %onnx::Conv_906 = Identity(%onnx::Conv_843) %onnx::Conv_903 = Identity(%onnx::Conv_843) %onnx::Conv_900 = Identity(%onnx::Conv_843) %onnx::Conv_897 = Identity(%onnx::Conv_843) %onnx::Conv_894 = Identity(%onnx::Conv_846) %onnx::Conv_891 = Identity(%onnx::Conv_846) %onnx::Conv_888 = Identity(%onnx::Conv_846) %onnx::Conv_885 = Identity(%onnx::Conv_846) %onnx::Conv_882 = Identity(%onnx::Conv_846) %onnx::Conv_879 = Identity(%onnx::Conv_843) %onnx::Conv_876 = Identity(%onnx::Conv_846) %onnx::Conv_873 = Identity(%onnx::Conv_846) %onnx::Conv_870 = Identity(%onnx::Conv_846) %onnx::Conv_867 = Identity(%onnx::Conv_846) %onnx::Conv_864 = Identity(%onnx::Conv_846) %onnx::Conv_861 = Identity(%onnx::Conv_843) %onnx::Conv_858 = Identity(%onnx::Conv_846) %onnx::Conv_855 = Identity(%onnx::Conv_846) %onnx::Conv_852 = Identity(%onnx::Conv_846) %onnx::Conv_849 = Identity(%onnx::Conv_846) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_842, %onnx::Conv_843) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_3_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_3_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_3_output_0) %840 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %840 }
val_accuracy
93.299282
2,602,706,944
8,731,658
{'zcp_epe_nas': 216.11744854323126, 'zcp_fisher': 1.540509343147277, 'zcp_flops': 41643311104.0, 'zcp_grad_norm': 31.791751861572266, 'zcp_grasp': -2.428943634033203, 'zcp_jacov': -16.055561997982814, 'zcp_l2_norm': 1039.9697265625, 'zcp_nwot': 226.25230752965064, 'zcp_params': 8731658.0, 'zcp_plain': 0.072298109531402, 'zcp_snip': 208.16781616210938, 'zcp_synflow': 94.2051311414589, 'zcp_zen': 118.66810607910156, 'zcp_val_accuracy': 0.9111578464508051}
NASBench101_179215
NASBench101
179215
6c7b222dda9df1e971bba09de2646bb2
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_770[FLOAT, 128x3x3x3] %onnx::Conv_771[FLOAT, 128] %onnx::Conv_773[FLOAT, 43x128x1x1] %onnx::Conv_774[FLOAT, 43] %onnx::Conv_776[FLOAT, 43x43x1x1] %onnx::Conv_779[FLOAT, 43x43x3x3] %onnx::Conv_782[FLOAT, 42x42x3x3] %onnx::Conv_783[FLOAT, 42] %onnx::Conv_785[FLOAT, 42x42x1x1] %onnx::Conv_788[FLOAT, 43x128x1x1] %onnx::Conv_791[FLOAT, 43x43x1x1] %onnx::Conv_794[FLOAT, 43x43x3x3] %onnx::Conv_797[FLOAT, 42x42x3x3] %onnx::Conv_800[FLOAT, 42x42x1x1] %onnx::Conv_803[FLOAT, 43x128x1x1] %onnx::Conv_806[FLOAT, 43x43x1x1] %onnx::Conv_809[FLOAT, 43x43x3x3] %onnx::Conv_812[FLOAT, 42x42x3x3] %onnx::Conv_815[FLOAT, 42x42x1x1] %onnx::Conv_818[FLOAT, 86x128x1x1] %onnx::Conv_819[FLOAT, 86] %onnx::Conv_821[FLOAT, 86x86x1x1] %onnx::Conv_824[FLOAT, 85x85x3x3] %onnx::Conv_825[FLOAT, 85] %onnx::Conv_827[FLOAT, 85x85x3x3] %onnx::Conv_830[FLOAT, 85x85x1x1] %onnx::Conv_833[FLOAT, 86x256x1x1] %onnx::Conv_836[FLOAT, 86x86x1x1] %onnx::Conv_839[FLOAT, 85x85x3x3] %onnx::Conv_842[FLOAT, 85x85x3x3] %onnx::Conv_845[FLOAT, 85x85x1x1] %onnx::Conv_848[FLOAT, 86x256x1x1] %onnx::Conv_851[FLOAT, 86x86x1x1] %onnx::Conv_854[FLOAT, 85x85x3x3] %onnx::Conv_857[FLOAT, 85x85x3x3] %onnx::Conv_860[FLOAT, 85x85x1x1] %onnx::Conv_863[FLOAT, 171x256x1x1] %onnx::Conv_864[FLOAT, 171] %onnx::Conv_866[FLOAT, 171x171x1x1] %onnx::Conv_869[FLOAT, 171x171x3x3] %onnx::Conv_872[FLOAT, 170x170x3x3] %onnx::Conv_873[FLOAT, 170] %onnx::Conv_875[FLOAT, 170x170x1x1] %onnx::Conv_878[FLOAT, 171x512x1x1] %onnx::Conv_881[FLOAT, 171x171x1x1] %onnx::Conv_884[FLOAT, 171x171x3x3] %onnx::Conv_887[FLOAT, 170x170x3x3] %onnx::Conv_890[FLOAT, 170x170x1x1] %onnx::Conv_893[FLOAT, 171x512x1x1] %onnx::Conv_896[FLOAT, 171x171x1x1] %onnx::Conv_899[FLOAT, 171x171x3x3] %onnx::Conv_902[FLOAT, 170x170x3x3] %onnx::Conv_905[FLOAT, 170x170x1x1] ) { %onnx::Conv_906 = Identity(%onnx::Conv_873) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_864) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_873) %onnx::Conv_885 = Identity(%onnx::Conv_864) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_873) %onnx::Conv_870 = Identity(%onnx::Conv_864) %onnx::Conv_867 = Identity(%onnx::Conv_864) %onnx::Conv_861 = Identity(%onnx::Conv_825) %onnx::Conv_858 = Identity(%onnx::Conv_825) %onnx::Conv_855 = Identity(%onnx::Conv_825) %onnx::Conv_852 = Identity(%onnx::Conv_819) %onnx::Conv_849 = Identity(%onnx::Conv_819) %onnx::Conv_846 = Identity(%onnx::Conv_825) %onnx::Conv_843 = Identity(%onnx::Conv_825) %onnx::Conv_840 = Identity(%onnx::Conv_825) %onnx::Conv_837 = Identity(%onnx::Conv_819) %onnx::Conv_834 = Identity(%onnx::Conv_819) %onnx::Conv_831 = Identity(%onnx::Conv_825) %onnx::Conv_828 = Identity(%onnx::Conv_825) %onnx::Conv_822 = Identity(%onnx::Conv_819) %onnx::Conv_816 = Identity(%onnx::Conv_783) %onnx::Conv_813 = Identity(%onnx::Conv_783) %onnx::Conv_810 = Identity(%onnx::Conv_774) %onnx::Conv_807 = Identity(%onnx::Conv_774) %onnx::Conv_804 = Identity(%onnx::Conv_774) %onnx::Conv_801 = Identity(%onnx::Conv_783) %onnx::Conv_798 = Identity(%onnx::Conv_783) %onnx::Conv_795 = Identity(%onnx::Conv_774) %onnx::Conv_792 = Identity(%onnx::Conv_774) %onnx::Conv_789 = Identity(%onnx::Conv_774) %onnx::Conv_786 = Identity(%onnx::Conv_783) %onnx::Conv_780 = Identity(%onnx::Conv_774) %onnx::Conv_777 = Identity(%onnx::Conv_774) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_770, %onnx::Conv_771) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_5_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Slice_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_5_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Slice_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_5_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Slice_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_5_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Slice_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_5_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Slice_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_5_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Slice_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %768 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %768 }
val_accuracy
90.785259
774,777,600
2,594,865
{'zcp_epe_nas': 120.04204766889326, 'zcp_fisher': 17.691282272338867, 'zcp_flops': 12396441600.0, 'zcp_grad_norm': 82.05467224121094, 'zcp_grasp': -18.8216552734375, 'zcp_jacov': -16.066000240465918, 'zcp_l2_norm': 688.6785888671875, 'zcp_nwot': 215.4409336305342, 'zcp_params': 2594865.0, 'zcp_plain': 0.037621498107910004, 'zcp_snip': 380.182373046875, 'zcp_synflow': 101.05777122429997, 'zcp_zen': 80.59744262695312, 'zcp_val_accuracy': 0.9232772588729851}
NASBench101_405785
NASBench101
405785
f54f222476f19296c075e5887bdc97e9
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_728[FLOAT, 128x3x3x3] %onnx::Conv_729[FLOAT, 128] %onnx::Conv_731[FLOAT, 43x128x1x1] %onnx::Conv_732[FLOAT, 43] %onnx::Conv_734[FLOAT, 43x43x1x1] %onnx::Conv_737[FLOAT, 43x43x3x3] %onnx::Conv_740[FLOAT, 42x42x3x3] %onnx::Conv_741[FLOAT, 42] %onnx::Conv_743[FLOAT, 43x128x1x1] %onnx::Conv_746[FLOAT, 43x43x1x1] %onnx::Conv_749[FLOAT, 43x43x3x3] %onnx::Conv_752[FLOAT, 42x42x3x3] %onnx::Conv_755[FLOAT, 43x128x1x1] %onnx::Conv_758[FLOAT, 43x43x1x1] %onnx::Conv_761[FLOAT, 43x43x3x3] %onnx::Conv_764[FLOAT, 42x42x3x3] %onnx::Conv_767[FLOAT, 86x128x1x1] %onnx::Conv_768[FLOAT, 86] %onnx::Conv_770[FLOAT, 85x85x1x1] %onnx::Conv_771[FLOAT, 85] %onnx::Conv_773[FLOAT, 85x85x3x3] %onnx::Conv_776[FLOAT, 85x85x3x3] %onnx::Conv_779[FLOAT, 86x256x1x1] %onnx::Conv_782[FLOAT, 85x85x1x1] %onnx::Conv_785[FLOAT, 85x85x3x3] %onnx::Conv_788[FLOAT, 85x85x3x3] %onnx::Conv_791[FLOAT, 86x256x1x1] %onnx::Conv_794[FLOAT, 85x85x1x1] %onnx::Conv_797[FLOAT, 85x85x3x3] %onnx::Conv_800[FLOAT, 85x85x3x3] %onnx::Conv_803[FLOAT, 171x256x1x1] %onnx::Conv_804[FLOAT, 171] %onnx::Conv_806[FLOAT, 171x171x1x1] %onnx::Conv_809[FLOAT, 171x171x3x3] %onnx::Conv_812[FLOAT, 170x170x3x3] %onnx::Conv_813[FLOAT, 170] %onnx::Conv_815[FLOAT, 171x512x1x1] %onnx::Conv_818[FLOAT, 171x171x1x1] %onnx::Conv_821[FLOAT, 171x171x3x3] %onnx::Conv_824[FLOAT, 170x170x3x3] %onnx::Conv_827[FLOAT, 171x512x1x1] %onnx::Conv_830[FLOAT, 171x171x1x1] %onnx::Conv_833[FLOAT, 171x171x3x3] %onnx::Conv_836[FLOAT, 170x170x3x3] ) { %onnx::Conv_837 = Identity(%onnx::Conv_813) %onnx::Conv_834 = Identity(%onnx::Conv_804) %onnx::Conv_831 = Identity(%onnx::Conv_804) %onnx::Conv_828 = Identity(%onnx::Conv_804) %onnx::Conv_825 = Identity(%onnx::Conv_813) %onnx::Conv_822 = Identity(%onnx::Conv_804) %onnx::Conv_819 = Identity(%onnx::Conv_804) %onnx::Conv_816 = Identity(%onnx::Conv_804) %onnx::Conv_810 = Identity(%onnx::Conv_804) %onnx::Conv_807 = Identity(%onnx::Conv_804) %onnx::Conv_801 = Identity(%onnx::Conv_771) %onnx::Conv_798 = Identity(%onnx::Conv_771) %onnx::Conv_795 = Identity(%onnx::Conv_771) %onnx::Conv_792 = Identity(%onnx::Conv_768) %onnx::Conv_789 = Identity(%onnx::Conv_771) %onnx::Conv_786 = Identity(%onnx::Conv_771) %onnx::Conv_783 = Identity(%onnx::Conv_771) %onnx::Conv_780 = Identity(%onnx::Conv_768) %onnx::Conv_777 = Identity(%onnx::Conv_771) %onnx::Conv_774 = Identity(%onnx::Conv_771) %onnx::Conv_765 = Identity(%onnx::Conv_741) %onnx::Conv_762 = Identity(%onnx::Conv_732) %onnx::Conv_759 = Identity(%onnx::Conv_732) %onnx::Conv_756 = Identity(%onnx::Conv_732) %onnx::Conv_753 = Identity(%onnx::Conv_741) %onnx::Conv_750 = Identity(%onnx::Conv_732) %onnx::Conv_747 = Identity(%onnx::Conv_732) %onnx::Conv_744 = Identity(%onnx::Conv_732) %onnx::Conv_738 = Identity(%onnx::Conv_732) %onnx::Conv_735 = Identity(%onnx::Conv_732) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_728, %onnx::Conv_729) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_5_output_0) %/layers.1/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_6_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/Constant_8_output_0, %/layers.1/Constant_9_output_0, %/layers.1/Constant_7_output_0, %/layers.1/Constant_10_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Slice_1_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_5_output_0) %/layers.2/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_6_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/Constant_8_output_0, %/layers.2/Constant_9_output_0, %/layers.2/Constant_7_output_0, %/layers.2/Constant_10_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Slice_1_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_5_output_0) %/layers.3/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_6_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/Constant_8_output_0, %/layers.3/Constant_9_output_0, %/layers.3/Constant_7_output_0, %/layers.3/Constant_10_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Slice_1_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Slice_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Slice_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Slice_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_5_output_0) %/layers.9/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_6_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/Constant_8_output_0, %/layers.9/Constant_9_output_0, %/layers.9/Constant_7_output_0, %/layers.9/Constant_10_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Slice_1_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_5_output_0) %/layers.10/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_6_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/Constant_8_output_0, %/layers.10/Constant_9_output_0, %/layers.10/Constant_7_output_0, %/layers.10/Constant_10_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Slice_1_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_5_output_0) %/layers.11/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_6_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/Constant_8_output_0, %/layers.11/Constant_9_output_0, %/layers.11/Constant_7_output_0, %/layers.11/Constant_10_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Slice_1_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %726 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %726 }
val_accuracy
90.985578
739,660,032
2,478,897
{'zcp_epe_nas': 84.90152847002868, 'zcp_fisher': 9.994083404541016, 'zcp_flops': 11834560512.0, 'zcp_grad_norm': 59.931514739990234, 'zcp_grasp': -0.6065673828125, 'zcp_jacov': -16.066434676573934, 'zcp_l2_norm': 565.5858154296875, 'zcp_nwot': 212.40778591502607, 'zcp_params': 2478897.0, 'zcp_plain': 0.047304112464189, 'zcp_snip': 298.1015319824219, 'zcp_synflow': 110.03618836304236, 'zcp_zen': 71.77747344970703, 'zcp_val_accuracy': 0.9102563858032221}
NASBench101_114682
NASBench101
114682
453d01a22253da02dcddb4c67a8d75a6
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_824[FLOAT, 128x3x3x3] %onnx::Conv_825[FLOAT, 128] %onnx::Conv_827[FLOAT, 43x128x1x1] %onnx::Conv_828[FLOAT, 43] %onnx::Conv_830[FLOAT, 43x43x3x3] %onnx::Conv_833[FLOAT, 42x42x3x3] %onnx::Conv_834[FLOAT, 42] %onnx::Conv_836[FLOAT, 42x128x1x1] %onnx::Conv_839[FLOAT, 42x42x1x1] %onnx::Conv_842[FLOAT, 43x128x1x1] %onnx::Conv_845[FLOAT, 43x43x3x3] %onnx::Conv_848[FLOAT, 42x42x3x3] %onnx::Conv_851[FLOAT, 42x128x1x1] %onnx::Conv_854[FLOAT, 42x42x1x1] %onnx::Conv_857[FLOAT, 43x128x1x1] %onnx::Conv_860[FLOAT, 43x43x3x3] %onnx::Conv_863[FLOAT, 42x42x3x3] %onnx::Conv_866[FLOAT, 42x128x1x1] %onnx::Conv_869[FLOAT, 42x42x1x1] %onnx::Conv_872[FLOAT, 86x128x1x1] %onnx::Conv_873[FLOAT, 86] %onnx::Conv_875[FLOAT, 86x86x3x3] %onnx::Conv_878[FLOAT, 85x85x3x3] %onnx::Conv_879[FLOAT, 85] %onnx::Conv_881[FLOAT, 85x128x1x1] %onnx::Conv_884[FLOAT, 85x85x1x1] %onnx::Conv_887[FLOAT, 86x256x1x1] %onnx::Conv_890[FLOAT, 86x86x3x3] %onnx::Conv_893[FLOAT, 85x85x3x3] %onnx::Conv_896[FLOAT, 85x256x1x1] %onnx::Conv_899[FLOAT, 85x85x1x1] %onnx::Conv_902[FLOAT, 86x256x1x1] %onnx::Conv_905[FLOAT, 86x86x3x3] %onnx::Conv_908[FLOAT, 85x85x3x3] %onnx::Conv_911[FLOAT, 85x256x1x1] %onnx::Conv_914[FLOAT, 85x85x1x1] %onnx::Conv_917[FLOAT, 171x256x1x1] %onnx::Conv_918[FLOAT, 171] %onnx::Conv_920[FLOAT, 171x171x3x3] %onnx::Conv_923[FLOAT, 170x170x3x3] %onnx::Conv_924[FLOAT, 170] %onnx::Conv_926[FLOAT, 170x256x1x1] %onnx::Conv_929[FLOAT, 170x170x1x1] %onnx::Conv_932[FLOAT, 171x512x1x1] %onnx::Conv_935[FLOAT, 171x171x3x3] %onnx::Conv_938[FLOAT, 170x170x3x3] %onnx::Conv_941[FLOAT, 170x512x1x1] %onnx::Conv_944[FLOAT, 170x170x1x1] %onnx::Conv_947[FLOAT, 171x512x1x1] %onnx::Conv_950[FLOAT, 171x171x3x3] %onnx::Conv_953[FLOAT, 170x170x3x3] %onnx::Conv_956[FLOAT, 170x512x1x1] %onnx::Conv_959[FLOAT, 170x170x1x1] ) { %onnx::Conv_960 = Identity(%onnx::Conv_924) %onnx::Conv_957 = Identity(%onnx::Conv_924) %onnx::Conv_954 = Identity(%onnx::Conv_924) %onnx::Conv_951 = Identity(%onnx::Conv_918) %onnx::Conv_948 = Identity(%onnx::Conv_918) %onnx::Conv_945 = Identity(%onnx::Conv_924) %onnx::Conv_942 = Identity(%onnx::Conv_924) %onnx::Conv_939 = Identity(%onnx::Conv_924) %onnx::Conv_936 = Identity(%onnx::Conv_918) %onnx::Conv_933 = Identity(%onnx::Conv_918) %onnx::Conv_930 = Identity(%onnx::Conv_924) %onnx::Conv_927 = Identity(%onnx::Conv_924) %onnx::Conv_921 = Identity(%onnx::Conv_918) %onnx::Conv_915 = Identity(%onnx::Conv_879) %onnx::Conv_912 = Identity(%onnx::Conv_879) %onnx::Conv_909 = Identity(%onnx::Conv_879) %onnx::Conv_906 = Identity(%onnx::Conv_873) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_879) %onnx::Conv_897 = Identity(%onnx::Conv_879) %onnx::Conv_894 = Identity(%onnx::Conv_879) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_873) %onnx::Conv_885 = Identity(%onnx::Conv_879) %onnx::Conv_882 = Identity(%onnx::Conv_879) %onnx::Conv_876 = Identity(%onnx::Conv_873) %onnx::Conv_870 = Identity(%onnx::Conv_834) %onnx::Conv_867 = Identity(%onnx::Conv_834) %onnx::Conv_864 = Identity(%onnx::Conv_834) %onnx::Conv_861 = Identity(%onnx::Conv_828) %onnx::Conv_858 = Identity(%onnx::Conv_828) %onnx::Conv_855 = Identity(%onnx::Conv_834) %onnx::Conv_852 = Identity(%onnx::Conv_834) %onnx::Conv_849 = Identity(%onnx::Conv_834) %onnx::Conv_846 = Identity(%onnx::Conv_828) %onnx::Conv_843 = Identity(%onnx::Conv_828) %onnx::Conv_840 = Identity(%onnx::Conv_834) %onnx::Conv_837 = Identity(%onnx::Conv_834) %onnx::Conv_831 = Identity(%onnx::Conv_828) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_824, %onnx::Conv_825) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_5_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Slice_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_7_output_0, %/layers.1/Constant_8_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_9_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/Slice_1_output_0, %/layers.1/Constant_10_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_5_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Slice_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_7_output_0, %/layers.2/Constant_8_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_9_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/Slice_1_output_0, %/layers.2/Constant_10_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_5_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Slice_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_7_output_0, %/layers.3/Constant_8_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_9_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/Slice_1_output_0, %/layers.3/Constant_10_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0, %/layers.5/Constant_8_output_0, %/layers.5/Constant_6_output_0, %/layers.5/Constant_9_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_10_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0, %/layers.6/Constant_8_output_0, %/layers.6/Constant_6_output_0, %/layers.6/Constant_9_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_10_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0, %/layers.7/Constant_8_output_0, %/layers.7/Constant_6_output_0, %/layers.7/Constant_9_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_10_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_5_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Slice_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_7_output_0, %/layers.9/Constant_8_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_9_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/Slice_1_output_0, %/layers.9/Constant_10_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_5_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Slice_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_7_output_0, %/layers.10/Constant_8_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_9_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/Slice_1_output_0, %/layers.10/Constant_10_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_5_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Slice_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_7_output_0, %/layers.11/Constant_8_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_9_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/Slice_1_output_0, %/layers.11/Constant_10_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %822 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %822 }
val_accuracy
93.008816
831,902,080
2,772,140
{'zcp_epe_nas': 60.196017186384395, 'zcp_fisher': 9.68734073638916, 'zcp_flops': 13310433280.0, 'zcp_grad_norm': 59.0605354309082, 'zcp_grasp': -6.029052734375, 'zcp_jacov': -16.05221392750107, 'zcp_l2_norm': 761.3233032226562, 'zcp_nwot': 215.77594271545362, 'zcp_params': 2772140.0, 'zcp_plain': 0.049603708088397, 'zcp_snip': 303.89422607421875, 'zcp_synflow': 109.88805817745325, 'zcp_zen': 83.50991821289062, 'zcp_val_accuracy': 0.9285857081413261}
NASBench101_208034
NASBench101
208034
7df74a04d96210de5402efd44488e2be
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1076[FLOAT, 128x3x3x3] %onnx::Conv_1077[FLOAT, 128] %onnx::Conv_1079[FLOAT, 64x128x1x1] %onnx::Conv_1080[FLOAT, 64] %onnx::Conv_1082[FLOAT, 64x64x3x3] %onnx::Conv_1085[FLOAT, 64x128x1x1] %onnx::Conv_1088[FLOAT, 64x64x1x1] %onnx::Conv_1091[FLOAT, 64x64x3x3] %onnx::Conv_1094[FLOAT, 64x64x1x1] %onnx::Conv_1097[FLOAT, 64x64x3x3] %onnx::Conv_1100[FLOAT, 128x128x1x1] %onnx::Conv_1103[FLOAT, 64x128x1x1] %onnx::Conv_1106[FLOAT, 64x64x3x3] %onnx::Conv_1109[FLOAT, 64x128x1x1] %onnx::Conv_1112[FLOAT, 64x64x1x1] %onnx::Conv_1115[FLOAT, 64x64x3x3] %onnx::Conv_1118[FLOAT, 64x64x1x1] %onnx::Conv_1121[FLOAT, 64x64x3x3] %onnx::Conv_1124[FLOAT, 128x128x1x1] %onnx::Conv_1127[FLOAT, 64x128x1x1] %onnx::Conv_1130[FLOAT, 64x64x3x3] %onnx::Conv_1133[FLOAT, 64x128x1x1] %onnx::Conv_1136[FLOAT, 64x64x1x1] %onnx::Conv_1139[FLOAT, 64x64x3x3] %onnx::Conv_1142[FLOAT, 64x64x1x1] %onnx::Conv_1145[FLOAT, 64x64x3x3] %onnx::Conv_1148[FLOAT, 128x128x1x1] %onnx::Conv_1151[FLOAT, 128x128x1x1] %onnx::Conv_1154[FLOAT, 128x128x3x3] %onnx::Conv_1157[FLOAT, 128x128x1x1] %onnx::Conv_1160[FLOAT, 128x128x1x1] %onnx::Conv_1163[FLOAT, 128x128x3x3] %onnx::Conv_1166[FLOAT, 128x128x1x1] %onnx::Conv_1169[FLOAT, 128x128x3x3] %onnx::Conv_1172[FLOAT, 256x128x1x1] %onnx::Conv_1173[FLOAT, 256] %onnx::Conv_1175[FLOAT, 128x256x1x1] %onnx::Conv_1178[FLOAT, 128x128x3x3] %onnx::Conv_1181[FLOAT, 128x256x1x1] %onnx::Conv_1184[FLOAT, 128x128x1x1] %onnx::Conv_1187[FLOAT, 128x128x3x3] %onnx::Conv_1190[FLOAT, 128x128x1x1] %onnx::Conv_1193[FLOAT, 128x128x3x3] %onnx::Conv_1196[FLOAT, 256x256x1x1] %onnx::Conv_1199[FLOAT, 128x256x1x1] %onnx::Conv_1202[FLOAT, 128x128x3x3] %onnx::Conv_1205[FLOAT, 128x256x1x1] %onnx::Conv_1208[FLOAT, 128x128x1x1] %onnx::Conv_1211[FLOAT, 128x128x3x3] %onnx::Conv_1214[FLOAT, 128x128x1x1] %onnx::Conv_1217[FLOAT, 128x128x3x3] %onnx::Conv_1220[FLOAT, 256x256x1x1] %onnx::Conv_1223[FLOAT, 256x256x1x1] %onnx::Conv_1226[FLOAT, 256x256x3x3] %onnx::Conv_1229[FLOAT, 256x256x1x1] %onnx::Conv_1232[FLOAT, 256x256x1x1] %onnx::Conv_1235[FLOAT, 256x256x3x3] %onnx::Conv_1238[FLOAT, 256x256x1x1] %onnx::Conv_1241[FLOAT, 256x256x3x3] %onnx::Conv_1244[FLOAT, 512x256x1x1] %onnx::Conv_1245[FLOAT, 512] %onnx::Conv_1247[FLOAT, 256x512x1x1] %onnx::Conv_1250[FLOAT, 256x256x3x3] %onnx::Conv_1253[FLOAT, 256x512x1x1] %onnx::Conv_1256[FLOAT, 256x256x1x1] %onnx::Conv_1259[FLOAT, 256x256x3x3] %onnx::Conv_1262[FLOAT, 256x256x1x1] %onnx::Conv_1265[FLOAT, 256x256x3x3] %onnx::Conv_1268[FLOAT, 512x512x1x1] %onnx::Conv_1271[FLOAT, 256x512x1x1] %onnx::Conv_1274[FLOAT, 256x256x3x3] %onnx::Conv_1277[FLOAT, 256x512x1x1] %onnx::Conv_1280[FLOAT, 256x256x1x1] %onnx::Conv_1283[FLOAT, 256x256x3x3] %onnx::Conv_1286[FLOAT, 256x256x1x1] %onnx::Conv_1289[FLOAT, 256x256x3x3] %onnx::Conv_1292[FLOAT, 512x512x1x1] ) { %onnx::Conv_1293 = Identity(%onnx::Conv_1245) %onnx::Conv_1290 = Identity(%onnx::Conv_1173) %onnx::Conv_1287 = Identity(%onnx::Conv_1173) %onnx::Conv_1284 = Identity(%onnx::Conv_1173) %onnx::Conv_1281 = Identity(%onnx::Conv_1173) %onnx::Conv_1278 = Identity(%onnx::Conv_1173) %onnx::Conv_1275 = Identity(%onnx::Conv_1173) %onnx::Conv_1272 = Identity(%onnx::Conv_1173) %onnx::Conv_1269 = Identity(%onnx::Conv_1245) %onnx::Conv_1266 = Identity(%onnx::Conv_1173) %onnx::Conv_1263 = Identity(%onnx::Conv_1173) %onnx::Conv_1260 = Identity(%onnx::Conv_1173) %onnx::Conv_1257 = Identity(%onnx::Conv_1173) %onnx::Conv_1254 = Identity(%onnx::Conv_1173) %onnx::Conv_1251 = Identity(%onnx::Conv_1173) %onnx::Conv_1248 = Identity(%onnx::Conv_1173) %onnx::Conv_1242 = Identity(%onnx::Conv_1173) %onnx::Conv_1239 = Identity(%onnx::Conv_1173) %onnx::Conv_1236 = Identity(%onnx::Conv_1173) %onnx::Conv_1233 = Identity(%onnx::Conv_1173) %onnx::Conv_1230 = Identity(%onnx::Conv_1173) %onnx::Conv_1227 = Identity(%onnx::Conv_1173) %onnx::Conv_1224 = Identity(%onnx::Conv_1173) %onnx::Conv_1221 = Identity(%onnx::Conv_1173) %onnx::Conv_1218 = Identity(%onnx::Conv_1077) %onnx::Conv_1215 = Identity(%onnx::Conv_1077) %onnx::Conv_1212 = Identity(%onnx::Conv_1077) %onnx::Conv_1209 = Identity(%onnx::Conv_1077) %onnx::Conv_1206 = Identity(%onnx::Conv_1077) %onnx::Conv_1203 = Identity(%onnx::Conv_1077) %onnx::Conv_1200 = Identity(%onnx::Conv_1077) %onnx::Conv_1197 = Identity(%onnx::Conv_1173) %onnx::Conv_1194 = Identity(%onnx::Conv_1077) %onnx::Conv_1191 = Identity(%onnx::Conv_1077) %onnx::Conv_1188 = Identity(%onnx::Conv_1077) %onnx::Conv_1185 = Identity(%onnx::Conv_1077) %onnx::Conv_1182 = Identity(%onnx::Conv_1077) %onnx::Conv_1179 = Identity(%onnx::Conv_1077) %onnx::Conv_1176 = Identity(%onnx::Conv_1077) %onnx::Conv_1170 = Identity(%onnx::Conv_1077) %onnx::Conv_1167 = Identity(%onnx::Conv_1077) %onnx::Conv_1164 = Identity(%onnx::Conv_1077) %onnx::Conv_1161 = Identity(%onnx::Conv_1077) %onnx::Conv_1158 = Identity(%onnx::Conv_1077) %onnx::Conv_1155 = Identity(%onnx::Conv_1077) %onnx::Conv_1152 = Identity(%onnx::Conv_1077) %onnx::Conv_1149 = Identity(%onnx::Conv_1077) %onnx::Conv_1146 = Identity(%onnx::Conv_1080) %onnx::Conv_1143 = Identity(%onnx::Conv_1080) %onnx::Conv_1140 = Identity(%onnx::Conv_1080) %onnx::Conv_1137 = Identity(%onnx::Conv_1080) %onnx::Conv_1134 = Identity(%onnx::Conv_1080) %onnx::Conv_1131 = Identity(%onnx::Conv_1080) %onnx::Conv_1128 = Identity(%onnx::Conv_1080) %onnx::Conv_1125 = Identity(%onnx::Conv_1077) %onnx::Conv_1122 = Identity(%onnx::Conv_1080) %onnx::Conv_1119 = Identity(%onnx::Conv_1080) %onnx::Conv_1116 = Identity(%onnx::Conv_1080) %onnx::Conv_1113 = Identity(%onnx::Conv_1080) %onnx::Conv_1110 = Identity(%onnx::Conv_1080) %onnx::Conv_1107 = Identity(%onnx::Conv_1080) %onnx::Conv_1104 = Identity(%onnx::Conv_1080) %onnx::Conv_1101 = Identity(%onnx::Conv_1077) %onnx::Conv_1098 = Identity(%onnx::Conv_1080) %onnx::Conv_1095 = Identity(%onnx::Conv_1080) %onnx::Conv_1092 = Identity(%onnx::Conv_1080) %onnx::Conv_1089 = Identity(%onnx::Conv_1080) %onnx::Conv_1086 = Identity(%onnx::Conv_1080) %onnx::Conv_1083 = Identity(%onnx::Conv_1080) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_6_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1220, %onnx::Conv_1221) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_6_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1223, %onnx::Conv_1224) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1226, %onnx::Conv_1227) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1229, %onnx::Conv_1230) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1232, %onnx::Conv_1233) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1235, %onnx::Conv_1236) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1238, %onnx::Conv_1239) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1241, %onnx::Conv_1242) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1244, %onnx::Conv_1245) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1247, %onnx::Conv_1248) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1250, %onnx::Conv_1251) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1253, %onnx::Conv_1254) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1256, %onnx::Conv_1257) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1259, %onnx::Conv_1260) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1262, %onnx::Conv_1263) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1265, %onnx::Conv_1266) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1268, %onnx::Conv_1269) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1271, %onnx::Conv_1272) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1274, %onnx::Conv_1275) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1277, %onnx::Conv_1278) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1280, %onnx::Conv_1281) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1283, %onnx::Conv_1284) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1286, %onnx::Conv_1287) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1289, %onnx::Conv_1290) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1292, %onnx::Conv_1293) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_6_output_0) %1074 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1074 }
val_accuracy
93.419468
2,759,206,912
9,253,130
{'zcp_epe_nas': 101.50775575258218, 'zcp_fisher': 9.546197891235352, 'zcp_flops': 44147310592.0, 'zcp_grad_norm': 77.1337661743164, 'zcp_grasp': -1.66595458984375, 'zcp_jacov': -16.054851697948408, 'zcp_l2_norm': 1339.9091796875, 'zcp_nwot': 230.81371317899067, 'zcp_params': 9253130.0, 'zcp_plain': 0.018482070416212002, 'zcp_snip': 491.8752746582031, 'zcp_synflow': 122.8148132688336, 'zcp_zen': 132.02781677246094, 'zcp_val_accuracy': 0.933193087577819}
NASBench101_134982
NASBench101
134982
51a87d48edfcc542ef92409a19112e22
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_779[FLOAT, 128x3x3x3] %onnx::Conv_780[FLOAT, 128] %onnx::Conv_782[FLOAT, 128x128x1x1] %onnx::Conv_785[FLOAT, 128x128x3x3] %onnx::Conv_788[FLOAT, 128x128x1x1] %onnx::Conv_791[FLOAT, 128x128x1x1] %onnx::Conv_794[FLOAT, 128x128x1x1] %onnx::Conv_797[FLOAT, 128x128x1x1] %onnx::Conv_800[FLOAT, 128x128x3x3] %onnx::Conv_803[FLOAT, 128x128x1x1] %onnx::Conv_806[FLOAT, 128x128x1x1] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 128x128x1x1] %onnx::Conv_815[FLOAT, 128x128x3x3] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x128x1x1] %onnx::Conv_827[FLOAT, 256x128x1x1] %onnx::Conv_828[FLOAT, 256] %onnx::Conv_830[FLOAT, 256x256x3x3] %onnx::Conv_833[FLOAT, 256x256x1x1] %onnx::Conv_836[FLOAT, 256x256x1x1] %onnx::Conv_839[FLOAT, 256x128x1x1] %onnx::Conv_842[FLOAT, 256x256x1x1] %onnx::Conv_845[FLOAT, 256x256x3x3] %onnx::Conv_848[FLOAT, 256x256x1x1] %onnx::Conv_851[FLOAT, 256x256x1x1] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_857[FLOAT, 256x256x1x1] %onnx::Conv_860[FLOAT, 256x256x3x3] %onnx::Conv_863[FLOAT, 256x256x1x1] %onnx::Conv_866[FLOAT, 256x256x1x1] %onnx::Conv_869[FLOAT, 256x256x1x1] %onnx::Conv_872[FLOAT, 512x256x1x1] %onnx::Conv_873[FLOAT, 512] %onnx::Conv_875[FLOAT, 512x512x3x3] %onnx::Conv_878[FLOAT, 512x512x1x1] %onnx::Conv_881[FLOAT, 512x512x1x1] %onnx::Conv_884[FLOAT, 512x256x1x1] %onnx::Conv_887[FLOAT, 512x512x1x1] %onnx::Conv_890[FLOAT, 512x512x3x3] %onnx::Conv_893[FLOAT, 512x512x1x1] %onnx::Conv_896[FLOAT, 512x512x1x1] %onnx::Conv_899[FLOAT, 512x512x1x1] %onnx::Conv_902[FLOAT, 512x512x1x1] %onnx::Conv_905[FLOAT, 512x512x3x3] %onnx::Conv_908[FLOAT, 512x512x1x1] %onnx::Conv_911[FLOAT, 512x512x1x1] %onnx::Conv_914[FLOAT, 512x512x1x1] ) { %onnx::Conv_915 = Identity(%onnx::Conv_873) %onnx::Conv_912 = Identity(%onnx::Conv_873) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_873) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_873) %onnx::Conv_897 = Identity(%onnx::Conv_873) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_873) %onnx::Conv_885 = Identity(%onnx::Conv_873) %onnx::Conv_882 = Identity(%onnx::Conv_873) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %onnx::Conv_870 = Identity(%onnx::Conv_828) %onnx::Conv_867 = Identity(%onnx::Conv_828) %onnx::Conv_864 = Identity(%onnx::Conv_828) %onnx::Conv_861 = Identity(%onnx::Conv_828) %onnx::Conv_858 = Identity(%onnx::Conv_828) %onnx::Conv_855 = Identity(%onnx::Conv_828) %onnx::Conv_852 = Identity(%onnx::Conv_828) %onnx::Conv_849 = Identity(%onnx::Conv_828) %onnx::Conv_846 = Identity(%onnx::Conv_828) %onnx::Conv_843 = Identity(%onnx::Conv_828) %onnx::Conv_840 = Identity(%onnx::Conv_828) %onnx::Conv_837 = Identity(%onnx::Conv_828) %onnx::Conv_834 = Identity(%onnx::Conv_828) %onnx::Conv_831 = Identity(%onnx::Conv_828) %onnx::Conv_825 = Identity(%onnx::Conv_780) %onnx::Conv_822 = Identity(%onnx::Conv_780) %onnx::Conv_819 = Identity(%onnx::Conv_780) %onnx::Conv_816 = Identity(%onnx::Conv_780) %onnx::Conv_813 = Identity(%onnx::Conv_780) %onnx::Conv_810 = Identity(%onnx::Conv_780) %onnx::Conv_807 = Identity(%onnx::Conv_780) %onnx::Conv_804 = Identity(%onnx::Conv_780) %onnx::Conv_801 = Identity(%onnx::Conv_780) %onnx::Conv_798 = Identity(%onnx::Conv_780) %onnx::Conv_795 = Identity(%onnx::Conv_780) %onnx::Conv_792 = Identity(%onnx::Conv_780) %onnx::Conv_789 = Identity(%onnx::Conv_780) %onnx::Conv_786 = Identity(%onnx::Conv_780) %onnx::Conv_783 = Identity(%onnx::Conv_780) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_779, %onnx::Conv_780) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_6_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_6_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_6_output_0) %777 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %777 }
val_accuracy
93.85016
3,894,421,504
13,126,538
{'zcp_epe_nas': 90.99318302601868, 'zcp_fisher': 77.23260498046875, 'zcp_flops': 62310744064.0, 'zcp_grad_norm': 131.9080047607422, 'zcp_grasp': 8.75830078125, 'zcp_jacov': -16.07567353994948, 'zcp_l2_norm': 1030.677734375, 'zcp_nwot': 232.55858546317558, 'zcp_params': 13126538.0, 'zcp_plain': -0.061510518193244004, 'zcp_snip': 1128.91796875, 'zcp_synflow': 120.86224264909555, 'zcp_zen': 93.4087905883789, 'zcp_val_accuracy': 0.9269831776618951}
NASBench101_59963
NASBench101
59963
246da0c2b4b9734127ace0cf716b4102
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_860[FLOAT, 128x3x3x3] %onnx::Conv_861[FLOAT, 128] %onnx::Conv_863[FLOAT, 32x128x1x1] %onnx::Conv_864[FLOAT, 32] %onnx::Conv_866[FLOAT, 32x32x1x1] %onnx::Conv_869[FLOAT, 32x32x1x1] %onnx::Conv_872[FLOAT, 32x32x1x1] %onnx::Conv_875[FLOAT, 32x32x1x1] %onnx::Conv_878[FLOAT, 32x32x3x3] %onnx::Conv_881[FLOAT, 32x128x1x1] %onnx::Conv_884[FLOAT, 32x32x1x1] %onnx::Conv_887[FLOAT, 32x32x1x1] %onnx::Conv_890[FLOAT, 32x32x1x1] %onnx::Conv_893[FLOAT, 32x32x1x1] %onnx::Conv_896[FLOAT, 32x32x3x3] %onnx::Conv_899[FLOAT, 32x128x1x1] %onnx::Conv_902[FLOAT, 32x32x1x1] %onnx::Conv_905[FLOAT, 32x32x1x1] %onnx::Conv_908[FLOAT, 32x32x1x1] %onnx::Conv_911[FLOAT, 32x32x1x1] %onnx::Conv_914[FLOAT, 32x32x3x3] %onnx::Conv_917[FLOAT, 64x128x1x1] %onnx::Conv_918[FLOAT, 64] %onnx::Conv_920[FLOAT, 64x64x1x1] %onnx::Conv_923[FLOAT, 64x64x1x1] %onnx::Conv_926[FLOAT, 64x64x1x1] %onnx::Conv_929[FLOAT, 64x64x1x1] %onnx::Conv_932[FLOAT, 64x64x3x3] %onnx::Conv_935[FLOAT, 64x256x1x1] %onnx::Conv_938[FLOAT, 64x64x1x1] %onnx::Conv_941[FLOAT, 64x64x1x1] %onnx::Conv_944[FLOAT, 64x64x1x1] %onnx::Conv_947[FLOAT, 64x64x1x1] %onnx::Conv_950[FLOAT, 64x64x3x3] %onnx::Conv_953[FLOAT, 64x256x1x1] %onnx::Conv_956[FLOAT, 64x64x1x1] %onnx::Conv_959[FLOAT, 64x64x1x1] %onnx::Conv_962[FLOAT, 64x64x1x1] %onnx::Conv_965[FLOAT, 64x64x1x1] %onnx::Conv_968[FLOAT, 64x64x3x3] %onnx::Conv_971[FLOAT, 128x256x1x1] %onnx::Conv_974[FLOAT, 128x128x1x1] %onnx::Conv_977[FLOAT, 128x128x1x1] %onnx::Conv_980[FLOAT, 128x128x1x1] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 128x128x3x3] %onnx::Conv_989[FLOAT, 128x512x1x1] %onnx::Conv_992[FLOAT, 128x128x1x1] %onnx::Conv_995[FLOAT, 128x128x1x1] %onnx::Conv_998[FLOAT, 128x128x1x1] %onnx::Conv_1001[FLOAT, 128x128x1x1] %onnx::Conv_1004[FLOAT, 128x128x3x3] %onnx::Conv_1007[FLOAT, 128x512x1x1] %onnx::Conv_1010[FLOAT, 128x128x1x1] %onnx::Conv_1013[FLOAT, 128x128x1x1] %onnx::Conv_1016[FLOAT, 128x128x1x1] %onnx::Conv_1019[FLOAT, 128x128x1x1] %onnx::Conv_1022[FLOAT, 128x128x3x3] ) { %onnx::Conv_1023 = Identity(%onnx::Conv_861) %onnx::Conv_1020 = Identity(%onnx::Conv_861) %onnx::Conv_1017 = Identity(%onnx::Conv_861) %onnx::Conv_1014 = Identity(%onnx::Conv_861) %onnx::Conv_1011 = Identity(%onnx::Conv_861) %onnx::Conv_1008 = Identity(%onnx::Conv_861) %onnx::Conv_1005 = Identity(%onnx::Conv_861) %onnx::Conv_1002 = Identity(%onnx::Conv_861) %onnx::Conv_999 = Identity(%onnx::Conv_861) %onnx::Conv_996 = Identity(%onnx::Conv_861) %onnx::Conv_993 = Identity(%onnx::Conv_861) %onnx::Conv_990 = Identity(%onnx::Conv_861) %onnx::Conv_987 = Identity(%onnx::Conv_861) %onnx::Conv_984 = Identity(%onnx::Conv_861) %onnx::Conv_981 = Identity(%onnx::Conv_861) %onnx::Conv_978 = Identity(%onnx::Conv_861) %onnx::Conv_975 = Identity(%onnx::Conv_861) %onnx::Conv_972 = Identity(%onnx::Conv_861) %onnx::Conv_969 = Identity(%onnx::Conv_918) %onnx::Conv_966 = Identity(%onnx::Conv_918) %onnx::Conv_963 = Identity(%onnx::Conv_918) %onnx::Conv_960 = Identity(%onnx::Conv_918) %onnx::Conv_957 = Identity(%onnx::Conv_918) %onnx::Conv_954 = Identity(%onnx::Conv_918) %onnx::Conv_951 = Identity(%onnx::Conv_918) %onnx::Conv_948 = Identity(%onnx::Conv_918) %onnx::Conv_945 = Identity(%onnx::Conv_918) %onnx::Conv_942 = Identity(%onnx::Conv_918) %onnx::Conv_939 = Identity(%onnx::Conv_918) %onnx::Conv_936 = Identity(%onnx::Conv_918) %onnx::Conv_933 = Identity(%onnx::Conv_918) %onnx::Conv_930 = Identity(%onnx::Conv_918) %onnx::Conv_927 = Identity(%onnx::Conv_918) %onnx::Conv_924 = Identity(%onnx::Conv_918) %onnx::Conv_921 = Identity(%onnx::Conv_918) %onnx::Conv_915 = Identity(%onnx::Conv_864) %onnx::Conv_912 = Identity(%onnx::Conv_864) %onnx::Conv_909 = Identity(%onnx::Conv_864) %onnx::Conv_906 = Identity(%onnx::Conv_864) %onnx::Conv_903 = Identity(%onnx::Conv_864) %onnx::Conv_900 = Identity(%onnx::Conv_864) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_864) %onnx::Conv_888 = Identity(%onnx::Conv_864) %onnx::Conv_885 = Identity(%onnx::Conv_864) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_864) %onnx::Conv_873 = Identity(%onnx::Conv_864) %onnx::Conv_870 = Identity(%onnx::Conv_864) %onnx::Conv_867 = Identity(%onnx::Conv_864) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_860, %onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %858 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %858 }
val_accuracy
89.94391
328,869,888
1,072,650
{'zcp_epe_nas': 111.939546903162, 'zcp_fisher': 12.911865234375, 'zcp_flops': 5261918208.0, 'zcp_grad_norm': 82.57601165771484, 'zcp_grasp': -48.272216796875, 'zcp_jacov': -16.065664131353444, 'zcp_l2_norm': 728.7366943359375, 'zcp_nwot': 214.8010441560651, 'zcp_params': 1072650.0, 'zcp_plain': 0.012682229280471, 'zcp_snip': 306.02587890625, 'zcp_synflow': 97.488746875367, 'zcp_zen': 65.1715087890625, 'zcp_val_accuracy': 0.9143629670143121}
NASBench101_387053
NASBench101
387053
e9fa4c5ce2f4795e6cf0eb493abbacbd
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_635[FLOAT, 128x3x3x3] %onnx::Conv_636[FLOAT, 128] %onnx::Conv_638[FLOAT, 64x128x1x1] %onnx::Conv_639[FLOAT, 64] %onnx::Conv_641[FLOAT, 64x64x3x3] %onnx::Conv_644[FLOAT, 64x64x3x3] %onnx::Conv_647[FLOAT, 64x64x1x1] %onnx::Conv_650[FLOAT, 64x128x1x1] %onnx::Conv_653[FLOAT, 64x64x3x3] %onnx::Conv_656[FLOAT, 64x64x3x3] %onnx::Conv_659[FLOAT, 64x64x1x1] %onnx::Conv_662[FLOAT, 64x128x1x1] %onnx::Conv_665[FLOAT, 64x64x3x3] %onnx::Conv_668[FLOAT, 64x64x3x3] %onnx::Conv_671[FLOAT, 64x64x1x1] %onnx::Conv_674[FLOAT, 128x128x1x1] %onnx::Conv_677[FLOAT, 128x128x3x3] %onnx::Conv_680[FLOAT, 128x128x3x3] %onnx::Conv_683[FLOAT, 128x128x1x1] %onnx::Conv_686[FLOAT, 128x256x1x1] %onnx::Conv_689[FLOAT, 128x128x3x3] %onnx::Conv_692[FLOAT, 128x128x3x3] %onnx::Conv_695[FLOAT, 128x128x1x1] %onnx::Conv_698[FLOAT, 128x256x1x1] %onnx::Conv_701[FLOAT, 128x128x3x3] %onnx::Conv_704[FLOAT, 128x128x3x3] %onnx::Conv_707[FLOAT, 128x128x1x1] %onnx::Conv_710[FLOAT, 256x256x1x1] %onnx::Conv_711[FLOAT, 256] %onnx::Conv_713[FLOAT, 256x256x3x3] %onnx::Conv_716[FLOAT, 256x256x3x3] %onnx::Conv_719[FLOAT, 256x256x1x1] %onnx::Conv_722[FLOAT, 256x512x1x1] %onnx::Conv_725[FLOAT, 256x256x3x3] %onnx::Conv_728[FLOAT, 256x256x3x3] %onnx::Conv_731[FLOAT, 256x256x1x1] %onnx::Conv_734[FLOAT, 256x512x1x1] %onnx::Conv_737[FLOAT, 256x256x3x3] %onnx::Conv_740[FLOAT, 256x256x3x3] %onnx::Conv_743[FLOAT, 256x256x1x1] ) { %onnx::Conv_744 = Identity(%onnx::Conv_711) %onnx::Conv_741 = Identity(%onnx::Conv_711) %onnx::Conv_738 = Identity(%onnx::Conv_711) %onnx::Conv_735 = Identity(%onnx::Conv_711) %onnx::Conv_732 = Identity(%onnx::Conv_711) %onnx::Conv_729 = Identity(%onnx::Conv_711) %onnx::Conv_726 = Identity(%onnx::Conv_711) %onnx::Conv_723 = Identity(%onnx::Conv_711) %onnx::Conv_720 = Identity(%onnx::Conv_711) %onnx::Conv_717 = Identity(%onnx::Conv_711) %onnx::Conv_714 = Identity(%onnx::Conv_711) %onnx::Conv_708 = Identity(%onnx::Conv_636) %onnx::Conv_705 = Identity(%onnx::Conv_636) %onnx::Conv_702 = Identity(%onnx::Conv_636) %onnx::Conv_699 = Identity(%onnx::Conv_636) %onnx::Conv_696 = Identity(%onnx::Conv_636) %onnx::Conv_693 = Identity(%onnx::Conv_636) %onnx::Conv_690 = Identity(%onnx::Conv_636) %onnx::Conv_687 = Identity(%onnx::Conv_636) %onnx::Conv_684 = Identity(%onnx::Conv_636) %onnx::Conv_681 = Identity(%onnx::Conv_636) %onnx::Conv_678 = Identity(%onnx::Conv_636) %onnx::Conv_675 = Identity(%onnx::Conv_636) %onnx::Conv_672 = Identity(%onnx::Conv_639) %onnx::Conv_669 = Identity(%onnx::Conv_639) %onnx::Conv_666 = Identity(%onnx::Conv_639) %onnx::Conv_663 = Identity(%onnx::Conv_639) %onnx::Conv_660 = Identity(%onnx::Conv_639) %onnx::Conv_657 = Identity(%onnx::Conv_639) %onnx::Conv_654 = Identity(%onnx::Conv_639) %onnx::Conv_651 = Identity(%onnx::Conv_639) %onnx::Conv_648 = Identity(%onnx::Conv_639) %onnx::Conv_645 = Identity(%onnx::Conv_639) %onnx::Conv_642 = Identity(%onnx::Conv_639) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_635, %onnx::Conv_636) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %633 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %633 }
val_accuracy
88.782054
1,587,816,448
5,356,682
{'zcp_epe_nas': 68.14334130220985, 'zcp_fisher': 103.95787811279297, 'zcp_flops': 25405063168.0, 'zcp_grad_norm': 161.74244689941406, 'zcp_grasp': 7.20751953125, 'zcp_jacov': -16.06523397841452, 'zcp_l2_norm': 648.3069458007812, 'zcp_nwot': 217.45070548843879, 'zcp_params': 5356682.0, 'zcp_plain': -0.0015194072620940001, 'zcp_snip': 951.5305786132812, 'zcp_synflow': 118.19382880747901, 'zcp_zen': 78.5007553100586, 'zcp_val_accuracy': 0.921474337577819}
NASBench101_247921
NASBench101
247921
9615b7ad7d20ccfcd7fc10f43f6e5dca
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_761[FLOAT, 128x3x3x3] %onnx::Conv_762[FLOAT, 128] %onnx::Conv_764[FLOAT, 128x128x1x1] %onnx::Conv_767[FLOAT, 128x128x3x3] %onnx::Conv_770[FLOAT, 128x128x1x1] %onnx::Conv_773[FLOAT, 128x128x3x3] %onnx::Conv_776[FLOAT, 128x128x1x1] %onnx::Conv_779[FLOAT, 128x128x1x1] %onnx::Conv_782[FLOAT, 128x128x3x3] %onnx::Conv_785[FLOAT, 128x128x1x1] %onnx::Conv_788[FLOAT, 128x128x3x3] %onnx::Conv_791[FLOAT, 128x128x1x1] %onnx::Conv_794[FLOAT, 128x128x1x1] %onnx::Conv_797[FLOAT, 128x128x3x3] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 128x128x3x3] %onnx::Conv_806[FLOAT, 128x128x1x1] %onnx::Conv_809[FLOAT, 256x128x1x1] %onnx::Conv_810[FLOAT, 256] %onnx::Conv_812[FLOAT, 256x256x3x3] %onnx::Conv_815[FLOAT, 256x128x1x1] %onnx::Conv_818[FLOAT, 256x256x3x3] %onnx::Conv_821[FLOAT, 256x256x1x1] %onnx::Conv_824[FLOAT, 256x256x1x1] %onnx::Conv_827[FLOAT, 256x256x3x3] %onnx::Conv_830[FLOAT, 256x256x1x1] %onnx::Conv_833[FLOAT, 256x256x3x3] %onnx::Conv_836[FLOAT, 256x256x1x1] %onnx::Conv_839[FLOAT, 256x256x1x1] %onnx::Conv_842[FLOAT, 256x256x3x3] %onnx::Conv_845[FLOAT, 256x256x1x1] %onnx::Conv_848[FLOAT, 256x256x3x3] %onnx::Conv_851[FLOAT, 256x256x1x1] %onnx::Conv_854[FLOAT, 512x256x1x1] %onnx::Conv_855[FLOAT, 512] %onnx::Conv_857[FLOAT, 512x512x3x3] %onnx::Conv_860[FLOAT, 512x256x1x1] %onnx::Conv_863[FLOAT, 512x512x3x3] %onnx::Conv_866[FLOAT, 512x512x1x1] %onnx::Conv_869[FLOAT, 512x512x1x1] %onnx::Conv_872[FLOAT, 512x512x3x3] %onnx::Conv_875[FLOAT, 512x512x1x1] %onnx::Conv_878[FLOAT, 512x512x3x3] %onnx::Conv_881[FLOAT, 512x512x1x1] %onnx::Conv_884[FLOAT, 512x512x1x1] %onnx::Conv_887[FLOAT, 512x512x3x3] %onnx::Conv_890[FLOAT, 512x512x1x1] %onnx::Conv_893[FLOAT, 512x512x3x3] %onnx::Conv_896[FLOAT, 512x512x1x1] ) { %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_855) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_855) %onnx::Conv_867 = Identity(%onnx::Conv_855) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %onnx::Conv_852 = Identity(%onnx::Conv_810) %onnx::Conv_849 = Identity(%onnx::Conv_810) %onnx::Conv_846 = Identity(%onnx::Conv_810) %onnx::Conv_843 = Identity(%onnx::Conv_810) %onnx::Conv_840 = Identity(%onnx::Conv_810) %onnx::Conv_837 = Identity(%onnx::Conv_810) %onnx::Conv_834 = Identity(%onnx::Conv_810) %onnx::Conv_831 = Identity(%onnx::Conv_810) %onnx::Conv_828 = Identity(%onnx::Conv_810) %onnx::Conv_825 = Identity(%onnx::Conv_810) %onnx::Conv_822 = Identity(%onnx::Conv_810) %onnx::Conv_819 = Identity(%onnx::Conv_810) %onnx::Conv_816 = Identity(%onnx::Conv_810) %onnx::Conv_813 = Identity(%onnx::Conv_810) %onnx::Conv_807 = Identity(%onnx::Conv_762) %onnx::Conv_804 = Identity(%onnx::Conv_762) %onnx::Conv_801 = Identity(%onnx::Conv_762) %onnx::Conv_798 = Identity(%onnx::Conv_762) %onnx::Conv_795 = Identity(%onnx::Conv_762) %onnx::Conv_792 = Identity(%onnx::Conv_762) %onnx::Conv_789 = Identity(%onnx::Conv_762) %onnx::Conv_786 = Identity(%onnx::Conv_762) %onnx::Conv_783 = Identity(%onnx::Conv_762) %onnx::Conv_780 = Identity(%onnx::Conv_762) %onnx::Conv_777 = Identity(%onnx::Conv_762) %onnx::Conv_774 = Identity(%onnx::Conv_762) %onnx::Conv_771 = Identity(%onnx::Conv_762) %onnx::Conv_768 = Identity(%onnx::Conv_762) %onnx::Conv_765 = Identity(%onnx::Conv_762) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_761, %onnx::Conv_762) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %759 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %759 }
val_accuracy
91.957134
6,310,340,608
21,384,074
{'zcp_epe_nas': 105.09919235717156, 'zcp_fisher': 69.86844635009766, 'zcp_flops': 100965449728.0, 'zcp_grad_norm': 144.36514282226562, 'zcp_grasp': -13.858642578125, 'zcp_jacov': -16.058056891207734, 'zcp_l2_norm': 1030.614013671875, 'zcp_nwot': 231.71472071331735, 'zcp_params': 21384074.0, 'zcp_plain': 0.057942025363445004, 'zcp_snip': 1199.012939453125, 'zcp_synflow': 135.98429133201606, 'zcp_zen': 106.32855987548828, 'zcp_val_accuracy': 0.9125601053237911}
NASBench101_344850
NASBench101
344850
d07166284d9f29b8a6a025f74f0c3d5a
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_977[FLOAT, 128x3x3x3] %onnx::Conv_978[FLOAT, 128] %onnx::Conv_980[FLOAT, 64x128x1x1] %onnx::Conv_981[FLOAT, 64] %onnx::Conv_983[FLOAT, 64x64x1x1] %onnx::Conv_986[FLOAT, 64x64x3x3] %onnx::Conv_989[FLOAT, 64x128x1x1] %onnx::Conv_992[FLOAT, 64x64x3x3] %onnx::Conv_995[FLOAT, 64x64x3x3] %onnx::Conv_998[FLOAT, 64x64x3x3] %onnx::Conv_1001[FLOAT, 64x128x1x1] %onnx::Conv_1004[FLOAT, 64x64x1x1] %onnx::Conv_1007[FLOAT, 64x64x3x3] %onnx::Conv_1010[FLOAT, 64x128x1x1] %onnx::Conv_1013[FLOAT, 64x64x3x3] %onnx::Conv_1016[FLOAT, 64x64x3x3] %onnx::Conv_1019[FLOAT, 64x64x3x3] %onnx::Conv_1022[FLOAT, 64x128x1x1] %onnx::Conv_1025[FLOAT, 64x64x1x1] %onnx::Conv_1028[FLOAT, 64x64x3x3] %onnx::Conv_1031[FLOAT, 64x128x1x1] %onnx::Conv_1034[FLOAT, 64x64x3x3] %onnx::Conv_1037[FLOAT, 64x64x3x3] %onnx::Conv_1040[FLOAT, 64x64x3x3] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 128x128x1x1] %onnx::Conv_1049[FLOAT, 128x128x3x3] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x128x3x3] %onnx::Conv_1058[FLOAT, 128x128x3x3] %onnx::Conv_1061[FLOAT, 128x128x3x3] %onnx::Conv_1064[FLOAT, 128x256x1x1] %onnx::Conv_1067[FLOAT, 128x128x1x1] %onnx::Conv_1070[FLOAT, 128x128x3x3] %onnx::Conv_1073[FLOAT, 128x256x1x1] %onnx::Conv_1076[FLOAT, 128x128x3x3] %onnx::Conv_1079[FLOAT, 128x128x3x3] %onnx::Conv_1082[FLOAT, 128x128x3x3] %onnx::Conv_1085[FLOAT, 128x256x1x1] %onnx::Conv_1088[FLOAT, 128x128x1x1] %onnx::Conv_1091[FLOAT, 128x128x3x3] %onnx::Conv_1094[FLOAT, 128x256x1x1] %onnx::Conv_1097[FLOAT, 128x128x3x3] %onnx::Conv_1100[FLOAT, 128x128x3x3] %onnx::Conv_1103[FLOAT, 128x128x3x3] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1107[FLOAT, 256] %onnx::Conv_1109[FLOAT, 256x256x1x1] %onnx::Conv_1112[FLOAT, 256x256x3x3] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1118[FLOAT, 256x256x3x3] %onnx::Conv_1121[FLOAT, 256x256x3x3] %onnx::Conv_1124[FLOAT, 256x256x3x3] %onnx::Conv_1127[FLOAT, 256x512x1x1] %onnx::Conv_1130[FLOAT, 256x256x1x1] %onnx::Conv_1133[FLOAT, 256x256x3x3] %onnx::Conv_1136[FLOAT, 256x512x1x1] %onnx::Conv_1139[FLOAT, 256x256x3x3] %onnx::Conv_1142[FLOAT, 256x256x3x3] %onnx::Conv_1145[FLOAT, 256x256x3x3] %onnx::Conv_1148[FLOAT, 256x512x1x1] %onnx::Conv_1151[FLOAT, 256x256x1x1] %onnx::Conv_1154[FLOAT, 256x256x3x3] %onnx::Conv_1157[FLOAT, 256x512x1x1] %onnx::Conv_1160[FLOAT, 256x256x3x3] %onnx::Conv_1163[FLOAT, 256x256x3x3] %onnx::Conv_1166[FLOAT, 256x256x3x3] ) { %onnx::Conv_1167 = Identity(%onnx::Conv_1107) %onnx::Conv_1164 = Identity(%onnx::Conv_1107) %onnx::Conv_1161 = Identity(%onnx::Conv_1107) %onnx::Conv_1158 = Identity(%onnx::Conv_1107) %onnx::Conv_1155 = Identity(%onnx::Conv_1107) %onnx::Conv_1152 = Identity(%onnx::Conv_1107) %onnx::Conv_1149 = Identity(%onnx::Conv_1107) %onnx::Conv_1146 = Identity(%onnx::Conv_1107) %onnx::Conv_1143 = Identity(%onnx::Conv_1107) %onnx::Conv_1140 = Identity(%onnx::Conv_1107) %onnx::Conv_1137 = Identity(%onnx::Conv_1107) %onnx::Conv_1134 = Identity(%onnx::Conv_1107) %onnx::Conv_1131 = Identity(%onnx::Conv_1107) %onnx::Conv_1128 = Identity(%onnx::Conv_1107) %onnx::Conv_1125 = Identity(%onnx::Conv_1107) %onnx::Conv_1122 = Identity(%onnx::Conv_1107) %onnx::Conv_1119 = Identity(%onnx::Conv_1107) %onnx::Conv_1116 = Identity(%onnx::Conv_1107) %onnx::Conv_1113 = Identity(%onnx::Conv_1107) %onnx::Conv_1110 = Identity(%onnx::Conv_1107) %onnx::Conv_1104 = Identity(%onnx::Conv_978) %onnx::Conv_1101 = Identity(%onnx::Conv_978) %onnx::Conv_1098 = Identity(%onnx::Conv_978) %onnx::Conv_1095 = Identity(%onnx::Conv_978) %onnx::Conv_1092 = Identity(%onnx::Conv_978) %onnx::Conv_1089 = Identity(%onnx::Conv_978) %onnx::Conv_1086 = Identity(%onnx::Conv_978) %onnx::Conv_1083 = Identity(%onnx::Conv_978) %onnx::Conv_1080 = Identity(%onnx::Conv_978) %onnx::Conv_1077 = Identity(%onnx::Conv_978) %onnx::Conv_1074 = Identity(%onnx::Conv_978) %onnx::Conv_1071 = Identity(%onnx::Conv_978) %onnx::Conv_1068 = Identity(%onnx::Conv_978) %onnx::Conv_1065 = Identity(%onnx::Conv_978) %onnx::Conv_1062 = Identity(%onnx::Conv_978) %onnx::Conv_1059 = Identity(%onnx::Conv_978) %onnx::Conv_1056 = Identity(%onnx::Conv_978) %onnx::Conv_1053 = Identity(%onnx::Conv_978) %onnx::Conv_1050 = Identity(%onnx::Conv_978) %onnx::Conv_1047 = Identity(%onnx::Conv_978) %onnx::Conv_1044 = Identity(%onnx::Conv_978) %onnx::Conv_1041 = Identity(%onnx::Conv_981) %onnx::Conv_1038 = Identity(%onnx::Conv_981) %onnx::Conv_1035 = Identity(%onnx::Conv_981) %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_977, %onnx::Conv_978) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %975 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %975 }
val_accuracy
93.219149
3,089,246,208
10,443,786
{'zcp_epe_nas': 140.403437639896, 'zcp_fisher': 30.315698623657227, 'zcp_flops': 49427939328.0, 'zcp_grad_norm': 119.03985595703125, 'zcp_grasp': -45.54541015625, 'zcp_jacov': -16.047066840586993, 'zcp_l2_norm': 1143.9886474609375, 'zcp_nwot': 226.79937975472888, 'zcp_params': 10443786.0, 'zcp_plain': 0.017270708456635, 'zcp_snip': 703.9114379882812, 'zcp_synflow': 130.8752218408895, 'zcp_zen': 125.34962463378906, 'zcp_val_accuracy': 0.9103565812110901}
NASBench101_310581
NASBench101
310581
bbea879536ad9ce4858db89ce7a065ed
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_743[FLOAT, 128x3x3x3] %onnx::Conv_744[FLOAT, 128] %onnx::Conv_746[FLOAT, 64x128x1x1] %onnx::Conv_747[FLOAT, 64] %onnx::Conv_749[FLOAT, 64x64x1x1] %onnx::Conv_752[FLOAT, 64x128x1x1] %onnx::Conv_755[FLOAT, 64x64x1x1] %onnx::Conv_758[FLOAT, 128x128x1x1] %onnx::Conv_761[FLOAT, 64x128x1x1] %onnx::Conv_764[FLOAT, 64x64x1x1] %onnx::Conv_767[FLOAT, 64x128x1x1] %onnx::Conv_770[FLOAT, 64x64x1x1] %onnx::Conv_773[FLOAT, 128x128x1x1] %onnx::Conv_776[FLOAT, 64x128x1x1] %onnx::Conv_779[FLOAT, 64x64x1x1] %onnx::Conv_782[FLOAT, 64x128x1x1] %onnx::Conv_785[FLOAT, 64x64x1x1] %onnx::Conv_788[FLOAT, 128x128x1x1] %onnx::Conv_791[FLOAT, 128x128x1x1] %onnx::Conv_794[FLOAT, 128x128x1x1] %onnx::Conv_797[FLOAT, 128x128x1x1] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 256x128x1x1] %onnx::Conv_804[FLOAT, 256] %onnx::Conv_806[FLOAT, 128x256x1x1] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 128x256x1x1] %onnx::Conv_815[FLOAT, 128x128x1x1] %onnx::Conv_818[FLOAT, 256x256x1x1] %onnx::Conv_821[FLOAT, 128x256x1x1] %onnx::Conv_824[FLOAT, 128x128x1x1] %onnx::Conv_827[FLOAT, 128x256x1x1] %onnx::Conv_830[FLOAT, 128x128x1x1] %onnx::Conv_833[FLOAT, 256x256x1x1] %onnx::Conv_836[FLOAT, 256x256x1x1] %onnx::Conv_839[FLOAT, 256x256x1x1] %onnx::Conv_842[FLOAT, 256x256x1x1] %onnx::Conv_845[FLOAT, 256x256x1x1] %onnx::Conv_848[FLOAT, 512x256x1x1] %onnx::Conv_849[FLOAT, 512] %onnx::Conv_851[FLOAT, 256x512x1x1] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_857[FLOAT, 256x512x1x1] %onnx::Conv_860[FLOAT, 256x256x1x1] %onnx::Conv_863[FLOAT, 512x512x1x1] %onnx::Conv_866[FLOAT, 256x512x1x1] %onnx::Conv_869[FLOAT, 256x256x1x1] %onnx::Conv_872[FLOAT, 256x512x1x1] %onnx::Conv_875[FLOAT, 256x256x1x1] %onnx::Conv_878[FLOAT, 512x512x1x1] ) { %onnx::Conv_879 = Identity(%onnx::Conv_849) %onnx::Conv_876 = Identity(%onnx::Conv_804) %onnx::Conv_873 = Identity(%onnx::Conv_804) %onnx::Conv_870 = Identity(%onnx::Conv_804) %onnx::Conv_867 = Identity(%onnx::Conv_804) %onnx::Conv_864 = Identity(%onnx::Conv_849) %onnx::Conv_861 = Identity(%onnx::Conv_804) %onnx::Conv_858 = Identity(%onnx::Conv_804) %onnx::Conv_855 = Identity(%onnx::Conv_804) %onnx::Conv_852 = Identity(%onnx::Conv_804) %onnx::Conv_846 = Identity(%onnx::Conv_804) %onnx::Conv_843 = Identity(%onnx::Conv_804) %onnx::Conv_840 = Identity(%onnx::Conv_804) %onnx::Conv_837 = Identity(%onnx::Conv_804) %onnx::Conv_834 = Identity(%onnx::Conv_804) %onnx::Conv_831 = Identity(%onnx::Conv_744) %onnx::Conv_828 = Identity(%onnx::Conv_744) %onnx::Conv_825 = Identity(%onnx::Conv_744) %onnx::Conv_822 = Identity(%onnx::Conv_744) %onnx::Conv_819 = Identity(%onnx::Conv_804) %onnx::Conv_816 = Identity(%onnx::Conv_744) %onnx::Conv_813 = Identity(%onnx::Conv_744) %onnx::Conv_810 = Identity(%onnx::Conv_744) %onnx::Conv_807 = Identity(%onnx::Conv_744) %onnx::Conv_801 = Identity(%onnx::Conv_744) %onnx::Conv_798 = Identity(%onnx::Conv_744) %onnx::Conv_795 = Identity(%onnx::Conv_744) %onnx::Conv_792 = Identity(%onnx::Conv_744) %onnx::Conv_789 = Identity(%onnx::Conv_744) %onnx::Conv_786 = Identity(%onnx::Conv_747) %onnx::Conv_783 = Identity(%onnx::Conv_747) %onnx::Conv_780 = Identity(%onnx::Conv_747) %onnx::Conv_777 = Identity(%onnx::Conv_747) %onnx::Conv_774 = Identity(%onnx::Conv_744) %onnx::Conv_771 = Identity(%onnx::Conv_747) %onnx::Conv_768 = Identity(%onnx::Conv_747) %onnx::Conv_765 = Identity(%onnx::Conv_747) %onnx::Conv_762 = Identity(%onnx::Conv_747) %onnx::Conv_759 = Identity(%onnx::Conv_744) %onnx::Conv_756 = Identity(%onnx::Conv_747) %onnx::Conv_753 = Identity(%onnx::Conv_747) %onnx::Conv_750 = Identity(%onnx::Conv_747) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_743, %onnx::Conv_744) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_4_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_4_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_4_output_0) %741 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %741 }
val_accuracy
90.354568
712,517,632
2,277,770
{'zcp_epe_nas': 80.48034288955657, 'zcp_fisher': 4.348189353942871, 'zcp_flops': 11400282112.0, 'zcp_grad_norm': 50.41893005371094, 'zcp_grasp': -48.53047180175781, 'zcp_jacov': -16.059082481334347, 'zcp_l2_norm': 891.343017578125, 'zcp_nwot': 224.58722136145948, 'zcp_params': 2277770.0, 'zcp_plain': 0.40927299857139504, 'zcp_snip': 300.42059326171875, 'zcp_synflow': 58.099631444444036, 'zcp_zen': 78.4501724243164, 'zcp_val_accuracy': 0.9232772588729851}
NASBench101_380809
NASBench101
380809
e639abae6f80885a3b0c29184ce470c4
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_860[FLOAT, 128x3x3x3] %onnx::Conv_861[FLOAT, 128] %onnx::Conv_863[FLOAT, 128x128x1x1] %onnx::Conv_866[FLOAT, 128x128x1x1] %onnx::Conv_869[FLOAT, 128x128x1x1] %onnx::Conv_872[FLOAT, 128x128x1x1] %onnx::Conv_875[FLOAT, 128x128x1x1] %onnx::Conv_878[FLOAT, 128x128x1x1] %onnx::Conv_881[FLOAT, 128x128x1x1] %onnx::Conv_884[FLOAT, 128x128x1x1] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x1x1] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 256x128x1x1] %onnx::Conv_918[FLOAT, 256] %onnx::Conv_920[FLOAT, 256x256x1x1] %onnx::Conv_923[FLOAT, 256x128x1x1] %onnx::Conv_926[FLOAT, 256x256x1x1] %onnx::Conv_929[FLOAT, 256x256x1x1] %onnx::Conv_932[FLOAT, 256x128x1x1] %onnx::Conv_935[FLOAT, 256x256x1x1] %onnx::Conv_938[FLOAT, 256x256x1x1] %onnx::Conv_941[FLOAT, 256x256x1x1] %onnx::Conv_944[FLOAT, 256x256x1x1] %onnx::Conv_947[FLOAT, 256x256x1x1] %onnx::Conv_950[FLOAT, 256x256x1x1] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x256x1x1] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 512x256x1x1] %onnx::Conv_972[FLOAT, 512] %onnx::Conv_974[FLOAT, 512x512x1x1] %onnx::Conv_977[FLOAT, 512x256x1x1] %onnx::Conv_980[FLOAT, 512x512x1x1] %onnx::Conv_983[FLOAT, 512x512x1x1] %onnx::Conv_986[FLOAT, 512x256x1x1] %onnx::Conv_989[FLOAT, 512x512x1x1] %onnx::Conv_992[FLOAT, 512x512x1x1] %onnx::Conv_995[FLOAT, 512x512x1x1] %onnx::Conv_998[FLOAT, 512x512x1x1] %onnx::Conv_1001[FLOAT, 512x512x1x1] %onnx::Conv_1004[FLOAT, 512x512x1x1] %onnx::Conv_1007[FLOAT, 512x512x1x1] %onnx::Conv_1010[FLOAT, 512x512x1x1] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x1x1] %onnx::Conv_1022[FLOAT, 512x512x1x1] ) { %onnx::Conv_1023 = Identity(%onnx::Conv_972) %onnx::Conv_1020 = Identity(%onnx::Conv_972) %onnx::Conv_1017 = Identity(%onnx::Conv_972) %onnx::Conv_1014 = Identity(%onnx::Conv_972) %onnx::Conv_1011 = Identity(%onnx::Conv_972) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_972) %onnx::Conv_1002 = Identity(%onnx::Conv_972) %onnx::Conv_999 = Identity(%onnx::Conv_972) %onnx::Conv_996 = Identity(%onnx::Conv_972) %onnx::Conv_993 = Identity(%onnx::Conv_972) %onnx::Conv_990 = Identity(%onnx::Conv_972) %onnx::Conv_987 = Identity(%onnx::Conv_972) %onnx::Conv_984 = Identity(%onnx::Conv_972) %onnx::Conv_981 = Identity(%onnx::Conv_972) %onnx::Conv_978 = Identity(%onnx::Conv_972) %onnx::Conv_975 = Identity(%onnx::Conv_972) %onnx::Conv_969 = Identity(%onnx::Conv_918) %onnx::Conv_966 = Identity(%onnx::Conv_918) %onnx::Conv_963 = Identity(%onnx::Conv_918) %onnx::Conv_960 = Identity(%onnx::Conv_918) %onnx::Conv_957 = Identity(%onnx::Conv_918) %onnx::Conv_954 = Identity(%onnx::Conv_918) %onnx::Conv_951 = Identity(%onnx::Conv_918) %onnx::Conv_948 = Identity(%onnx::Conv_918) %onnx::Conv_945 = Identity(%onnx::Conv_918) %onnx::Conv_942 = Identity(%onnx::Conv_918) %onnx::Conv_939 = Identity(%onnx::Conv_918) %onnx::Conv_936 = Identity(%onnx::Conv_918) %onnx::Conv_933 = Identity(%onnx::Conv_918) %onnx::Conv_930 = Identity(%onnx::Conv_918) %onnx::Conv_927 = Identity(%onnx::Conv_918) %onnx::Conv_924 = Identity(%onnx::Conv_918) %onnx::Conv_921 = Identity(%onnx::Conv_918) %onnx::Conv_915 = Identity(%onnx::Conv_861) %onnx::Conv_912 = Identity(%onnx::Conv_861) %onnx::Conv_909 = Identity(%onnx::Conv_861) %onnx::Conv_906 = Identity(%onnx::Conv_861) %onnx::Conv_903 = Identity(%onnx::Conv_861) %onnx::Conv_900 = Identity(%onnx::Conv_861) %onnx::Conv_897 = Identity(%onnx::Conv_861) %onnx::Conv_894 = Identity(%onnx::Conv_861) %onnx::Conv_891 = Identity(%onnx::Conv_861) %onnx::Conv_888 = Identity(%onnx::Conv_861) %onnx::Conv_885 = Identity(%onnx::Conv_861) %onnx::Conv_882 = Identity(%onnx::Conv_861) %onnx::Conv_879 = Identity(%onnx::Conv_861) %onnx::Conv_876 = Identity(%onnx::Conv_861) %onnx::Conv_873 = Identity(%onnx::Conv_861) %onnx::Conv_870 = Identity(%onnx::Conv_861) %onnx::Conv_867 = Identity(%onnx::Conv_861) %onnx::Conv_864 = Identity(%onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_860, %onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.5/maxpool/MaxPool_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.5/maxpool/MaxPool_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.5/maxpool/MaxPool_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %858 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %858 }
val_accuracy
89.212739
1,752,442,880
5,742,730
{'zcp_epe_nas': 105.85637817642083, 'zcp_fisher': 19.68891143798828, 'zcp_flops': 28039086080.0, 'zcp_grad_norm': 110.6279296875, 'zcp_grasp': -36.70343017578125, 'zcp_jacov': -16.051448432652933, 'zcp_l2_norm': 1226.246337890625, 'zcp_nwot': 235.3327156134249, 'zcp_params': 5742730.0, 'zcp_plain': 0.10424878448247901, 'zcp_snip': 844.1237182617188, 'zcp_synflow': 84.6600934693981, 'zcp_zen': 104.08716583251953, 'zcp_val_accuracy': 0.880709111690521}
NASBench101_357656
NASBench101
357656
d82ca24df15d4a7d9f19e05a8ed81b6c
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_977[FLOAT, 128x3x3x3] %onnx::Conv_978[FLOAT, 128] %onnx::Conv_980[FLOAT, 64x128x1x1] %onnx::Conv_981[FLOAT, 64] %onnx::Conv_983[FLOAT, 64x64x1x1] %onnx::Conv_986[FLOAT, 64x64x1x1] %onnx::Conv_989[FLOAT, 64x64x1x1] %onnx::Conv_992[FLOAT, 64x128x1x1] %onnx::Conv_995[FLOAT, 64x64x3x3] %onnx::Conv_998[FLOAT, 64x64x3x3] %onnx::Conv_1001[FLOAT, 64x128x1x1] %onnx::Conv_1004[FLOAT, 64x64x1x1] %onnx::Conv_1007[FLOAT, 64x64x1x1] %onnx::Conv_1010[FLOAT, 64x64x1x1] %onnx::Conv_1013[FLOAT, 64x128x1x1] %onnx::Conv_1016[FLOAT, 64x64x3x3] %onnx::Conv_1019[FLOAT, 64x64x3x3] %onnx::Conv_1022[FLOAT, 64x128x1x1] %onnx::Conv_1025[FLOAT, 64x64x1x1] %onnx::Conv_1028[FLOAT, 64x64x1x1] %onnx::Conv_1031[FLOAT, 64x64x1x1] %onnx::Conv_1034[FLOAT, 64x128x1x1] %onnx::Conv_1037[FLOAT, 64x64x3x3] %onnx::Conv_1040[FLOAT, 64x64x3x3] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 128x128x1x1] %onnx::Conv_1049[FLOAT, 128x128x1x1] %onnx::Conv_1052[FLOAT, 128x128x1x1] %onnx::Conv_1055[FLOAT, 128x128x1x1] %onnx::Conv_1058[FLOAT, 128x128x3x3] %onnx::Conv_1061[FLOAT, 128x128x3x3] %onnx::Conv_1064[FLOAT, 128x256x1x1] %onnx::Conv_1067[FLOAT, 128x128x1x1] %onnx::Conv_1070[FLOAT, 128x128x1x1] %onnx::Conv_1073[FLOAT, 128x128x1x1] %onnx::Conv_1076[FLOAT, 128x256x1x1] %onnx::Conv_1079[FLOAT, 128x128x3x3] %onnx::Conv_1082[FLOAT, 128x128x3x3] %onnx::Conv_1085[FLOAT, 128x256x1x1] %onnx::Conv_1088[FLOAT, 128x128x1x1] %onnx::Conv_1091[FLOAT, 128x128x1x1] %onnx::Conv_1094[FLOAT, 128x128x1x1] %onnx::Conv_1097[FLOAT, 128x256x1x1] %onnx::Conv_1100[FLOAT, 128x128x3x3] %onnx::Conv_1103[FLOAT, 128x128x3x3] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1107[FLOAT, 256] %onnx::Conv_1109[FLOAT, 256x256x1x1] %onnx::Conv_1112[FLOAT, 256x256x1x1] %onnx::Conv_1115[FLOAT, 256x256x1x1] %onnx::Conv_1118[FLOAT, 256x256x1x1] %onnx::Conv_1121[FLOAT, 256x256x3x3] %onnx::Conv_1124[FLOAT, 256x256x3x3] %onnx::Conv_1127[FLOAT, 256x512x1x1] %onnx::Conv_1130[FLOAT, 256x256x1x1] %onnx::Conv_1133[FLOAT, 256x256x1x1] %onnx::Conv_1136[FLOAT, 256x256x1x1] %onnx::Conv_1139[FLOAT, 256x512x1x1] %onnx::Conv_1142[FLOAT, 256x256x3x3] %onnx::Conv_1145[FLOAT, 256x256x3x3] %onnx::Conv_1148[FLOAT, 256x512x1x1] %onnx::Conv_1151[FLOAT, 256x256x1x1] %onnx::Conv_1154[FLOAT, 256x256x1x1] %onnx::Conv_1157[FLOAT, 256x256x1x1] %onnx::Conv_1160[FLOAT, 256x512x1x1] %onnx::Conv_1163[FLOAT, 256x256x3x3] %onnx::Conv_1166[FLOAT, 256x256x3x3] ) { %onnx::Conv_1167 = Identity(%onnx::Conv_1107) %onnx::Conv_1164 = Identity(%onnx::Conv_1107) %onnx::Conv_1161 = Identity(%onnx::Conv_1107) %onnx::Conv_1158 = Identity(%onnx::Conv_1107) %onnx::Conv_1155 = Identity(%onnx::Conv_1107) %onnx::Conv_1152 = Identity(%onnx::Conv_1107) %onnx::Conv_1149 = Identity(%onnx::Conv_1107) %onnx::Conv_1146 = Identity(%onnx::Conv_1107) %onnx::Conv_1143 = Identity(%onnx::Conv_1107) %onnx::Conv_1140 = Identity(%onnx::Conv_1107) %onnx::Conv_1137 = Identity(%onnx::Conv_1107) %onnx::Conv_1134 = Identity(%onnx::Conv_1107) %onnx::Conv_1131 = Identity(%onnx::Conv_1107) %onnx::Conv_1128 = Identity(%onnx::Conv_1107) %onnx::Conv_1125 = Identity(%onnx::Conv_1107) %onnx::Conv_1122 = Identity(%onnx::Conv_1107) %onnx::Conv_1119 = Identity(%onnx::Conv_1107) %onnx::Conv_1116 = Identity(%onnx::Conv_1107) %onnx::Conv_1113 = Identity(%onnx::Conv_1107) %onnx::Conv_1110 = Identity(%onnx::Conv_1107) %onnx::Conv_1104 = Identity(%onnx::Conv_978) %onnx::Conv_1101 = Identity(%onnx::Conv_978) %onnx::Conv_1098 = Identity(%onnx::Conv_978) %onnx::Conv_1095 = Identity(%onnx::Conv_978) %onnx::Conv_1092 = Identity(%onnx::Conv_978) %onnx::Conv_1089 = Identity(%onnx::Conv_978) %onnx::Conv_1086 = Identity(%onnx::Conv_978) %onnx::Conv_1083 = Identity(%onnx::Conv_978) %onnx::Conv_1080 = Identity(%onnx::Conv_978) %onnx::Conv_1077 = Identity(%onnx::Conv_978) %onnx::Conv_1074 = Identity(%onnx::Conv_978) %onnx::Conv_1071 = Identity(%onnx::Conv_978) %onnx::Conv_1068 = Identity(%onnx::Conv_978) %onnx::Conv_1065 = Identity(%onnx::Conv_978) %onnx::Conv_1062 = Identity(%onnx::Conv_978) %onnx::Conv_1059 = Identity(%onnx::Conv_978) %onnx::Conv_1056 = Identity(%onnx::Conv_978) %onnx::Conv_1053 = Identity(%onnx::Conv_978) %onnx::Conv_1050 = Identity(%onnx::Conv_978) %onnx::Conv_1047 = Identity(%onnx::Conv_978) %onnx::Conv_1044 = Identity(%onnx::Conv_978) %onnx::Conv_1041 = Identity(%onnx::Conv_981) %onnx::Conv_1038 = Identity(%onnx::Conv_981) %onnx::Conv_1035 = Identity(%onnx::Conv_981) %onnx::Conv_1032 = Identity(%onnx::Conv_981) %onnx::Conv_1029 = Identity(%onnx::Conv_981) %onnx::Conv_1026 = Identity(%onnx::Conv_981) %onnx::Conv_1023 = Identity(%onnx::Conv_981) %onnx::Conv_1020 = Identity(%onnx::Conv_981) %onnx::Conv_1017 = Identity(%onnx::Conv_981) %onnx::Conv_1014 = Identity(%onnx::Conv_981) %onnx::Conv_1011 = Identity(%onnx::Conv_981) %onnx::Conv_1008 = Identity(%onnx::Conv_981) %onnx::Conv_1005 = Identity(%onnx::Conv_981) %onnx::Conv_1002 = Identity(%onnx::Conv_981) %onnx::Conv_999 = Identity(%onnx::Conv_981) %onnx::Conv_996 = Identity(%onnx::Conv_981) %onnx::Conv_993 = Identity(%onnx::Conv_981) %onnx::Conv_990 = Identity(%onnx::Conv_981) %onnx::Conv_987 = Identity(%onnx::Conv_981) %onnx::Conv_984 = Identity(%onnx::Conv_981) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_977, %onnx::Conv_978) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %975 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %975 }
val_accuracy
91.796875
1,881,286,656
6,315,018
{'zcp_epe_nas': 106.58521923287223, 'zcp_fisher': 104.28932189941406, 'zcp_flops': 30100586496.0, 'zcp_grad_norm': 206.6214141845703, 'zcp_grasp': 317.47021484375, 'zcp_jacov': -16.052262016698446, 'zcp_l2_norm': 1143.366943359375, 'zcp_nwot': 226.76047231169355, 'zcp_params': 6315018.0, 'zcp_plain': -0.021262168884277, 'zcp_snip': 1104.580078125, 'zcp_synflow': 163.01072177139494, 'zcp_zen': 106.74295043945312, 'zcp_val_accuracy': 0.9388020634651181}
NASBench101_286196
NASBench101
286196
ad3e524fadd3097d5c48b435000e7e13
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_563[FLOAT, 128x3x3x3] %onnx::Conv_564[FLOAT, 128] %onnx::Conv_566[FLOAT, 64x128x1x1] %onnx::Conv_567[FLOAT, 64] %onnx::Conv_569[FLOAT, 64x128x1x1] %onnx::Conv_572[FLOAT, 64x64x3x3] %onnx::Conv_575[FLOAT, 64x128x1x1] %onnx::Conv_578[FLOAT, 64x128x1x1] %onnx::Conv_581[FLOAT, 64x64x3x3] %onnx::Conv_584[FLOAT, 64x128x1x1] %onnx::Conv_587[FLOAT, 64x128x1x1] %onnx::Conv_590[FLOAT, 64x64x3x3] %onnx::Conv_593[FLOAT, 128x128x1x1] %onnx::Conv_596[FLOAT, 128x128x1x1] %onnx::Conv_599[FLOAT, 128x128x3x3] %onnx::Conv_602[FLOAT, 128x256x1x1] %onnx::Conv_605[FLOAT, 128x256x1x1] %onnx::Conv_608[FLOAT, 128x128x3x3] %onnx::Conv_611[FLOAT, 128x256x1x1] %onnx::Conv_614[FLOAT, 128x256x1x1] %onnx::Conv_617[FLOAT, 128x128x3x3] %onnx::Conv_620[FLOAT, 256x256x1x1] %onnx::Conv_621[FLOAT, 256] %onnx::Conv_623[FLOAT, 256x256x1x1] %onnx::Conv_626[FLOAT, 256x256x3x3] %onnx::Conv_629[FLOAT, 256x512x1x1] %onnx::Conv_632[FLOAT, 256x512x1x1] %onnx::Conv_635[FLOAT, 256x256x3x3] %onnx::Conv_638[FLOAT, 256x512x1x1] %onnx::Conv_641[FLOAT, 256x512x1x1] %onnx::Conv_644[FLOAT, 256x256x3x3] ) { %onnx::Conv_645 = Identity(%onnx::Conv_621) %onnx::Conv_642 = Identity(%onnx::Conv_621) %onnx::Conv_639 = Identity(%onnx::Conv_621) %onnx::Conv_636 = Identity(%onnx::Conv_621) %onnx::Conv_633 = Identity(%onnx::Conv_621) %onnx::Conv_630 = Identity(%onnx::Conv_621) %onnx::Conv_627 = Identity(%onnx::Conv_621) %onnx::Conv_624 = Identity(%onnx::Conv_621) %onnx::Conv_618 = Identity(%onnx::Conv_564) %onnx::Conv_615 = Identity(%onnx::Conv_564) %onnx::Conv_612 = Identity(%onnx::Conv_564) %onnx::Conv_609 = Identity(%onnx::Conv_564) %onnx::Conv_606 = Identity(%onnx::Conv_564) %onnx::Conv_603 = Identity(%onnx::Conv_564) %onnx::Conv_600 = Identity(%onnx::Conv_564) %onnx::Conv_597 = Identity(%onnx::Conv_564) %onnx::Conv_594 = Identity(%onnx::Conv_564) %onnx::Conv_591 = Identity(%onnx::Conv_567) %onnx::Conv_588 = Identity(%onnx::Conv_567) %onnx::Conv_585 = Identity(%onnx::Conv_567) %onnx::Conv_582 = Identity(%onnx::Conv_567) %onnx::Conv_579 = Identity(%onnx::Conv_567) %onnx::Conv_576 = Identity(%onnx::Conv_567) %onnx::Conv_573 = Identity(%onnx::Conv_567) %onnx::Conv_570 = Identity(%onnx::Conv_567) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_563, %onnx::Conv_564) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_566, %onnx::Conv_567) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_569, %onnx::Conv_570) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_572, %onnx::Conv_573) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_575, %onnx::Conv_576) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_578, %onnx::Conv_579) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_581, %onnx::Conv_582) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_584, %onnx::Conv_585) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_587, %onnx::Conv_588) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_590, %onnx::Conv_591) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_593, %onnx::Conv_594) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_596, %onnx::Conv_597) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_599, %onnx::Conv_600) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_602, %onnx::Conv_603) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_605, %onnx::Conv_606) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_608, %onnx::Conv_609) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_611, %onnx::Conv_612) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_614, %onnx::Conv_615) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_617, %onnx::Conv_618) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_620, %onnx::Conv_621) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_623, %onnx::Conv_624) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_626, %onnx::Conv_627) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_629, %onnx::Conv_630) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_632, %onnx::Conv_633) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_635, %onnx::Conv_636) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %561 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %561 }
val_accuracy
89.633411
964,306,944
3,207,690
{'zcp_epe_nas': 157.16263060098396, 'zcp_fisher': 8.202832221984863, 'zcp_flops': 15428911104.0, 'zcp_grad_norm': 50.735042572021484, 'zcp_grasp': -23.39215087890625, 'zcp_jacov': -16.05761215795177, 'zcp_l2_norm': 544.9168701171875, 'zcp_nwot': 213.8240159693335, 'zcp_params': 3207690.0, 'zcp_plain': 0.13701032102108002, 'zcp_snip': 287.4571228027344, 'zcp_synflow': 67.49957559822256, 'zcp_zen': 64.04759979248047, 'zcp_val_accuracy': 0.9006410241127011}
NASBench101_273832
NASBench101
273832
a5d5df88c4e588eb8fe89f623c334f43
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_680[FLOAT, 128x3x3x3] %onnx::Conv_681[FLOAT, 128] %onnx::Conv_683[FLOAT, 64x128x1x1] %onnx::Conv_684[FLOAT, 64] %onnx::Conv_686[FLOAT, 64x64x3x3] %onnx::Conv_689[FLOAT, 64x64x1x1] %onnx::Conv_692[FLOAT, 64x64x1x1] %onnx::Conv_695[FLOAT, 64x128x1x1] %onnx::Conv_698[FLOAT, 64x64x3x3] %onnx::Conv_701[FLOAT, 64x64x1x1] %onnx::Conv_704[FLOAT, 64x64x1x1] %onnx::Conv_707[FLOAT, 64x128x1x1] %onnx::Conv_710[FLOAT, 64x64x3x3] %onnx::Conv_713[FLOAT, 64x64x1x1] %onnx::Conv_716[FLOAT, 64x64x1x1] %onnx::Conv_719[FLOAT, 128x128x1x1] %onnx::Conv_722[FLOAT, 128x128x3x3] %onnx::Conv_725[FLOAT, 128x128x1x1] %onnx::Conv_728[FLOAT, 128x128x1x1] %onnx::Conv_731[FLOAT, 128x256x1x1] %onnx::Conv_734[FLOAT, 128x128x3x3] %onnx::Conv_737[FLOAT, 128x128x1x1] %onnx::Conv_740[FLOAT, 128x128x1x1] %onnx::Conv_743[FLOAT, 128x256x1x1] %onnx::Conv_746[FLOAT, 128x128x3x3] %onnx::Conv_749[FLOAT, 128x128x1x1] %onnx::Conv_752[FLOAT, 128x128x1x1] %onnx::Conv_755[FLOAT, 256x256x1x1] %onnx::Conv_756[FLOAT, 256] %onnx::Conv_758[FLOAT, 256x256x3x3] %onnx::Conv_761[FLOAT, 256x256x1x1] %onnx::Conv_764[FLOAT, 256x256x1x1] %onnx::Conv_767[FLOAT, 256x512x1x1] %onnx::Conv_770[FLOAT, 256x256x3x3] %onnx::Conv_773[FLOAT, 256x256x1x1] %onnx::Conv_776[FLOAT, 256x256x1x1] %onnx::Conv_779[FLOAT, 256x512x1x1] %onnx::Conv_782[FLOAT, 256x256x3x3] %onnx::Conv_785[FLOAT, 256x256x1x1] %onnx::Conv_788[FLOAT, 256x256x1x1] ) { %onnx::Conv_789 = Identity(%onnx::Conv_756) %onnx::Conv_786 = Identity(%onnx::Conv_756) %onnx::Conv_783 = Identity(%onnx::Conv_756) %onnx::Conv_780 = Identity(%onnx::Conv_756) %onnx::Conv_777 = Identity(%onnx::Conv_756) %onnx::Conv_774 = Identity(%onnx::Conv_756) %onnx::Conv_771 = Identity(%onnx::Conv_756) %onnx::Conv_768 = Identity(%onnx::Conv_756) %onnx::Conv_765 = Identity(%onnx::Conv_756) %onnx::Conv_762 = Identity(%onnx::Conv_756) %onnx::Conv_759 = Identity(%onnx::Conv_756) %onnx::Conv_753 = Identity(%onnx::Conv_681) %onnx::Conv_750 = Identity(%onnx::Conv_681) %onnx::Conv_747 = Identity(%onnx::Conv_681) %onnx::Conv_744 = Identity(%onnx::Conv_681) %onnx::Conv_741 = Identity(%onnx::Conv_681) %onnx::Conv_738 = Identity(%onnx::Conv_681) %onnx::Conv_735 = Identity(%onnx::Conv_681) %onnx::Conv_732 = Identity(%onnx::Conv_681) %onnx::Conv_729 = Identity(%onnx::Conv_681) %onnx::Conv_726 = Identity(%onnx::Conv_681) %onnx::Conv_723 = Identity(%onnx::Conv_681) %onnx::Conv_720 = Identity(%onnx::Conv_681) %onnx::Conv_717 = Identity(%onnx::Conv_684) %onnx::Conv_714 = Identity(%onnx::Conv_684) %onnx::Conv_711 = Identity(%onnx::Conv_684) %onnx::Conv_708 = Identity(%onnx::Conv_684) %onnx::Conv_705 = Identity(%onnx::Conv_684) %onnx::Conv_702 = Identity(%onnx::Conv_684) %onnx::Conv_699 = Identity(%onnx::Conv_684) %onnx::Conv_696 = Identity(%onnx::Conv_684) %onnx::Conv_693 = Identity(%onnx::Conv_684) %onnx::Conv_690 = Identity(%onnx::Conv_684) %onnx::Conv_687 = Identity(%onnx::Conv_684) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_680, %onnx::Conv_681) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %678 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %678 }
val_accuracy
92.357773
983,836,672
3,292,298
{'zcp_epe_nas': 99.14218015151032, 'zcp_fisher': 109.63285064697266, 'zcp_flops': 15741386752.0, 'zcp_grad_norm': 168.10023498535156, 'zcp_grasp': -191.806640625, 'zcp_jacov': -16.03883907848575, 'zcp_l2_norm': 648.2589721679688, 'zcp_nwot': 218.532704755956, 'zcp_params': 3292298.0, 'zcp_plain': -0.009631853550672, 'zcp_snip': 941.8080444335938, 'zcp_synflow': 113.99441790867206, 'zcp_zen': 67.05137634277344, 'zcp_val_accuracy': 0.934194684028625}
NASBench101_411236
NASBench101
411236
f87a4e0eb1143444bb5227b975a5d869
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_662[FLOAT, 128x3x3x3] %onnx::Conv_663[FLOAT, 128] %onnx::Conv_665[FLOAT, 64x128x1x1] %onnx::Conv_666[FLOAT, 64] %onnx::Conv_668[FLOAT, 64x64x1x1] %onnx::Conv_671[FLOAT, 64x64x3x3] %onnx::Conv_674[FLOAT, 64x64x1x1] %onnx::Conv_677[FLOAT, 64x128x1x1] %onnx::Conv_680[FLOAT, 64x64x1x1] %onnx::Conv_683[FLOAT, 64x64x3x3] %onnx::Conv_686[FLOAT, 64x64x1x1] %onnx::Conv_689[FLOAT, 64x128x1x1] %onnx::Conv_692[FLOAT, 64x64x1x1] %onnx::Conv_695[FLOAT, 64x64x3x3] %onnx::Conv_698[FLOAT, 64x64x1x1] %onnx::Conv_701[FLOAT, 128x128x1x1] %onnx::Conv_704[FLOAT, 128x128x1x1] %onnx::Conv_707[FLOAT, 128x128x3x3] %onnx::Conv_710[FLOAT, 128x128x1x1] %onnx::Conv_713[FLOAT, 128x256x1x1] %onnx::Conv_716[FLOAT, 128x128x1x1] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x128x1x1] %onnx::Conv_725[FLOAT, 128x256x1x1] %onnx::Conv_728[FLOAT, 128x128x1x1] %onnx::Conv_731[FLOAT, 128x128x3x3] %onnx::Conv_734[FLOAT, 128x128x1x1] %onnx::Conv_737[FLOAT, 256x256x1x1] %onnx::Conv_738[FLOAT, 256] %onnx::Conv_740[FLOAT, 256x256x1x1] %onnx::Conv_743[FLOAT, 256x256x3x3] %onnx::Conv_746[FLOAT, 256x256x1x1] %onnx::Conv_749[FLOAT, 256x512x1x1] %onnx::Conv_752[FLOAT, 256x256x1x1] %onnx::Conv_755[FLOAT, 256x256x3x3] %onnx::Conv_758[FLOAT, 256x256x1x1] %onnx::Conv_761[FLOAT, 256x512x1x1] %onnx::Conv_764[FLOAT, 256x256x1x1] %onnx::Conv_767[FLOAT, 256x256x3x3] %onnx::Conv_770[FLOAT, 256x256x1x1] ) { %onnx::Conv_771 = Identity(%onnx::Conv_738) %onnx::Conv_768 = Identity(%onnx::Conv_738) %onnx::Conv_765 = Identity(%onnx::Conv_738) %onnx::Conv_762 = Identity(%onnx::Conv_738) %onnx::Conv_759 = Identity(%onnx::Conv_738) %onnx::Conv_756 = Identity(%onnx::Conv_738) %onnx::Conv_753 = Identity(%onnx::Conv_738) %onnx::Conv_750 = Identity(%onnx::Conv_738) %onnx::Conv_747 = Identity(%onnx::Conv_738) %onnx::Conv_744 = Identity(%onnx::Conv_738) %onnx::Conv_741 = Identity(%onnx::Conv_738) %onnx::Conv_735 = Identity(%onnx::Conv_663) %onnx::Conv_732 = Identity(%onnx::Conv_663) %onnx::Conv_729 = Identity(%onnx::Conv_663) %onnx::Conv_726 = Identity(%onnx::Conv_663) %onnx::Conv_723 = Identity(%onnx::Conv_663) %onnx::Conv_720 = Identity(%onnx::Conv_663) %onnx::Conv_717 = Identity(%onnx::Conv_663) %onnx::Conv_714 = Identity(%onnx::Conv_663) %onnx::Conv_711 = Identity(%onnx::Conv_663) %onnx::Conv_708 = Identity(%onnx::Conv_663) %onnx::Conv_705 = Identity(%onnx::Conv_663) %onnx::Conv_702 = Identity(%onnx::Conv_663) %onnx::Conv_699 = Identity(%onnx::Conv_666) %onnx::Conv_696 = Identity(%onnx::Conv_666) %onnx::Conv_693 = Identity(%onnx::Conv_666) %onnx::Conv_690 = Identity(%onnx::Conv_666) %onnx::Conv_687 = Identity(%onnx::Conv_666) %onnx::Conv_684 = Identity(%onnx::Conv_666) %onnx::Conv_681 = Identity(%onnx::Conv_666) %onnx::Conv_678 = Identity(%onnx::Conv_666) %onnx::Conv_675 = Identity(%onnx::Conv_666) %onnx::Conv_672 = Identity(%onnx::Conv_666) %onnx::Conv_669 = Identity(%onnx::Conv_666) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_662, %onnx::Conv_663) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %660 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %660 }
val_accuracy
88.421476
983,836,672
3,292,298
{'zcp_epe_nas': 137.4072271618542, 'zcp_fisher': 39.56283187866211, 'zcp_flops': 15741386752.0, 'zcp_grad_norm': 129.17535400390625, 'zcp_grasp': -14.72265625, 'zcp_jacov': -16.05282596677329, 'zcp_l2_norm': 647.6988525390625, 'zcp_nwot': 218.33138711209372, 'zcp_params': 3292298.0, 'zcp_plain': 0.073103733360767, 'zcp_snip': 673.201171875, 'zcp_synflow': 113.44589296078462, 'zcp_zen': 71.36305236816406, 'zcp_val_accuracy': 0.9006410241127011}
NASBench101_386455
NASBench101
386455
e9a25f865d80e67ef1eb9b0ac5303ef6
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1076[FLOAT, 128x3x3x3] %onnx::Conv_1077[FLOAT, 128] %onnx::Conv_1079[FLOAT, 64x128x1x1] %onnx::Conv_1080[FLOAT, 64] %onnx::Conv_1082[FLOAT, 64x64x3x3] %onnx::Conv_1085[FLOAT, 64x128x1x1] %onnx::Conv_1088[FLOAT, 64x64x3x3] %onnx::Conv_1091[FLOAT, 64x64x3x3] %onnx::Conv_1094[FLOAT, 64x64x1x1] %onnx::Conv_1097[FLOAT, 64x128x1x1] %onnx::Conv_1100[FLOAT, 64x64x1x1] %onnx::Conv_1103[FLOAT, 64x128x1x1] %onnx::Conv_1106[FLOAT, 64x64x3x3] %onnx::Conv_1109[FLOAT, 64x128x1x1] %onnx::Conv_1112[FLOAT, 64x64x3x3] %onnx::Conv_1115[FLOAT, 64x64x3x3] %onnx::Conv_1118[FLOAT, 64x64x1x1] %onnx::Conv_1121[FLOAT, 64x128x1x1] %onnx::Conv_1124[FLOAT, 64x64x1x1] %onnx::Conv_1127[FLOAT, 64x128x1x1] %onnx::Conv_1130[FLOAT, 64x64x3x3] %onnx::Conv_1133[FLOAT, 64x128x1x1] %onnx::Conv_1136[FLOAT, 64x64x3x3] %onnx::Conv_1139[FLOAT, 64x64x3x3] %onnx::Conv_1142[FLOAT, 64x64x1x1] %onnx::Conv_1145[FLOAT, 64x128x1x1] %onnx::Conv_1148[FLOAT, 64x64x1x1] %onnx::Conv_1151[FLOAT, 128x128x1x1] %onnx::Conv_1154[FLOAT, 128x128x3x3] %onnx::Conv_1157[FLOAT, 128x128x1x1] %onnx::Conv_1160[FLOAT, 128x128x3x3] %onnx::Conv_1163[FLOAT, 128x128x3x3] %onnx::Conv_1166[FLOAT, 128x128x1x1] %onnx::Conv_1169[FLOAT, 128x128x1x1] %onnx::Conv_1172[FLOAT, 128x128x1x1] %onnx::Conv_1175[FLOAT, 128x256x1x1] %onnx::Conv_1178[FLOAT, 128x128x3x3] %onnx::Conv_1181[FLOAT, 128x256x1x1] %onnx::Conv_1184[FLOAT, 128x128x3x3] %onnx::Conv_1187[FLOAT, 128x128x3x3] %onnx::Conv_1190[FLOAT, 128x128x1x1] %onnx::Conv_1193[FLOAT, 128x256x1x1] %onnx::Conv_1196[FLOAT, 128x128x1x1] %onnx::Conv_1199[FLOAT, 128x256x1x1] %onnx::Conv_1202[FLOAT, 128x128x3x3] %onnx::Conv_1205[FLOAT, 128x256x1x1] %onnx::Conv_1208[FLOAT, 128x128x3x3] %onnx::Conv_1211[FLOAT, 128x128x3x3] %onnx::Conv_1214[FLOAT, 128x128x1x1] %onnx::Conv_1217[FLOAT, 128x256x1x1] %onnx::Conv_1220[FLOAT, 128x128x1x1] %onnx::Conv_1223[FLOAT, 256x256x1x1] %onnx::Conv_1224[FLOAT, 256] %onnx::Conv_1226[FLOAT, 256x256x3x3] %onnx::Conv_1229[FLOAT, 256x256x1x1] %onnx::Conv_1232[FLOAT, 256x256x3x3] %onnx::Conv_1235[FLOAT, 256x256x3x3] %onnx::Conv_1238[FLOAT, 256x256x1x1] %onnx::Conv_1241[FLOAT, 256x256x1x1] %onnx::Conv_1244[FLOAT, 256x256x1x1] %onnx::Conv_1247[FLOAT, 256x512x1x1] %onnx::Conv_1250[FLOAT, 256x256x3x3] %onnx::Conv_1253[FLOAT, 256x512x1x1] %onnx::Conv_1256[FLOAT, 256x256x3x3] %onnx::Conv_1259[FLOAT, 256x256x3x3] %onnx::Conv_1262[FLOAT, 256x256x1x1] %onnx::Conv_1265[FLOAT, 256x512x1x1] %onnx::Conv_1268[FLOAT, 256x256x1x1] %onnx::Conv_1271[FLOAT, 256x512x1x1] %onnx::Conv_1274[FLOAT, 256x256x3x3] %onnx::Conv_1277[FLOAT, 256x512x1x1] %onnx::Conv_1280[FLOAT, 256x256x3x3] %onnx::Conv_1283[FLOAT, 256x256x3x3] %onnx::Conv_1286[FLOAT, 256x256x1x1] %onnx::Conv_1289[FLOAT, 256x512x1x1] %onnx::Conv_1292[FLOAT, 256x256x1x1] ) { %onnx::Conv_1293 = Identity(%onnx::Conv_1224) %onnx::Conv_1290 = Identity(%onnx::Conv_1224) %onnx::Conv_1287 = Identity(%onnx::Conv_1224) %onnx::Conv_1284 = Identity(%onnx::Conv_1224) %onnx::Conv_1281 = Identity(%onnx::Conv_1224) %onnx::Conv_1278 = Identity(%onnx::Conv_1224) %onnx::Conv_1275 = Identity(%onnx::Conv_1224) %onnx::Conv_1272 = Identity(%onnx::Conv_1224) %onnx::Conv_1269 = Identity(%onnx::Conv_1224) %onnx::Conv_1266 = Identity(%onnx::Conv_1224) %onnx::Conv_1263 = Identity(%onnx::Conv_1224) %onnx::Conv_1260 = Identity(%onnx::Conv_1224) %onnx::Conv_1257 = Identity(%onnx::Conv_1224) %onnx::Conv_1254 = Identity(%onnx::Conv_1224) %onnx::Conv_1251 = Identity(%onnx::Conv_1224) %onnx::Conv_1248 = Identity(%onnx::Conv_1224) %onnx::Conv_1245 = Identity(%onnx::Conv_1224) %onnx::Conv_1242 = Identity(%onnx::Conv_1224) %onnx::Conv_1239 = Identity(%onnx::Conv_1224) %onnx::Conv_1236 = Identity(%onnx::Conv_1224) %onnx::Conv_1233 = Identity(%onnx::Conv_1224) %onnx::Conv_1230 = Identity(%onnx::Conv_1224) %onnx::Conv_1227 = Identity(%onnx::Conv_1224) %onnx::Conv_1221 = Identity(%onnx::Conv_1077) %onnx::Conv_1218 = Identity(%onnx::Conv_1077) %onnx::Conv_1215 = Identity(%onnx::Conv_1077) %onnx::Conv_1212 = Identity(%onnx::Conv_1077) %onnx::Conv_1209 = Identity(%onnx::Conv_1077) %onnx::Conv_1206 = Identity(%onnx::Conv_1077) %onnx::Conv_1203 = Identity(%onnx::Conv_1077) %onnx::Conv_1200 = Identity(%onnx::Conv_1077) %onnx::Conv_1197 = Identity(%onnx::Conv_1077) %onnx::Conv_1194 = Identity(%onnx::Conv_1077) %onnx::Conv_1191 = Identity(%onnx::Conv_1077) %onnx::Conv_1188 = Identity(%onnx::Conv_1077) %onnx::Conv_1185 = Identity(%onnx::Conv_1077) %onnx::Conv_1182 = Identity(%onnx::Conv_1077) %onnx::Conv_1179 = Identity(%onnx::Conv_1077) %onnx::Conv_1176 = Identity(%onnx::Conv_1077) %onnx::Conv_1173 = Identity(%onnx::Conv_1077) %onnx::Conv_1170 = Identity(%onnx::Conv_1077) %onnx::Conv_1167 = Identity(%onnx::Conv_1077) %onnx::Conv_1164 = Identity(%onnx::Conv_1077) %onnx::Conv_1161 = Identity(%onnx::Conv_1077) %onnx::Conv_1158 = Identity(%onnx::Conv_1077) %onnx::Conv_1155 = Identity(%onnx::Conv_1077) %onnx::Conv_1152 = Identity(%onnx::Conv_1077) %onnx::Conv_1149 = Identity(%onnx::Conv_1080) %onnx::Conv_1146 = Identity(%onnx::Conv_1080) %onnx::Conv_1143 = Identity(%onnx::Conv_1080) %onnx::Conv_1140 = Identity(%onnx::Conv_1080) %onnx::Conv_1137 = Identity(%onnx::Conv_1080) %onnx::Conv_1134 = Identity(%onnx::Conv_1080) %onnx::Conv_1131 = Identity(%onnx::Conv_1080) %onnx::Conv_1128 = Identity(%onnx::Conv_1080) %onnx::Conv_1125 = Identity(%onnx::Conv_1080) %onnx::Conv_1122 = Identity(%onnx::Conv_1080) %onnx::Conv_1119 = Identity(%onnx::Conv_1080) %onnx::Conv_1116 = Identity(%onnx::Conv_1080) %onnx::Conv_1113 = Identity(%onnx::Conv_1080) %onnx::Conv_1110 = Identity(%onnx::Conv_1080) %onnx::Conv_1107 = Identity(%onnx::Conv_1080) %onnx::Conv_1104 = Identity(%onnx::Conv_1080) %onnx::Conv_1101 = Identity(%onnx::Conv_1080) %onnx::Conv_1098 = Identity(%onnx::Conv_1080) %onnx::Conv_1095 = Identity(%onnx::Conv_1080) %onnx::Conv_1092 = Identity(%onnx::Conv_1080) %onnx::Conv_1089 = Identity(%onnx::Conv_1080) %onnx::Conv_1086 = Identity(%onnx::Conv_1080) %onnx::Conv_1083 = Identity(%onnx::Conv_1080) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1220, %onnx::Conv_1221) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1223, %onnx::Conv_1224) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1226, %onnx::Conv_1227) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1229, %onnx::Conv_1230) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1232, %onnx::Conv_1233) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1235, %onnx::Conv_1236) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1238, %onnx::Conv_1239) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1241, %onnx::Conv_1242) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1244, %onnx::Conv_1245) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1247, %onnx::Conv_1248) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1250, %onnx::Conv_1251) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1253, %onnx::Conv_1254) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1256, %onnx::Conv_1257) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1259, %onnx::Conv_1260) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1262, %onnx::Conv_1263) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1265, %onnx::Conv_1266) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1268, %onnx::Conv_1269) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1271, %onnx::Conv_1272) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1274, %onnx::Conv_1275) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1277, %onnx::Conv_1278) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1280, %onnx::Conv_1281) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1283, %onnx::Conv_1284) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1286, %onnx::Conv_1287) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1289, %onnx::Conv_1290) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1292, %onnx::Conv_1293) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %1074 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1074 }
val_accuracy
93.870193
2,622,236,672
8,816,266
{'zcp_epe_nas': 64.33384216160222, 'zcp_fisher': 7.188109397888184, 'zcp_flops': 41955786752.0, 'zcp_grad_norm': 64.92945861816406, 'zcp_grasp': -0.24746704101562503, 'zcp_jacov': -16.049614463716516, 'zcp_l2_norm': 1340.6326904296875, 'zcp_nwot': 228.94546564706613, 'zcp_params': 8816266.0, 'zcp_plain': 0.015538316220045001, 'zcp_snip': 407.2392883300781, 'zcp_synflow': 139.5980665078118, 'zcp_zen': 126.65991973876953, 'zcp_val_accuracy': 0.889423072338104}
NASBench101_151795
NASBench101
151795
5bd4f7e6e26ab98bae88a821c78bdee1
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_986[FLOAT, 128x3x3x3] %onnx::Conv_987[FLOAT, 128] %onnx::Conv_989[FLOAT, 128x128x1x1] %onnx::Conv_992[FLOAT, 128x128x1x1] %onnx::Conv_995[FLOAT, 128x128x1x1] %onnx::Conv_998[FLOAT, 128x128x1x1] %onnx::Conv_1001[FLOAT, 128x128x1x1] %onnx::Conv_1004[FLOAT, 128x128x3x3] %onnx::Conv_1007[FLOAT, 128x128x3x3] %onnx::Conv_1010[FLOAT, 128x128x1x1] %onnx::Conv_1013[FLOAT, 128x128x1x1] %onnx::Conv_1016[FLOAT, 128x128x1x1] %onnx::Conv_1019[FLOAT, 128x128x1x1] %onnx::Conv_1022[FLOAT, 128x128x1x1] %onnx::Conv_1025[FLOAT, 128x128x3x3] %onnx::Conv_1028[FLOAT, 128x128x3x3] %onnx::Conv_1031[FLOAT, 128x128x1x1] %onnx::Conv_1034[FLOAT, 128x128x1x1] %onnx::Conv_1037[FLOAT, 128x128x1x1] %onnx::Conv_1040[FLOAT, 128x128x1x1] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 128x128x3x3] %onnx::Conv_1049[FLOAT, 128x128x3x3] %onnx::Conv_1052[FLOAT, 256x128x1x1] %onnx::Conv_1053[FLOAT, 256] %onnx::Conv_1055[FLOAT, 256x256x1x1] %onnx::Conv_1058[FLOAT, 256x128x1x1] %onnx::Conv_1061[FLOAT, 256x256x1x1] %onnx::Conv_1064[FLOAT, 256x128x1x1] %onnx::Conv_1067[FLOAT, 256x256x3x3] %onnx::Conv_1070[FLOAT, 256x256x3x3] %onnx::Conv_1073[FLOAT, 256x256x1x1] %onnx::Conv_1076[FLOAT, 256x256x1x1] %onnx::Conv_1079[FLOAT, 256x256x1x1] %onnx::Conv_1082[FLOAT, 256x256x1x1] %onnx::Conv_1085[FLOAT, 256x256x1x1] %onnx::Conv_1088[FLOAT, 256x256x3x3] %onnx::Conv_1091[FLOAT, 256x256x3x3] %onnx::Conv_1094[FLOAT, 256x256x1x1] %onnx::Conv_1097[FLOAT, 256x256x1x1] %onnx::Conv_1100[FLOAT, 256x256x1x1] %onnx::Conv_1103[FLOAT, 256x256x1x1] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1109[FLOAT, 256x256x3x3] %onnx::Conv_1112[FLOAT, 256x256x3x3] %onnx::Conv_1115[FLOAT, 512x256x1x1] %onnx::Conv_1116[FLOAT, 512] %onnx::Conv_1118[FLOAT, 512x512x1x1] %onnx::Conv_1121[FLOAT, 512x256x1x1] %onnx::Conv_1124[FLOAT, 512x512x1x1] %onnx::Conv_1127[FLOAT, 512x256x1x1] %onnx::Conv_1130[FLOAT, 512x512x3x3] %onnx::Conv_1133[FLOAT, 512x512x3x3] %onnx::Conv_1136[FLOAT, 512x512x1x1] %onnx::Conv_1139[FLOAT, 512x512x1x1] %onnx::Conv_1142[FLOAT, 512x512x1x1] %onnx::Conv_1145[FLOAT, 512x512x1x1] %onnx::Conv_1148[FLOAT, 512x512x1x1] %onnx::Conv_1151[FLOAT, 512x512x3x3] %onnx::Conv_1154[FLOAT, 512x512x3x3] %onnx::Conv_1157[FLOAT, 512x512x1x1] %onnx::Conv_1160[FLOAT, 512x512x1x1] %onnx::Conv_1163[FLOAT, 512x512x1x1] %onnx::Conv_1166[FLOAT, 512x512x1x1] %onnx::Conv_1169[FLOAT, 512x512x1x1] %onnx::Conv_1172[FLOAT, 512x512x3x3] %onnx::Conv_1175[FLOAT, 512x512x3x3] ) { %onnx::Conv_1176 = Identity(%onnx::Conv_1116) %onnx::Conv_1173 = Identity(%onnx::Conv_1116) %onnx::Conv_1170 = Identity(%onnx::Conv_1116) %onnx::Conv_1167 = Identity(%onnx::Conv_1116) %onnx::Conv_1164 = Identity(%onnx::Conv_1116) %onnx::Conv_1161 = Identity(%onnx::Conv_1116) %onnx::Conv_1158 = Identity(%onnx::Conv_1116) %onnx::Conv_1155 = Identity(%onnx::Conv_1116) %onnx::Conv_1152 = Identity(%onnx::Conv_1116) %onnx::Conv_1149 = Identity(%onnx::Conv_1116) %onnx::Conv_1146 = Identity(%onnx::Conv_1116) %onnx::Conv_1143 = Identity(%onnx::Conv_1116) %onnx::Conv_1140 = Identity(%onnx::Conv_1116) %onnx::Conv_1137 = Identity(%onnx::Conv_1116) %onnx::Conv_1134 = Identity(%onnx::Conv_1116) %onnx::Conv_1131 = Identity(%onnx::Conv_1116) %onnx::Conv_1128 = Identity(%onnx::Conv_1116) %onnx::Conv_1125 = Identity(%onnx::Conv_1116) %onnx::Conv_1122 = Identity(%onnx::Conv_1116) %onnx::Conv_1119 = Identity(%onnx::Conv_1116) %onnx::Conv_1113 = Identity(%onnx::Conv_1053) %onnx::Conv_1110 = Identity(%onnx::Conv_1053) %onnx::Conv_1107 = Identity(%onnx::Conv_1053) %onnx::Conv_1104 = Identity(%onnx::Conv_1053) %onnx::Conv_1101 = Identity(%onnx::Conv_1053) %onnx::Conv_1098 = Identity(%onnx::Conv_1053) %onnx::Conv_1095 = Identity(%onnx::Conv_1053) %onnx::Conv_1092 = Identity(%onnx::Conv_1053) %onnx::Conv_1089 = Identity(%onnx::Conv_1053) %onnx::Conv_1086 = Identity(%onnx::Conv_1053) %onnx::Conv_1083 = Identity(%onnx::Conv_1053) %onnx::Conv_1080 = Identity(%onnx::Conv_1053) %onnx::Conv_1077 = Identity(%onnx::Conv_1053) %onnx::Conv_1074 = Identity(%onnx::Conv_1053) %onnx::Conv_1071 = Identity(%onnx::Conv_1053) %onnx::Conv_1068 = Identity(%onnx::Conv_1053) %onnx::Conv_1065 = Identity(%onnx::Conv_1053) %onnx::Conv_1062 = Identity(%onnx::Conv_1053) %onnx::Conv_1059 = Identity(%onnx::Conv_1053) %onnx::Conv_1056 = Identity(%onnx::Conv_1053) %onnx::Conv_1050 = Identity(%onnx::Conv_987) %onnx::Conv_1047 = Identity(%onnx::Conv_987) %onnx::Conv_1044 = Identity(%onnx::Conv_987) %onnx::Conv_1041 = Identity(%onnx::Conv_987) %onnx::Conv_1038 = Identity(%onnx::Conv_987) %onnx::Conv_1035 = Identity(%onnx::Conv_987) %onnx::Conv_1032 = Identity(%onnx::Conv_987) %onnx::Conv_1029 = Identity(%onnx::Conv_987) %onnx::Conv_1026 = Identity(%onnx::Conv_987) %onnx::Conv_1023 = Identity(%onnx::Conv_987) %onnx::Conv_1020 = Identity(%onnx::Conv_987) %onnx::Conv_1017 = Identity(%onnx::Conv_987) %onnx::Conv_1014 = Identity(%onnx::Conv_987) %onnx::Conv_1011 = Identity(%onnx::Conv_987) %onnx::Conv_1008 = Identity(%onnx::Conv_987) %onnx::Conv_1005 = Identity(%onnx::Conv_987) %onnx::Conv_1002 = Identity(%onnx::Conv_987) %onnx::Conv_999 = Identity(%onnx::Conv_987) %onnx::Conv_996 = Identity(%onnx::Conv_987) %onnx::Conv_993 = Identity(%onnx::Conv_987) %onnx::Conv_990 = Identity(%onnx::Conv_987) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_986, %onnx::Conv_987) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %984 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %984 }
val_accuracy
91.205931
6,891,776,000
23,295,370
{'zcp_epe_nas': 104.30081634291136, 'zcp_fisher': 329.49420166015625, 'zcp_flops': 110268416000.0, 'zcp_grad_norm': 366.5431213378906, 'zcp_grasp': -579.9697265625, 'zcp_jacov': -16.052469919805727, 'zcp_l2_norm': 1439.005859375, 'zcp_nwot': 237.15842806025373, 'zcp_params': 23295370.0, 'zcp_plain': 0.14153173565864502, 'zcp_snip': 2935.78466796875, 'zcp_synflow': 100.14781630286373, 'zcp_zen': 136.79823303222656, 'zcp_val_accuracy': 0.9417067170143121}
NASBench101_187611
NASBench101
187611
716b5f94c953cef5168536bfa0ba45ac
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_758[FLOAT, 128x3x3x3] %onnx::Conv_759[FLOAT, 128] %onnx::Conv_761[FLOAT, 43x128x1x1] %onnx::Conv_762[FLOAT, 43] %onnx::Conv_764[FLOAT, 43x43x1x1] %onnx::Conv_767[FLOAT, 43x128x1x1] %onnx::Conv_770[FLOAT, 43x43x1x1] %onnx::Conv_773[FLOAT, 43x128x1x1] %onnx::Conv_776[FLOAT, 43x43x1x1] %onnx::Conv_779[FLOAT, 43x128x1x1] %onnx::Conv_782[FLOAT, 43x43x1x1] %onnx::Conv_785[FLOAT, 43x128x1x1] %onnx::Conv_788[FLOAT, 43x43x1x1] %onnx::Conv_791[FLOAT, 43x128x1x1] %onnx::Conv_794[FLOAT, 43x43x1x1] %onnx::Conv_797[FLOAT, 86x128x1x1] %onnx::Conv_798[FLOAT, 86] %onnx::Conv_800[FLOAT, 86x86x1x1] %onnx::Conv_803[FLOAT, 85x128x1x1] %onnx::Conv_804[FLOAT, 85] %onnx::Conv_806[FLOAT, 85x85x1x1] %onnx::Conv_809[FLOAT, 86x256x1x1] %onnx::Conv_812[FLOAT, 86x86x1x1] %onnx::Conv_815[FLOAT, 85x256x1x1] %onnx::Conv_818[FLOAT, 85x85x1x1] %onnx::Conv_821[FLOAT, 86x256x1x1] %onnx::Conv_824[FLOAT, 86x86x1x1] %onnx::Conv_827[FLOAT, 85x256x1x1] %onnx::Conv_830[FLOAT, 85x85x1x1] %onnx::Conv_833[FLOAT, 171x256x1x1] %onnx::Conv_834[FLOAT, 171] %onnx::Conv_836[FLOAT, 171x171x1x1] %onnx::Conv_839[FLOAT, 171x256x1x1] %onnx::Conv_842[FLOAT, 171x171x1x1] %onnx::Conv_845[FLOAT, 171x512x1x1] %onnx::Conv_848[FLOAT, 171x171x1x1] %onnx::Conv_851[FLOAT, 171x512x1x1] %onnx::Conv_854[FLOAT, 171x171x1x1] %onnx::Conv_857[FLOAT, 171x512x1x1] %onnx::Conv_860[FLOAT, 171x171x1x1] %onnx::Conv_863[FLOAT, 171x512x1x1] %onnx::Conv_866[FLOAT, 171x171x1x1] ) { %onnx::Conv_867 = Identity(%onnx::Conv_834) %onnx::Conv_864 = Identity(%onnx::Conv_834) %onnx::Conv_861 = Identity(%onnx::Conv_834) %onnx::Conv_858 = Identity(%onnx::Conv_834) %onnx::Conv_855 = Identity(%onnx::Conv_834) %onnx::Conv_852 = Identity(%onnx::Conv_834) %onnx::Conv_849 = Identity(%onnx::Conv_834) %onnx::Conv_846 = Identity(%onnx::Conv_834) %onnx::Conv_843 = Identity(%onnx::Conv_834) %onnx::Conv_840 = Identity(%onnx::Conv_834) %onnx::Conv_837 = Identity(%onnx::Conv_834) %onnx::Conv_831 = Identity(%onnx::Conv_804) %onnx::Conv_828 = Identity(%onnx::Conv_804) %onnx::Conv_825 = Identity(%onnx::Conv_798) %onnx::Conv_822 = Identity(%onnx::Conv_798) %onnx::Conv_819 = Identity(%onnx::Conv_804) %onnx::Conv_816 = Identity(%onnx::Conv_804) %onnx::Conv_813 = Identity(%onnx::Conv_798) %onnx::Conv_810 = Identity(%onnx::Conv_798) %onnx::Conv_807 = Identity(%onnx::Conv_804) %onnx::Conv_801 = Identity(%onnx::Conv_798) %onnx::Conv_795 = Identity(%onnx::Conv_762) %onnx::Conv_792 = Identity(%onnx::Conv_762) %onnx::Conv_789 = Identity(%onnx::Conv_762) %onnx::Conv_786 = Identity(%onnx::Conv_762) %onnx::Conv_783 = Identity(%onnx::Conv_762) %onnx::Conv_780 = Identity(%onnx::Conv_762) %onnx::Conv_777 = Identity(%onnx::Conv_762) %onnx::Conv_774 = Identity(%onnx::Conv_762) %onnx::Conv_771 = Identity(%onnx::Conv_762) %onnx::Conv_768 = Identity(%onnx::Conv_762) %onnx::Conv_765 = Identity(%onnx::Conv_762) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_758, %onnx::Conv_759) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_9_output_0, %/layers.1/Constant_10_output_0, %/layers.1/Constant_8_output_0, %/layers.1/Constant_11_output_0) %/layers.1/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_1_output_0, %/layers.1/Constant_12_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_9_output_0, %/layers.2/Constant_10_output_0, %/layers.2/Constant_8_output_0, %/layers.2/Constant_11_output_0) %/layers.2/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_1_output_0, %/layers.2/Constant_12_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_9_output_0, %/layers.3/Constant_10_output_0, %/layers.3/Constant_8_output_0, %/layers.3/Constant_11_output_0) %/layers.3/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_1_output_0, %/layers.3/Constant_12_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_9_output_0, %/layers.9/Constant_10_output_0, %/layers.9/Constant_8_output_0, %/layers.9/Constant_11_output_0) %/layers.9/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_1_output_0, %/layers.9/Constant_12_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_9_output_0, %/layers.10/Constant_10_output_0, %/layers.10/Constant_8_output_0, %/layers.10/Constant_11_output_0) %/layers.10/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_1_output_0, %/layers.10/Constant_12_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_9_output_0, %/layers.11/Constant_10_output_0, %/layers.11/Constant_8_output_0, %/layers.11/Constant_11_output_0) %/layers.11/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_1_output_0, %/layers.11/Constant_12_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %756 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %756 }
val_accuracy
86.828929
262,850,816
826,657
{'zcp_epe_nas': 138.40662712649944, 'zcp_fisher': 15.398055076599121, 'zcp_flops': 4205613056.0, 'zcp_grad_norm': 75.94477844238281, 'zcp_grasp': -21.328857421875, 'zcp_jacov': -16.05114662280034, 'zcp_l2_norm': 640.03369140625, 'zcp_nwot': 212.94550223123173, 'zcp_params': 826657.0, 'zcp_plain': 0.235936030745506, 'zcp_snip': 340.12872314453125, 'zcp_synflow': 59.86095356843274, 'zcp_zen': 56.688541412353516, 'zcp_val_accuracy': 0.893128991127014}
NASBench101_105225
NASBench101
105225
3fa0fd3d6978f05558c690b20f5df997
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1076[FLOAT, 128x3x3x3] %onnx::Conv_1077[FLOAT, 128] %onnx::Conv_1079[FLOAT, 64x128x1x1] %onnx::Conv_1080[FLOAT, 64] %onnx::Conv_1082[FLOAT, 64x64x1x1] %onnx::Conv_1085[FLOAT, 64x64x1x1] %onnx::Conv_1088[FLOAT, 64x128x1x1] %onnx::Conv_1091[FLOAT, 64x64x1x1] %onnx::Conv_1094[FLOAT, 64x128x1x1] %onnx::Conv_1097[FLOAT, 64x64x3x3] %onnx::Conv_1100[FLOAT, 64x64x1x1] %onnx::Conv_1103[FLOAT, 64x128x1x1] %onnx::Conv_1106[FLOAT, 64x64x1x1] %onnx::Conv_1109[FLOAT, 64x64x1x1] %onnx::Conv_1112[FLOAT, 64x128x1x1] %onnx::Conv_1115[FLOAT, 64x64x1x1] %onnx::Conv_1118[FLOAT, 64x128x1x1] %onnx::Conv_1121[FLOAT, 64x64x3x3] %onnx::Conv_1124[FLOAT, 64x64x1x1] %onnx::Conv_1127[FLOAT, 64x128x1x1] %onnx::Conv_1130[FLOAT, 64x64x1x1] %onnx::Conv_1133[FLOAT, 64x64x1x1] %onnx::Conv_1136[FLOAT, 64x128x1x1] %onnx::Conv_1139[FLOAT, 64x64x1x1] %onnx::Conv_1142[FLOAT, 64x128x1x1] %onnx::Conv_1145[FLOAT, 64x64x3x3] %onnx::Conv_1148[FLOAT, 64x64x1x1] %onnx::Conv_1151[FLOAT, 128x128x1x1] %onnx::Conv_1154[FLOAT, 128x128x1x1] %onnx::Conv_1157[FLOAT, 128x128x1x1] %onnx::Conv_1160[FLOAT, 128x128x1x1] %onnx::Conv_1163[FLOAT, 128x128x1x1] %onnx::Conv_1166[FLOAT, 128x128x1x1] %onnx::Conv_1169[FLOAT, 128x128x3x3] %onnx::Conv_1172[FLOAT, 128x128x1x1] %onnx::Conv_1175[FLOAT, 128x256x1x1] %onnx::Conv_1178[FLOAT, 128x128x1x1] %onnx::Conv_1181[FLOAT, 128x128x1x1] %onnx::Conv_1184[FLOAT, 128x256x1x1] %onnx::Conv_1187[FLOAT, 128x128x1x1] %onnx::Conv_1190[FLOAT, 128x256x1x1] %onnx::Conv_1193[FLOAT, 128x128x3x3] %onnx::Conv_1196[FLOAT, 128x128x1x1] %onnx::Conv_1199[FLOAT, 128x256x1x1] %onnx::Conv_1202[FLOAT, 128x128x1x1] %onnx::Conv_1205[FLOAT, 128x128x1x1] %onnx::Conv_1208[FLOAT, 128x256x1x1] %onnx::Conv_1211[FLOAT, 128x128x1x1] %onnx::Conv_1214[FLOAT, 128x256x1x1] %onnx::Conv_1217[FLOAT, 128x128x3x3] %onnx::Conv_1220[FLOAT, 128x128x1x1] %onnx::Conv_1223[FLOAT, 256x256x1x1] %onnx::Conv_1224[FLOAT, 256] %onnx::Conv_1226[FLOAT, 256x256x1x1] %onnx::Conv_1229[FLOAT, 256x256x1x1] %onnx::Conv_1232[FLOAT, 256x256x1x1] %onnx::Conv_1235[FLOAT, 256x256x1x1] %onnx::Conv_1238[FLOAT, 256x256x1x1] %onnx::Conv_1241[FLOAT, 256x256x3x3] %onnx::Conv_1244[FLOAT, 256x256x1x1] %onnx::Conv_1247[FLOAT, 256x512x1x1] %onnx::Conv_1250[FLOAT, 256x256x1x1] %onnx::Conv_1253[FLOAT, 256x256x1x1] %onnx::Conv_1256[FLOAT, 256x512x1x1] %onnx::Conv_1259[FLOAT, 256x256x1x1] %onnx::Conv_1262[FLOAT, 256x512x1x1] %onnx::Conv_1265[FLOAT, 256x256x3x3] %onnx::Conv_1268[FLOAT, 256x256x1x1] %onnx::Conv_1271[FLOAT, 256x512x1x1] %onnx::Conv_1274[FLOAT, 256x256x1x1] %onnx::Conv_1277[FLOAT, 256x256x1x1] %onnx::Conv_1280[FLOAT, 256x512x1x1] %onnx::Conv_1283[FLOAT, 256x256x1x1] %onnx::Conv_1286[FLOAT, 256x512x1x1] %onnx::Conv_1289[FLOAT, 256x256x3x3] %onnx::Conv_1292[FLOAT, 256x256x1x1] ) { %onnx::Conv_1293 = Identity(%onnx::Conv_1224) %onnx::Conv_1290 = Identity(%onnx::Conv_1224) %onnx::Conv_1287 = Identity(%onnx::Conv_1224) %onnx::Conv_1284 = Identity(%onnx::Conv_1224) %onnx::Conv_1281 = Identity(%onnx::Conv_1224) %onnx::Conv_1278 = Identity(%onnx::Conv_1224) %onnx::Conv_1275 = Identity(%onnx::Conv_1224) %onnx::Conv_1272 = Identity(%onnx::Conv_1224) %onnx::Conv_1269 = Identity(%onnx::Conv_1224) %onnx::Conv_1266 = Identity(%onnx::Conv_1224) %onnx::Conv_1263 = Identity(%onnx::Conv_1224) %onnx::Conv_1260 = Identity(%onnx::Conv_1224) %onnx::Conv_1257 = Identity(%onnx::Conv_1224) %onnx::Conv_1254 = Identity(%onnx::Conv_1224) %onnx::Conv_1251 = Identity(%onnx::Conv_1224) %onnx::Conv_1248 = Identity(%onnx::Conv_1224) %onnx::Conv_1245 = Identity(%onnx::Conv_1224) %onnx::Conv_1242 = Identity(%onnx::Conv_1224) %onnx::Conv_1239 = Identity(%onnx::Conv_1224) %onnx::Conv_1236 = Identity(%onnx::Conv_1224) %onnx::Conv_1233 = Identity(%onnx::Conv_1224) %onnx::Conv_1230 = Identity(%onnx::Conv_1224) %onnx::Conv_1227 = Identity(%onnx::Conv_1224) %onnx::Conv_1221 = Identity(%onnx::Conv_1077) %onnx::Conv_1218 = Identity(%onnx::Conv_1077) %onnx::Conv_1215 = Identity(%onnx::Conv_1077) %onnx::Conv_1212 = Identity(%onnx::Conv_1077) %onnx::Conv_1209 = Identity(%onnx::Conv_1077) %onnx::Conv_1206 = Identity(%onnx::Conv_1077) %onnx::Conv_1203 = Identity(%onnx::Conv_1077) %onnx::Conv_1200 = Identity(%onnx::Conv_1077) %onnx::Conv_1197 = Identity(%onnx::Conv_1077) %onnx::Conv_1194 = Identity(%onnx::Conv_1077) %onnx::Conv_1191 = Identity(%onnx::Conv_1077) %onnx::Conv_1188 = Identity(%onnx::Conv_1077) %onnx::Conv_1185 = Identity(%onnx::Conv_1077) %onnx::Conv_1182 = Identity(%onnx::Conv_1077) %onnx::Conv_1179 = Identity(%onnx::Conv_1077) %onnx::Conv_1176 = Identity(%onnx::Conv_1077) %onnx::Conv_1173 = Identity(%onnx::Conv_1077) %onnx::Conv_1170 = Identity(%onnx::Conv_1077) %onnx::Conv_1167 = Identity(%onnx::Conv_1077) %onnx::Conv_1164 = Identity(%onnx::Conv_1077) %onnx::Conv_1161 = Identity(%onnx::Conv_1077) %onnx::Conv_1158 = Identity(%onnx::Conv_1077) %onnx::Conv_1155 = Identity(%onnx::Conv_1077) %onnx::Conv_1152 = Identity(%onnx::Conv_1077) %onnx::Conv_1149 = Identity(%onnx::Conv_1080) %onnx::Conv_1146 = Identity(%onnx::Conv_1080) %onnx::Conv_1143 = Identity(%onnx::Conv_1080) %onnx::Conv_1140 = Identity(%onnx::Conv_1080) %onnx::Conv_1137 = Identity(%onnx::Conv_1080) %onnx::Conv_1134 = Identity(%onnx::Conv_1080) %onnx::Conv_1131 = Identity(%onnx::Conv_1080) %onnx::Conv_1128 = Identity(%onnx::Conv_1080) %onnx::Conv_1125 = Identity(%onnx::Conv_1080) %onnx::Conv_1122 = Identity(%onnx::Conv_1080) %onnx::Conv_1119 = Identity(%onnx::Conv_1080) %onnx::Conv_1116 = Identity(%onnx::Conv_1080) %onnx::Conv_1113 = Identity(%onnx::Conv_1080) %onnx::Conv_1110 = Identity(%onnx::Conv_1080) %onnx::Conv_1107 = Identity(%onnx::Conv_1080) %onnx::Conv_1104 = Identity(%onnx::Conv_1080) %onnx::Conv_1101 = Identity(%onnx::Conv_1080) %onnx::Conv_1098 = Identity(%onnx::Conv_1080) %onnx::Conv_1095 = Identity(%onnx::Conv_1080) %onnx::Conv_1092 = Identity(%onnx::Conv_1080) %onnx::Conv_1089 = Identity(%onnx::Conv_1080) %onnx::Conv_1086 = Identity(%onnx::Conv_1080) %onnx::Conv_1083 = Identity(%onnx::Conv_1080) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1220, %onnx::Conv_1221) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1223, %onnx::Conv_1224) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1226, %onnx::Conv_1227) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1229, %onnx::Conv_1230) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1232, %onnx::Conv_1233) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1235, %onnx::Conv_1236) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1238, %onnx::Conv_1239) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1241, %onnx::Conv_1242) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1244, %onnx::Conv_1245) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1247, %onnx::Conv_1248) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1250, %onnx::Conv_1251) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1253, %onnx::Conv_1254) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1256, %onnx::Conv_1257) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1259, %onnx::Conv_1260) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1262, %onnx::Conv_1263) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1265, %onnx::Conv_1266) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1268, %onnx::Conv_1269) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1271, %onnx::Conv_1272) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1274, %onnx::Conv_1275) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1277, %onnx::Conv_1278) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1280, %onnx::Conv_1281) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1283, %onnx::Conv_1284) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1286, %onnx::Conv_1287) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1289, %onnx::Conv_1290) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1292, %onnx::Conv_1293) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %1074 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1074 }
val_accuracy
93.088943
1,414,277,120
4,687,498
{'zcp_epe_nas': 202.13636238495948, 'zcp_fisher': 13.988933563232422, 'zcp_flops': 22628433920.0, 'zcp_grad_norm': 93.44788360595703, 'zcp_grasp': -24.9195556640625, 'zcp_jacov': -16.044562530466205, 'zcp_l2_norm': 1339.7999267578125, 'zcp_nwot': 229.33619732425078, 'zcp_params': 4687498.0, 'zcp_plain': -0.024726375937461003, 'zcp_snip': 514.1727905273438, 'zcp_synflow': 120.9451214938097, 'zcp_zen': 110.2652587890625, 'zcp_val_accuracy': 0.904947936534881}
NASBench101_6734
NASBench101
6734
040bea93523ce1cbc53c08e5e3e09684
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x1x1] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x1x1] %onnx::Conv_944[FLOAT, 256x128x1x1] %onnx::Conv_945[FLOAT, 256] %onnx::Conv_947[FLOAT, 256x256x1x1] %onnx::Conv_950[FLOAT, 256x256x1x1] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x256x1x1] %onnx::Conv_959[FLOAT, 256x128x1x1] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 512x256x1x1] %onnx::Conv_999[FLOAT, 512] %onnx::Conv_1001[FLOAT, 512x512x1x1] %onnx::Conv_1004[FLOAT, 512x512x1x1] %onnx::Conv_1007[FLOAT, 512x512x1x1] %onnx::Conv_1010[FLOAT, 512x512x1x1] %onnx::Conv_1013[FLOAT, 512x256x1x1] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x1x1] %onnx::Conv_1022[FLOAT, 512x512x1x1] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x1x1] %onnx::Conv_1031[FLOAT, 512x512x1x1] %onnx::Conv_1034[FLOAT, 512x512x1x1] %onnx::Conv_1037[FLOAT, 512x512x1x1] %onnx::Conv_1040[FLOAT, 512x512x1x1] %onnx::Conv_1043[FLOAT, 512x512x1x1] %onnx::Conv_1046[FLOAT, 512x512x1x1] %onnx::Conv_1049[FLOAT, 512x512x1x1] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_999) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_999) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1014 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_945) %onnx::Conv_993 = Identity(%onnx::Conv_945) %onnx::Conv_990 = Identity(%onnx::Conv_945) %onnx::Conv_987 = Identity(%onnx::Conv_945) %onnx::Conv_984 = Identity(%onnx::Conv_945) %onnx::Conv_981 = Identity(%onnx::Conv_945) %onnx::Conv_978 = Identity(%onnx::Conv_945) %onnx::Conv_975 = Identity(%onnx::Conv_945) %onnx::Conv_972 = Identity(%onnx::Conv_945) %onnx::Conv_969 = Identity(%onnx::Conv_945) %onnx::Conv_966 = Identity(%onnx::Conv_945) %onnx::Conv_963 = Identity(%onnx::Conv_945) %onnx::Conv_960 = Identity(%onnx::Conv_945) %onnx::Conv_957 = Identity(%onnx::Conv_945) %onnx::Conv_954 = Identity(%onnx::Conv_945) %onnx::Conv_951 = Identity(%onnx::Conv_945) %onnx::Conv_948 = Identity(%onnx::Conv_945) %onnx::Conv_942 = Identity(%onnx::Conv_888) %onnx::Conv_939 = Identity(%onnx::Conv_888) %onnx::Conv_936 = Identity(%onnx::Conv_888) %onnx::Conv_933 = Identity(%onnx::Conv_888) %onnx::Conv_930 = Identity(%onnx::Conv_888) %onnx::Conv_927 = Identity(%onnx::Conv_888) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_888) %onnx::Conv_918 = Identity(%onnx::Conv_888) %onnx::Conv_915 = Identity(%onnx::Conv_888) %onnx::Conv_912 = Identity(%onnx::Conv_888) %onnx::Conv_909 = Identity(%onnx::Conv_888) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_903 = Identity(%onnx::Conv_888) %onnx::Conv_900 = Identity(%onnx::Conv_888) %onnx::Conv_897 = Identity(%onnx::Conv_888) %onnx::Conv_894 = Identity(%onnx::Conv_888) %onnx::Conv_891 = Identity(%onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_7_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_7_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_7_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
89.633411
1,785,997,312
5,906,570
{'zcp_epe_nas': 60.307381494156246, 'zcp_fisher': 20.463134765625, 'zcp_flops': 28575956992.0, 'zcp_grad_norm': 110.58502960205078, 'zcp_grasp': -3.7508544921875, 'zcp_jacov': -16.03971721866921, 'zcp_l2_norm': 1243.2254638671875, 'zcp_nwot': 235.41549420847477, 'zcp_params': 5906570.0, 'zcp_plain': 0.014996483922004, 'zcp_snip': 798.5807495117188, 'zcp_synflow': 116.57989489719643, 'zcp_zen': 96.13021850585938, 'zcp_val_accuracy': 0.895332515239715}
NASBench101_153284
NASBench101
153284
5cc13a2151d3b65081e1afe70d8d909d
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_779[FLOAT, 128x3x3x3] %onnx::Conv_780[FLOAT, 128] %onnx::Conv_782[FLOAT, 43x128x1x1] %onnx::Conv_783[FLOAT, 43] %onnx::Conv_785[FLOAT, 43x43x1x1] %onnx::Conv_788[FLOAT, 43x43x1x1] %onnx::Conv_791[FLOAT, 42x128x1x1] %onnx::Conv_792[FLOAT, 42] %onnx::Conv_794[FLOAT, 42x42x1x1] %onnx::Conv_797[FLOAT, 43x128x1x1] %onnx::Conv_800[FLOAT, 43x43x1x1] %onnx::Conv_803[FLOAT, 43x43x1x1] %onnx::Conv_806[FLOAT, 42x128x1x1] %onnx::Conv_809[FLOAT, 42x42x1x1] %onnx::Conv_812[FLOAT, 43x128x1x1] %onnx::Conv_815[FLOAT, 43x43x1x1] %onnx::Conv_818[FLOAT, 43x43x1x1] %onnx::Conv_821[FLOAT, 42x128x1x1] %onnx::Conv_824[FLOAT, 42x42x1x1] %onnx::Conv_827[FLOAT, 86x128x1x1] %onnx::Conv_828[FLOAT, 86] %onnx::Conv_830[FLOAT, 86x86x1x1] %onnx::Conv_833[FLOAT, 85x85x1x1] %onnx::Conv_834[FLOAT, 85] %onnx::Conv_836[FLOAT, 85x128x1x1] %onnx::Conv_839[FLOAT, 85x85x1x1] %onnx::Conv_842[FLOAT, 86x256x1x1] %onnx::Conv_845[FLOAT, 86x86x1x1] %onnx::Conv_848[FLOAT, 85x85x1x1] %onnx::Conv_851[FLOAT, 85x256x1x1] %onnx::Conv_854[FLOAT, 85x85x1x1] %onnx::Conv_857[FLOAT, 86x256x1x1] %onnx::Conv_860[FLOAT, 86x86x1x1] %onnx::Conv_863[FLOAT, 85x85x1x1] %onnx::Conv_866[FLOAT, 85x256x1x1] %onnx::Conv_869[FLOAT, 85x85x1x1] %onnx::Conv_872[FLOAT, 171x256x1x1] %onnx::Conv_873[FLOAT, 171] %onnx::Conv_875[FLOAT, 171x171x1x1] %onnx::Conv_878[FLOAT, 171x171x1x1] %onnx::Conv_881[FLOAT, 170x256x1x1] %onnx::Conv_882[FLOAT, 170] %onnx::Conv_884[FLOAT, 170x170x1x1] %onnx::Conv_887[FLOAT, 171x512x1x1] %onnx::Conv_890[FLOAT, 171x171x1x1] %onnx::Conv_893[FLOAT, 171x171x1x1] %onnx::Conv_896[FLOAT, 170x512x1x1] %onnx::Conv_899[FLOAT, 170x170x1x1] %onnx::Conv_902[FLOAT, 171x512x1x1] %onnx::Conv_905[FLOAT, 171x171x1x1] %onnx::Conv_908[FLOAT, 171x171x1x1] %onnx::Conv_911[FLOAT, 170x512x1x1] %onnx::Conv_914[FLOAT, 170x170x1x1] ) { %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_873) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_873) %onnx::Conv_885 = Identity(%onnx::Conv_882) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %onnx::Conv_870 = Identity(%onnx::Conv_834) %onnx::Conv_867 = Identity(%onnx::Conv_834) %onnx::Conv_864 = Identity(%onnx::Conv_834) %onnx::Conv_861 = Identity(%onnx::Conv_828) %onnx::Conv_858 = Identity(%onnx::Conv_828) %onnx::Conv_855 = Identity(%onnx::Conv_834) %onnx::Conv_852 = Identity(%onnx::Conv_834) %onnx::Conv_849 = Identity(%onnx::Conv_834) %onnx::Conv_846 = Identity(%onnx::Conv_828) %onnx::Conv_843 = Identity(%onnx::Conv_828) %onnx::Conv_840 = Identity(%onnx::Conv_834) %onnx::Conv_837 = Identity(%onnx::Conv_834) %onnx::Conv_831 = Identity(%onnx::Conv_828) %onnx::Conv_825 = Identity(%onnx::Conv_792) %onnx::Conv_822 = Identity(%onnx::Conv_792) %onnx::Conv_819 = Identity(%onnx::Conv_783) %onnx::Conv_816 = Identity(%onnx::Conv_783) %onnx::Conv_813 = Identity(%onnx::Conv_783) %onnx::Conv_810 = Identity(%onnx::Conv_792) %onnx::Conv_807 = Identity(%onnx::Conv_792) %onnx::Conv_804 = Identity(%onnx::Conv_783) %onnx::Conv_801 = Identity(%onnx::Conv_783) %onnx::Conv_798 = Identity(%onnx::Conv_783) %onnx::Conv_795 = Identity(%onnx::Conv_792) %onnx::Conv_789 = Identity(%onnx::Conv_783) %onnx::Conv_786 = Identity(%onnx::Conv_783) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_779, %onnx::Conv_780) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_5_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Slice_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_5_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Slice_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_5_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Slice_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_5_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Slice_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_5_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Slice_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_5_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Slice_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %777 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %777 }
val_accuracy
88.611782
296,723,200
940,430
{'zcp_epe_nas': 96.4609948793615, 'zcp_fisher': 10.381261825561523, 'zcp_flops': 4747571200.0, 'zcp_grad_norm': 74.78843688964844, 'zcp_grasp': -3.7969970703125, 'zcp_jacov': -16.062188386343294, 'zcp_l2_norm': 761.8348388671875, 'zcp_nwot': 216.21823526250276, 'zcp_params': 940430.0, 'zcp_plain': 0.029163496568799, 'zcp_snip': 320.5069580078125, 'zcp_synflow': 75.85931092469606, 'zcp_zen': 63.985618591308594, 'zcp_val_accuracy': 0.8761017918586731}
NASBench101_170062
NASBench101
170062
66f666620fa6b93567853f5aab90b78e
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_860[FLOAT, 128x3x3x3] %onnx::Conv_861[FLOAT, 128] %onnx::Conv_863[FLOAT, 64x128x1x1] %onnx::Conv_864[FLOAT, 64] %onnx::Conv_866[FLOAT, 64x64x3x3] %onnx::Conv_869[FLOAT, 64x128x1x1] %onnx::Conv_872[FLOAT, 64x64x3x3] %onnx::Conv_875[FLOAT, 64x128x1x1] %onnx::Conv_878[FLOAT, 64x64x1x1] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 64x128x1x1] %onnx::Conv_890[FLOAT, 64x64x3x3] %onnx::Conv_893[FLOAT, 64x128x1x1] %onnx::Conv_896[FLOAT, 64x64x1x1] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 64x128x1x1] %onnx::Conv_908[FLOAT, 64x64x3x3] %onnx::Conv_911[FLOAT, 64x128x1x1] %onnx::Conv_914[FLOAT, 64x64x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x3x3] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x256x1x1] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x256x1x1] %onnx::Conv_944[FLOAT, 128x128x3x3] %onnx::Conv_947[FLOAT, 128x256x1x1] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 128x256x1x1] %onnx::Conv_962[FLOAT, 128x128x3x3] %onnx::Conv_965[FLOAT, 128x256x1x1] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_972[FLOAT, 256] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x3x3] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x512x1x1] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x512x1x1] %onnx::Conv_998[FLOAT, 256x256x3x3] %onnx::Conv_1001[FLOAT, 256x512x1x1] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 256x512x1x1] %onnx::Conv_1016[FLOAT, 256x256x3x3] %onnx::Conv_1019[FLOAT, 256x512x1x1] %onnx::Conv_1022[FLOAT, 256x256x1x1] ) { %onnx::Conv_1023 = Identity(%onnx::Conv_972) %onnx::Conv_1020 = Identity(%onnx::Conv_972) %onnx::Conv_1017 = Identity(%onnx::Conv_972) %onnx::Conv_1014 = Identity(%onnx::Conv_972) %onnx::Conv_1011 = Identity(%onnx::Conv_972) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_972) %onnx::Conv_1002 = Identity(%onnx::Conv_972) %onnx::Conv_999 = Identity(%onnx::Conv_972) %onnx::Conv_996 = Identity(%onnx::Conv_972) %onnx::Conv_993 = Identity(%onnx::Conv_972) %onnx::Conv_990 = Identity(%onnx::Conv_972) %onnx::Conv_987 = Identity(%onnx::Conv_972) %onnx::Conv_984 = Identity(%onnx::Conv_972) %onnx::Conv_981 = Identity(%onnx::Conv_972) %onnx::Conv_978 = Identity(%onnx::Conv_972) %onnx::Conv_975 = Identity(%onnx::Conv_972) %onnx::Conv_969 = Identity(%onnx::Conv_861) %onnx::Conv_966 = Identity(%onnx::Conv_861) %onnx::Conv_963 = Identity(%onnx::Conv_861) %onnx::Conv_960 = Identity(%onnx::Conv_861) %onnx::Conv_957 = Identity(%onnx::Conv_861) %onnx::Conv_954 = Identity(%onnx::Conv_861) %onnx::Conv_951 = Identity(%onnx::Conv_861) %onnx::Conv_948 = Identity(%onnx::Conv_861) %onnx::Conv_945 = Identity(%onnx::Conv_861) %onnx::Conv_942 = Identity(%onnx::Conv_861) %onnx::Conv_939 = Identity(%onnx::Conv_861) %onnx::Conv_936 = Identity(%onnx::Conv_861) %onnx::Conv_933 = Identity(%onnx::Conv_861) %onnx::Conv_930 = Identity(%onnx::Conv_861) %onnx::Conv_927 = Identity(%onnx::Conv_861) %onnx::Conv_924 = Identity(%onnx::Conv_861) %onnx::Conv_921 = Identity(%onnx::Conv_861) %onnx::Conv_918 = Identity(%onnx::Conv_861) %onnx::Conv_915 = Identity(%onnx::Conv_864) %onnx::Conv_912 = Identity(%onnx::Conv_864) %onnx::Conv_909 = Identity(%onnx::Conv_864) %onnx::Conv_906 = Identity(%onnx::Conv_864) %onnx::Conv_903 = Identity(%onnx::Conv_864) %onnx::Conv_900 = Identity(%onnx::Conv_864) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_864) %onnx::Conv_888 = Identity(%onnx::Conv_864) %onnx::Conv_885 = Identity(%onnx::Conv_864) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_864) %onnx::Conv_873 = Identity(%onnx::Conv_864) %onnx::Conv_870 = Identity(%onnx::Conv_864) %onnx::Conv_867 = Identity(%onnx::Conv_864) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_860, %onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %858 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %858 }
val_accuracy
92.157453
1,861,756,928
6,230,410
{'zcp_epe_nas': 112.58870196198514, 'zcp_fisher': 56.9105110168457, 'zcp_flops': 29788110848.0, 'zcp_grad_norm': 136.71153259277344, 'zcp_grasp': -2.89404296875, 'zcp_jacov': -16.04272810322386, 'zcp_l2_norm': 1041.5435791015625, 'zcp_nwot': 224.4634118160371, 'zcp_params': 6230410.0, 'zcp_plain': 0.06073947250843, 'zcp_snip': 865.2904052734375, 'zcp_synflow': 117.3682963047767, 'zcp_zen': 103.02123260498047, 'zcp_val_accuracy': 0.9024438858032221}
NASBench101_167568
NASBench101
167568
656b4cf08b31a18e16210f0a46147cd3
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_905[FLOAT, 128x3x3x3] %onnx::Conv_906[FLOAT, 128] %onnx::Conv_908[FLOAT, 43x128x1x1] %onnx::Conv_909[FLOAT, 43] %onnx::Conv_911[FLOAT, 43x43x1x1] %onnx::Conv_914[FLOAT, 43x43x3x3] %onnx::Conv_917[FLOAT, 42x128x1x1] %onnx::Conv_918[FLOAT, 42] %onnx::Conv_920[FLOAT, 42x42x3x3] %onnx::Conv_923[FLOAT, 42x42x3x3] %onnx::Conv_926[FLOAT, 43x128x1x1] %onnx::Conv_929[FLOAT, 43x43x1x1] %onnx::Conv_932[FLOAT, 43x43x3x3] %onnx::Conv_935[FLOAT, 42x128x1x1] %onnx::Conv_938[FLOAT, 42x42x3x3] %onnx::Conv_941[FLOAT, 42x42x3x3] %onnx::Conv_944[FLOAT, 43x128x1x1] %onnx::Conv_947[FLOAT, 43x43x1x1] %onnx::Conv_950[FLOAT, 43x43x3x3] %onnx::Conv_953[FLOAT, 42x128x1x1] %onnx::Conv_956[FLOAT, 42x42x3x3] %onnx::Conv_959[FLOAT, 42x42x3x3] %onnx::Conv_962[FLOAT, 86x128x1x1] %onnx::Conv_963[FLOAT, 86] %onnx::Conv_965[FLOAT, 85x85x1x1] %onnx::Conv_966[FLOAT, 85] %onnx::Conv_968[FLOAT, 85x85x3x3] %onnx::Conv_971[FLOAT, 85x128x1x1] %onnx::Conv_974[FLOAT, 85x85x3x3] %onnx::Conv_977[FLOAT, 85x85x3x3] %onnx::Conv_980[FLOAT, 86x256x1x1] %onnx::Conv_983[FLOAT, 85x85x1x1] %onnx::Conv_986[FLOAT, 85x85x3x3] %onnx::Conv_989[FLOAT, 85x256x1x1] %onnx::Conv_992[FLOAT, 85x85x3x3] %onnx::Conv_995[FLOAT, 85x85x3x3] %onnx::Conv_998[FLOAT, 86x256x1x1] %onnx::Conv_1001[FLOAT, 85x85x1x1] %onnx::Conv_1004[FLOAT, 85x85x3x3] %onnx::Conv_1007[FLOAT, 85x256x1x1] %onnx::Conv_1010[FLOAT, 85x85x3x3] %onnx::Conv_1013[FLOAT, 85x85x3x3] %onnx::Conv_1016[FLOAT, 171x256x1x1] %onnx::Conv_1017[FLOAT, 171] %onnx::Conv_1019[FLOAT, 171x171x1x1] %onnx::Conv_1022[FLOAT, 171x171x3x3] %onnx::Conv_1025[FLOAT, 170x256x1x1] %onnx::Conv_1026[FLOAT, 170] %onnx::Conv_1028[FLOAT, 170x170x3x3] %onnx::Conv_1031[FLOAT, 170x170x3x3] %onnx::Conv_1034[FLOAT, 171x512x1x1] %onnx::Conv_1037[FLOAT, 171x171x1x1] %onnx::Conv_1040[FLOAT, 171x171x3x3] %onnx::Conv_1043[FLOAT, 170x512x1x1] %onnx::Conv_1046[FLOAT, 170x170x3x3] %onnx::Conv_1049[FLOAT, 170x170x3x3] %onnx::Conv_1052[FLOAT, 171x512x1x1] %onnx::Conv_1055[FLOAT, 171x171x1x1] %onnx::Conv_1058[FLOAT, 171x171x3x3] %onnx::Conv_1061[FLOAT, 170x512x1x1] %onnx::Conv_1064[FLOAT, 170x170x3x3] %onnx::Conv_1067[FLOAT, 170x170x3x3] ) { %onnx::Conv_1068 = Identity(%onnx::Conv_1026) %onnx::Conv_1065 = Identity(%onnx::Conv_1026) %onnx::Conv_1062 = Identity(%onnx::Conv_1026) %onnx::Conv_1059 = Identity(%onnx::Conv_1017) %onnx::Conv_1056 = Identity(%onnx::Conv_1017) %onnx::Conv_1053 = Identity(%onnx::Conv_1017) %onnx::Conv_1050 = Identity(%onnx::Conv_1026) %onnx::Conv_1047 = Identity(%onnx::Conv_1026) %onnx::Conv_1044 = Identity(%onnx::Conv_1026) %onnx::Conv_1041 = Identity(%onnx::Conv_1017) %onnx::Conv_1038 = Identity(%onnx::Conv_1017) %onnx::Conv_1035 = Identity(%onnx::Conv_1017) %onnx::Conv_1032 = Identity(%onnx::Conv_1026) %onnx::Conv_1029 = Identity(%onnx::Conv_1026) %onnx::Conv_1023 = Identity(%onnx::Conv_1017) %onnx::Conv_1020 = Identity(%onnx::Conv_1017) %onnx::Conv_1014 = Identity(%onnx::Conv_966) %onnx::Conv_1011 = Identity(%onnx::Conv_966) %onnx::Conv_1008 = Identity(%onnx::Conv_966) %onnx::Conv_1005 = Identity(%onnx::Conv_966) %onnx::Conv_1002 = Identity(%onnx::Conv_966) %onnx::Conv_999 = Identity(%onnx::Conv_963) %onnx::Conv_996 = Identity(%onnx::Conv_966) %onnx::Conv_993 = Identity(%onnx::Conv_966) %onnx::Conv_990 = Identity(%onnx::Conv_966) %onnx::Conv_987 = Identity(%onnx::Conv_966) %onnx::Conv_984 = Identity(%onnx::Conv_966) %onnx::Conv_981 = Identity(%onnx::Conv_963) %onnx::Conv_978 = Identity(%onnx::Conv_966) %onnx::Conv_975 = Identity(%onnx::Conv_966) %onnx::Conv_972 = Identity(%onnx::Conv_966) %onnx::Conv_969 = Identity(%onnx::Conv_966) %onnx::Conv_960 = Identity(%onnx::Conv_918) %onnx::Conv_957 = Identity(%onnx::Conv_918) %onnx::Conv_954 = Identity(%onnx::Conv_918) %onnx::Conv_951 = Identity(%onnx::Conv_909) %onnx::Conv_948 = Identity(%onnx::Conv_909) %onnx::Conv_945 = Identity(%onnx::Conv_909) %onnx::Conv_942 = Identity(%onnx::Conv_918) %onnx::Conv_939 = Identity(%onnx::Conv_918) %onnx::Conv_936 = Identity(%onnx::Conv_918) %onnx::Conv_933 = Identity(%onnx::Conv_909) %onnx::Conv_930 = Identity(%onnx::Conv_909) %onnx::Conv_927 = Identity(%onnx::Conv_909) %onnx::Conv_924 = Identity(%onnx::Conv_918) %onnx::Conv_921 = Identity(%onnx::Conv_918) %onnx::Conv_915 = Identity(%onnx::Conv_909) %onnx::Conv_912 = Identity(%onnx::Conv_909) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_905, %onnx::Conv_906) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_5_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_5_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_5_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Slice_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Slice_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Slice_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_5_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_5_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_5_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %903 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %903 }
val_accuracy
92.057294
1,129,325,824
3,793,592
{'zcp_epe_nas': 120.24927985536611, 'zcp_fisher': 19.351465225219727, 'zcp_flops': 18069213184.0, 'zcp_grad_norm': 93.26274108886719, 'zcp_grasp': 16.34228515625, 'zcp_jacov': -16.05553763370017, 'zcp_l2_norm': 882.9658813476562, 'zcp_nwot': 218.4831493095795, 'zcp_params': 3793592.0, 'zcp_plain': -0.08019790798425601, 'zcp_snip': 457.4488830566406, 'zcp_synflow': 110.57736050231536, 'zcp_zen': 99.26710510253906, 'zcp_val_accuracy': 0.896133840084075}
NASBench101_406091
NASBench101
406091
f57b83a6350bbadba6a42419e1f0e062
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_689[FLOAT, 128x3x3x3] %onnx::Conv_690[FLOAT, 128] %onnx::Conv_692[FLOAT, 128x128x1x1] %onnx::Conv_695[FLOAT, 128x128x3x3] %onnx::Conv_698[FLOAT, 128x128x1x1] %onnx::Conv_701[FLOAT, 128x128x1x1] %onnx::Conv_704[FLOAT, 128x128x1x1] %onnx::Conv_707[FLOAT, 128x128x3x3] %onnx::Conv_710[FLOAT, 128x128x1x1] %onnx::Conv_713[FLOAT, 128x128x1x1] %onnx::Conv_716[FLOAT, 128x128x1x1] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x128x1x1] %onnx::Conv_725[FLOAT, 128x128x1x1] %onnx::Conv_728[FLOAT, 256x128x1x1] %onnx::Conv_729[FLOAT, 256] %onnx::Conv_731[FLOAT, 256x256x3x3] %onnx::Conv_734[FLOAT, 256x128x1x1] %onnx::Conv_737[FLOAT, 256x256x1x1] %onnx::Conv_740[FLOAT, 256x256x1x1] %onnx::Conv_743[FLOAT, 256x256x3x3] %onnx::Conv_746[FLOAT, 256x256x1x1] %onnx::Conv_749[FLOAT, 256x256x1x1] %onnx::Conv_752[FLOAT, 256x256x1x1] %onnx::Conv_755[FLOAT, 256x256x3x3] %onnx::Conv_758[FLOAT, 256x256x1x1] %onnx::Conv_761[FLOAT, 256x256x1x1] %onnx::Conv_764[FLOAT, 512x256x1x1] %onnx::Conv_765[FLOAT, 512] %onnx::Conv_767[FLOAT, 512x512x3x3] %onnx::Conv_770[FLOAT, 512x256x1x1] %onnx::Conv_773[FLOAT, 512x512x1x1] %onnx::Conv_776[FLOAT, 512x512x1x1] %onnx::Conv_779[FLOAT, 512x512x3x3] %onnx::Conv_782[FLOAT, 512x512x1x1] %onnx::Conv_785[FLOAT, 512x512x1x1] %onnx::Conv_788[FLOAT, 512x512x1x1] %onnx::Conv_791[FLOAT, 512x512x3x3] %onnx::Conv_794[FLOAT, 512x512x1x1] %onnx::Conv_797[FLOAT, 512x512x1x1] ) { %onnx::Conv_798 = Identity(%onnx::Conv_765) %onnx::Conv_795 = Identity(%onnx::Conv_765) %onnx::Conv_792 = Identity(%onnx::Conv_765) %onnx::Conv_789 = Identity(%onnx::Conv_765) %onnx::Conv_786 = Identity(%onnx::Conv_765) %onnx::Conv_783 = Identity(%onnx::Conv_765) %onnx::Conv_780 = Identity(%onnx::Conv_765) %onnx::Conv_777 = Identity(%onnx::Conv_765) %onnx::Conv_774 = Identity(%onnx::Conv_765) %onnx::Conv_771 = Identity(%onnx::Conv_765) %onnx::Conv_768 = Identity(%onnx::Conv_765) %onnx::Conv_762 = Identity(%onnx::Conv_729) %onnx::Conv_759 = Identity(%onnx::Conv_729) %onnx::Conv_756 = Identity(%onnx::Conv_729) %onnx::Conv_753 = Identity(%onnx::Conv_729) %onnx::Conv_750 = Identity(%onnx::Conv_729) %onnx::Conv_747 = Identity(%onnx::Conv_729) %onnx::Conv_744 = Identity(%onnx::Conv_729) %onnx::Conv_741 = Identity(%onnx::Conv_729) %onnx::Conv_738 = Identity(%onnx::Conv_729) %onnx::Conv_735 = Identity(%onnx::Conv_729) %onnx::Conv_732 = Identity(%onnx::Conv_729) %onnx::Conv_726 = Identity(%onnx::Conv_690) %onnx::Conv_723 = Identity(%onnx::Conv_690) %onnx::Conv_720 = Identity(%onnx::Conv_690) %onnx::Conv_717 = Identity(%onnx::Conv_690) %onnx::Conv_714 = Identity(%onnx::Conv_690) %onnx::Conv_711 = Identity(%onnx::Conv_690) %onnx::Conv_708 = Identity(%onnx::Conv_690) %onnx::Conv_705 = Identity(%onnx::Conv_690) %onnx::Conv_702 = Identity(%onnx::Conv_690) %onnx::Conv_699 = Identity(%onnx::Conv_690) %onnx::Conv_696 = Identity(%onnx::Conv_690) %onnx::Conv_693 = Identity(%onnx::Conv_690) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_689, %onnx::Conv_690) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %687 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %687 }
val_accuracy
89.393032
3,586,926,592
12,088,970
{'zcp_epe_nas': 137.19761504805342, 'zcp_fisher': 178.0820770263672, 'zcp_flops': 57390825472.0, 'zcp_grad_norm': 168.4239044189453, 'zcp_grasp': 4.306640625, 'zcp_jacov': -16.046613954508025, 'zcp_l2_norm': 818.1356811523438, 'zcp_nwot': 228.9941731850287, 'zcp_params': 12088970.0, 'zcp_plain': -0.020479761064052002, 'zcp_snip': 1458.8992919921875, 'zcp_synflow': 103.49527367355194, 'zcp_zen': 78.11238861083984, 'zcp_val_accuracy': 0.9017428159713741}
NASBench101_12889
NASBench101
12889
07be00d8f7264c820e201bc0550ee612
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_761[FLOAT, 128x3x3x3] %onnx::Conv_762[FLOAT, 128] %onnx::Conv_764[FLOAT, 64x128x1x1] %onnx::Conv_765[FLOAT, 64] %onnx::Conv_767[FLOAT, 64x64x1x1] %onnx::Conv_770[FLOAT, 64x64x3x3] %onnx::Conv_773[FLOAT, 64x128x1x1] %onnx::Conv_776[FLOAT, 64x64x3x3] %onnx::Conv_779[FLOAT, 64x128x1x1] %onnx::Conv_782[FLOAT, 64x64x1x1] %onnx::Conv_785[FLOAT, 64x64x3x3] %onnx::Conv_788[FLOAT, 64x128x1x1] %onnx::Conv_791[FLOAT, 64x64x3x3] %onnx::Conv_794[FLOAT, 64x128x1x1] %onnx::Conv_797[FLOAT, 64x64x1x1] %onnx::Conv_800[FLOAT, 64x64x3x3] %onnx::Conv_803[FLOAT, 64x128x1x1] %onnx::Conv_806[FLOAT, 64x64x3x3] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 128x128x1x1] %onnx::Conv_815[FLOAT, 128x128x3x3] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x3x3] %onnx::Conv_824[FLOAT, 128x256x1x1] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x128x3x3] %onnx::Conv_833[FLOAT, 128x256x1x1] %onnx::Conv_836[FLOAT, 128x128x3x3] %onnx::Conv_839[FLOAT, 128x256x1x1] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 128x128x3x3] %onnx::Conv_848[FLOAT, 128x256x1x1] %onnx::Conv_851[FLOAT, 128x128x3x3] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_855[FLOAT, 256] %onnx::Conv_857[FLOAT, 256x256x1x1] %onnx::Conv_860[FLOAT, 256x256x3x3] %onnx::Conv_863[FLOAT, 256x256x1x1] %onnx::Conv_866[FLOAT, 256x256x3x3] %onnx::Conv_869[FLOAT, 256x512x1x1] %onnx::Conv_872[FLOAT, 256x256x1x1] %onnx::Conv_875[FLOAT, 256x256x3x3] %onnx::Conv_878[FLOAT, 256x512x1x1] %onnx::Conv_881[FLOAT, 256x256x3x3] %onnx::Conv_884[FLOAT, 256x512x1x1] %onnx::Conv_887[FLOAT, 256x256x1x1] %onnx::Conv_890[FLOAT, 256x256x3x3] %onnx::Conv_893[FLOAT, 256x512x1x1] %onnx::Conv_896[FLOAT, 256x256x3x3] ) { %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_855) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_855) %onnx::Conv_867 = Identity(%onnx::Conv_855) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %onnx::Conv_852 = Identity(%onnx::Conv_762) %onnx::Conv_849 = Identity(%onnx::Conv_762) %onnx::Conv_846 = Identity(%onnx::Conv_762) %onnx::Conv_843 = Identity(%onnx::Conv_762) %onnx::Conv_840 = Identity(%onnx::Conv_762) %onnx::Conv_837 = Identity(%onnx::Conv_762) %onnx::Conv_834 = Identity(%onnx::Conv_762) %onnx::Conv_831 = Identity(%onnx::Conv_762) %onnx::Conv_828 = Identity(%onnx::Conv_762) %onnx::Conv_825 = Identity(%onnx::Conv_762) %onnx::Conv_822 = Identity(%onnx::Conv_762) %onnx::Conv_819 = Identity(%onnx::Conv_762) %onnx::Conv_816 = Identity(%onnx::Conv_762) %onnx::Conv_813 = Identity(%onnx::Conv_762) %onnx::Conv_810 = Identity(%onnx::Conv_762) %onnx::Conv_807 = Identity(%onnx::Conv_765) %onnx::Conv_804 = Identity(%onnx::Conv_765) %onnx::Conv_801 = Identity(%onnx::Conv_765) %onnx::Conv_798 = Identity(%onnx::Conv_765) %onnx::Conv_795 = Identity(%onnx::Conv_765) %onnx::Conv_792 = Identity(%onnx::Conv_765) %onnx::Conv_789 = Identity(%onnx::Conv_765) %onnx::Conv_786 = Identity(%onnx::Conv_765) %onnx::Conv_783 = Identity(%onnx::Conv_765) %onnx::Conv_780 = Identity(%onnx::Conv_765) %onnx::Conv_777 = Identity(%onnx::Conv_765) %onnx::Conv_774 = Identity(%onnx::Conv_765) %onnx::Conv_771 = Identity(%onnx::Conv_765) %onnx::Conv_768 = Identity(%onnx::Conv_765) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_761, %onnx::Conv_762) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %759 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %759 }
val_accuracy
92.147434
1,724,786,688
5,793,546
{'zcp_epe_nas': 85.62076096501652, 'zcp_fisher': 5.5368499755859375, 'zcp_flops': 27596587008.0, 'zcp_grad_norm': 46.48382568359375, 'zcp_grasp': -1.200042724609375, 'zcp_jacov': -16.058198322447467, 'zcp_l2_norm': 844.1565551757812, 'zcp_nwot': 221.26977377125567, 'zcp_params': 5793546.0, 'zcp_plain': -0.014995590783655002, 'zcp_snip': 289.60662841796875, 'zcp_synflow': 116.97158878534503, 'zcp_zen': 89.82994079589844, 'zcp_val_accuracy': 0.9170672893524171}
NASBench101_13351
NASBench101
13351
0809a819f50f48d2bfba4c0fd6ceddb0
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_662[FLOAT, 128x3x3x3] %onnx::Conv_663[FLOAT, 128] %onnx::Conv_665[FLOAT, 64x128x1x1] %onnx::Conv_666[FLOAT, 64] %onnx::Conv_668[FLOAT, 64x64x3x3] %onnx::Conv_671[FLOAT, 64x64x1x1] %onnx::Conv_674[FLOAT, 64x64x1x1] %onnx::Conv_677[FLOAT, 64x128x1x1] %onnx::Conv_680[FLOAT, 64x64x3x3] %onnx::Conv_683[FLOAT, 64x64x1x1] %onnx::Conv_686[FLOAT, 64x64x1x1] %onnx::Conv_689[FLOAT, 64x128x1x1] %onnx::Conv_692[FLOAT, 64x64x3x3] %onnx::Conv_695[FLOAT, 64x64x1x1] %onnx::Conv_698[FLOAT, 64x64x1x1] %onnx::Conv_701[FLOAT, 128x128x1x1] %onnx::Conv_704[FLOAT, 128x128x3x3] %onnx::Conv_707[FLOAT, 128x128x1x1] %onnx::Conv_710[FLOAT, 128x128x1x1] %onnx::Conv_713[FLOAT, 128x256x1x1] %onnx::Conv_716[FLOAT, 128x128x3x3] %onnx::Conv_719[FLOAT, 128x128x1x1] %onnx::Conv_722[FLOAT, 128x128x1x1] %onnx::Conv_725[FLOAT, 128x256x1x1] %onnx::Conv_728[FLOAT, 128x128x3x3] %onnx::Conv_731[FLOAT, 128x128x1x1] %onnx::Conv_734[FLOAT, 128x128x1x1] %onnx::Conv_737[FLOAT, 256x256x1x1] %onnx::Conv_738[FLOAT, 256] %onnx::Conv_740[FLOAT, 256x256x3x3] %onnx::Conv_743[FLOAT, 256x256x1x1] %onnx::Conv_746[FLOAT, 256x256x1x1] %onnx::Conv_749[FLOAT, 256x512x1x1] %onnx::Conv_752[FLOAT, 256x256x3x3] %onnx::Conv_755[FLOAT, 256x256x1x1] %onnx::Conv_758[FLOAT, 256x256x1x1] %onnx::Conv_761[FLOAT, 256x512x1x1] %onnx::Conv_764[FLOAT, 256x256x3x3] %onnx::Conv_767[FLOAT, 256x256x1x1] %onnx::Conv_770[FLOAT, 256x256x1x1] ) { %onnx::Conv_771 = Identity(%onnx::Conv_738) %onnx::Conv_768 = Identity(%onnx::Conv_738) %onnx::Conv_765 = Identity(%onnx::Conv_738) %onnx::Conv_762 = Identity(%onnx::Conv_738) %onnx::Conv_759 = Identity(%onnx::Conv_738) %onnx::Conv_756 = Identity(%onnx::Conv_738) %onnx::Conv_753 = Identity(%onnx::Conv_738) %onnx::Conv_750 = Identity(%onnx::Conv_738) %onnx::Conv_747 = Identity(%onnx::Conv_738) %onnx::Conv_744 = Identity(%onnx::Conv_738) %onnx::Conv_741 = Identity(%onnx::Conv_738) %onnx::Conv_735 = Identity(%onnx::Conv_663) %onnx::Conv_732 = Identity(%onnx::Conv_663) %onnx::Conv_729 = Identity(%onnx::Conv_663) %onnx::Conv_726 = Identity(%onnx::Conv_663) %onnx::Conv_723 = Identity(%onnx::Conv_663) %onnx::Conv_720 = Identity(%onnx::Conv_663) %onnx::Conv_717 = Identity(%onnx::Conv_663) %onnx::Conv_714 = Identity(%onnx::Conv_663) %onnx::Conv_711 = Identity(%onnx::Conv_663) %onnx::Conv_708 = Identity(%onnx::Conv_663) %onnx::Conv_705 = Identity(%onnx::Conv_663) %onnx::Conv_702 = Identity(%onnx::Conv_663) %onnx::Conv_699 = Identity(%onnx::Conv_666) %onnx::Conv_696 = Identity(%onnx::Conv_666) %onnx::Conv_693 = Identity(%onnx::Conv_666) %onnx::Conv_690 = Identity(%onnx::Conv_666) %onnx::Conv_687 = Identity(%onnx::Conv_666) %onnx::Conv_684 = Identity(%onnx::Conv_666) %onnx::Conv_681 = Identity(%onnx::Conv_666) %onnx::Conv_678 = Identity(%onnx::Conv_666) %onnx::Conv_675 = Identity(%onnx::Conv_666) %onnx::Conv_672 = Identity(%onnx::Conv_666) %onnx::Conv_669 = Identity(%onnx::Conv_666) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_662, %onnx::Conv_663) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %660 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %660 }
val_accuracy
90.084136
983,836,672
3,292,298
{'zcp_epe_nas': 68.63843074459822, 'zcp_fisher': 60.30999755859375, 'zcp_flops': 15741386752.0, 'zcp_grad_norm': 111.33546447753906, 'zcp_grasp': 12.87158203125, 'zcp_jacov': -16.064428505937755, 'zcp_l2_norm': 647.9111938476562, 'zcp_nwot': 218.66578264900463, 'zcp_params': 3292298.0, 'zcp_plain': -0.030192846432328002, 'zcp_snip': 662.5673217773438, 'zcp_synflow': 96.63034218271491, 'zcp_zen': 71.02137756347656, 'zcp_val_accuracy': 0.9328926205635071}
NASBench101_106081
NASBench101
106081
401cfa0e487cba79fd89651ac796223b
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_671[FLOAT, 128x3x3x3] %onnx::Conv_672[FLOAT, 128] %onnx::Conv_674[FLOAT, 64x128x1x1] %onnx::Conv_675[FLOAT, 64] %onnx::Conv_677[FLOAT, 64x64x1x1] %onnx::Conv_680[FLOAT, 64x64x1x1] %onnx::Conv_683[FLOAT, 64x64x3x3] %onnx::Conv_686[FLOAT, 64x128x1x1] %onnx::Conv_689[FLOAT, 64x64x1x1] %onnx::Conv_692[FLOAT, 64x64x1x1] %onnx::Conv_695[FLOAT, 64x64x3x3] %onnx::Conv_698[FLOAT, 64x128x1x1] %onnx::Conv_701[FLOAT, 64x64x1x1] %onnx::Conv_704[FLOAT, 64x64x1x1] %onnx::Conv_707[FLOAT, 64x64x3x3] %onnx::Conv_710[FLOAT, 128x128x1x1] %onnx::Conv_713[FLOAT, 128x128x1x1] %onnx::Conv_716[FLOAT, 128x128x1x1] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x256x1x1] %onnx::Conv_725[FLOAT, 128x128x1x1] %onnx::Conv_728[FLOAT, 128x128x1x1] %onnx::Conv_731[FLOAT, 128x128x3x3] %onnx::Conv_734[FLOAT, 128x256x1x1] %onnx::Conv_737[FLOAT, 128x128x1x1] %onnx::Conv_740[FLOAT, 128x128x1x1] %onnx::Conv_743[FLOAT, 128x128x3x3] %onnx::Conv_746[FLOAT, 256x256x1x1] %onnx::Conv_747[FLOAT, 256] %onnx::Conv_749[FLOAT, 256x256x1x1] %onnx::Conv_752[FLOAT, 256x256x1x1] %onnx::Conv_755[FLOAT, 256x256x3x3] %onnx::Conv_758[FLOAT, 256x512x1x1] %onnx::Conv_761[FLOAT, 256x256x1x1] %onnx::Conv_764[FLOAT, 256x256x1x1] %onnx::Conv_767[FLOAT, 256x256x3x3] %onnx::Conv_770[FLOAT, 256x512x1x1] %onnx::Conv_773[FLOAT, 256x256x1x1] %onnx::Conv_776[FLOAT, 256x256x1x1] %onnx::Conv_779[FLOAT, 256x256x3x3] ) { %onnx::Conv_780 = Identity(%onnx::Conv_747) %onnx::Conv_777 = Identity(%onnx::Conv_747) %onnx::Conv_774 = Identity(%onnx::Conv_747) %onnx::Conv_771 = Identity(%onnx::Conv_747) %onnx::Conv_768 = Identity(%onnx::Conv_747) %onnx::Conv_765 = Identity(%onnx::Conv_747) %onnx::Conv_762 = Identity(%onnx::Conv_747) %onnx::Conv_759 = Identity(%onnx::Conv_747) %onnx::Conv_756 = Identity(%onnx::Conv_747) %onnx::Conv_753 = Identity(%onnx::Conv_747) %onnx::Conv_750 = Identity(%onnx::Conv_747) %onnx::Conv_744 = Identity(%onnx::Conv_672) %onnx::Conv_741 = Identity(%onnx::Conv_672) %onnx::Conv_738 = Identity(%onnx::Conv_672) %onnx::Conv_735 = Identity(%onnx::Conv_672) %onnx::Conv_732 = Identity(%onnx::Conv_672) %onnx::Conv_729 = Identity(%onnx::Conv_672) %onnx::Conv_726 = Identity(%onnx::Conv_672) %onnx::Conv_723 = Identity(%onnx::Conv_672) %onnx::Conv_720 = Identity(%onnx::Conv_672) %onnx::Conv_717 = Identity(%onnx::Conv_672) %onnx::Conv_714 = Identity(%onnx::Conv_672) %onnx::Conv_711 = Identity(%onnx::Conv_672) %onnx::Conv_708 = Identity(%onnx::Conv_675) %onnx::Conv_705 = Identity(%onnx::Conv_675) %onnx::Conv_702 = Identity(%onnx::Conv_675) %onnx::Conv_699 = Identity(%onnx::Conv_675) %onnx::Conv_696 = Identity(%onnx::Conv_675) %onnx::Conv_693 = Identity(%onnx::Conv_675) %onnx::Conv_690 = Identity(%onnx::Conv_675) %onnx::Conv_687 = Identity(%onnx::Conv_675) %onnx::Conv_684 = Identity(%onnx::Conv_675) %onnx::Conv_681 = Identity(%onnx::Conv_675) %onnx::Conv_678 = Identity(%onnx::Conv_675) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_671, %onnx::Conv_672) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %669 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %669 }
val_accuracy
86.989182
983,836,672
3,292,298
{'zcp_epe_nas': 154.74639429524981, 'zcp_fisher': 455.160400390625, 'zcp_flops': 15741386752.0, 'zcp_grad_norm': 310.9219665527344, 'zcp_grasp': 461.3828125, 'zcp_jacov': -16.055474675808114, 'zcp_l2_norm': 648.7832641601562, 'zcp_nwot': 218.17380530618266, 'zcp_params': 3292298.0, 'zcp_plain': 0.035283483564853, 'zcp_snip': 1659.875732421875, 'zcp_synflow': 114.2829868121339, 'zcp_zen': 66.03741455078125, 'zcp_val_accuracy': 0.9149639606475831}
NASBench101_189356
NASBench101
189356
7284a8b563c93257c1c3e07106f51bfd
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_878[FLOAT, 128x3x3x3] %onnx::Conv_879[FLOAT, 128] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_882[FLOAT, 64] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 64x64x3x3] %onnx::Conv_890[FLOAT, 64x64x3x3] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x64x1x1] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 64x64x3x3] %onnx::Conv_908[FLOAT, 64x64x3x3] %onnx::Conv_911[FLOAT, 64x64x1x1] %onnx::Conv_914[FLOAT, 64x64x1x1] %onnx::Conv_917[FLOAT, 64x128x1x1] %onnx::Conv_920[FLOAT, 64x64x3x3] %onnx::Conv_923[FLOAT, 64x64x3x3] %onnx::Conv_926[FLOAT, 64x64x3x3] %onnx::Conv_929[FLOAT, 64x64x1x1] %onnx::Conv_932[FLOAT, 64x64x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x128x3x3] %onnx::Conv_944[FLOAT, 128x128x3x3] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 128x128x3x3] %onnx::Conv_962[FLOAT, 128x128x3x3] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 128x256x1x1] %onnx::Conv_974[FLOAT, 128x128x3x3] %onnx::Conv_977[FLOAT, 128x128x3x3] %onnx::Conv_980[FLOAT, 128x128x3x3] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_990[FLOAT, 256] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x256x3x3] %onnx::Conv_998[FLOAT, 256x256x3x3] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 256x256x3x3] %onnx::Conv_1016[FLOAT, 256x256x3x3] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x256x1x1] %onnx::Conv_1025[FLOAT, 256x512x1x1] %onnx::Conv_1028[FLOAT, 256x256x3x3] %onnx::Conv_1031[FLOAT, 256x256x3x3] %onnx::Conv_1034[FLOAT, 256x256x3x3] %onnx::Conv_1037[FLOAT, 256x256x1x1] %onnx::Conv_1040[FLOAT, 256x256x1x1] ) { %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %onnx::Conv_987 = Identity(%onnx::Conv_879) %onnx::Conv_984 = Identity(%onnx::Conv_879) %onnx::Conv_981 = Identity(%onnx::Conv_879) %onnx::Conv_978 = Identity(%onnx::Conv_879) %onnx::Conv_975 = Identity(%onnx::Conv_879) %onnx::Conv_972 = Identity(%onnx::Conv_879) %onnx::Conv_969 = Identity(%onnx::Conv_879) %onnx::Conv_966 = Identity(%onnx::Conv_879) %onnx::Conv_963 = Identity(%onnx::Conv_879) %onnx::Conv_960 = Identity(%onnx::Conv_879) %onnx::Conv_957 = Identity(%onnx::Conv_879) %onnx::Conv_954 = Identity(%onnx::Conv_879) %onnx::Conv_951 = Identity(%onnx::Conv_879) %onnx::Conv_948 = Identity(%onnx::Conv_879) %onnx::Conv_945 = Identity(%onnx::Conv_879) %onnx::Conv_942 = Identity(%onnx::Conv_879) %onnx::Conv_939 = Identity(%onnx::Conv_879) %onnx::Conv_936 = Identity(%onnx::Conv_879) %onnx::Conv_933 = Identity(%onnx::Conv_882) %onnx::Conv_930 = Identity(%onnx::Conv_882) %onnx::Conv_927 = Identity(%onnx::Conv_882) %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_878, %onnx::Conv_879) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %876 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %876 }
val_accuracy
90.194309
2,348,296,192
7,942,538
{'zcp_epe_nas': 73.2078999287688, 'zcp_fisher': 165.90728759765625, 'zcp_flops': 37572739072.0, 'zcp_grad_norm': 228.09837341308594, 'zcp_grasp': 46.9560546875, 'zcp_jacov': -16.067586279619768, 'zcp_l2_norm': 948.41943359375, 'zcp_nwot': 224.3911122469398, 'zcp_params': 7942538.0, 'zcp_plain': -0.003442446701228, 'zcp_snip': 1306.1824951171875, 'zcp_synflow': 142.0750688936739, 'zcp_zen': 102.2393798828125, 'zcp_val_accuracy': 0.669871807098388}
NASBench101_167859
NASBench101
167859
659876ccd7359e9019fe951619cfe343
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_860[FLOAT, 128x3x3x3] %onnx::Conv_861[FLOAT, 128] %onnx::Conv_863[FLOAT, 64x128x1x1] %onnx::Conv_864[FLOAT, 64] %onnx::Conv_866[FLOAT, 64x64x1x1] %onnx::Conv_869[FLOAT, 64x64x1x1] %onnx::Conv_872[FLOAT, 64x128x1x1] %onnx::Conv_875[FLOAT, 64x64x1x1] %onnx::Conv_878[FLOAT, 128x128x1x1] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_884[FLOAT, 64x64x1x1] %onnx::Conv_887[FLOAT, 64x64x1x1] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x64x1x1] %onnx::Conv_905[FLOAT, 64x64x1x1] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x1x1] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 256x128x1x1] %onnx::Conv_933[FLOAT, 256] %onnx::Conv_935[FLOAT, 128x256x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x1x1] %onnx::Conv_944[FLOAT, 128x256x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 256x256x1x1] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x128x1x1] %onnx::Conv_959[FLOAT, 128x128x1x1] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 512x256x1x1] %onnx::Conv_987[FLOAT, 512] %onnx::Conv_989[FLOAT, 256x512x1x1] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 256x512x1x1] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 512x512x1x1] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x256x1x1] %onnx::Conv_1013[FLOAT, 256x256x1x1] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 512x512x1x1] ) { %onnx::Conv_1023 = Identity(%onnx::Conv_987) %onnx::Conv_1020 = Identity(%onnx::Conv_933) %onnx::Conv_1017 = Identity(%onnx::Conv_933) %onnx::Conv_1014 = Identity(%onnx::Conv_933) %onnx::Conv_1011 = Identity(%onnx::Conv_933) %onnx::Conv_1008 = Identity(%onnx::Conv_933) %onnx::Conv_1005 = Identity(%onnx::Conv_987) %onnx::Conv_1002 = Identity(%onnx::Conv_933) %onnx::Conv_999 = Identity(%onnx::Conv_933) %onnx::Conv_996 = Identity(%onnx::Conv_933) %onnx::Conv_993 = Identity(%onnx::Conv_933) %onnx::Conv_990 = Identity(%onnx::Conv_933) %onnx::Conv_984 = Identity(%onnx::Conv_933) %onnx::Conv_981 = Identity(%onnx::Conv_933) %onnx::Conv_978 = Identity(%onnx::Conv_933) %onnx::Conv_975 = Identity(%onnx::Conv_933) %onnx::Conv_972 = Identity(%onnx::Conv_933) %onnx::Conv_969 = Identity(%onnx::Conv_933) %onnx::Conv_966 = Identity(%onnx::Conv_861) %onnx::Conv_963 = Identity(%onnx::Conv_861) %onnx::Conv_960 = Identity(%onnx::Conv_861) %onnx::Conv_957 = Identity(%onnx::Conv_861) %onnx::Conv_954 = Identity(%onnx::Conv_861) %onnx::Conv_951 = Identity(%onnx::Conv_933) %onnx::Conv_948 = Identity(%onnx::Conv_861) %onnx::Conv_945 = Identity(%onnx::Conv_861) %onnx::Conv_942 = Identity(%onnx::Conv_861) %onnx::Conv_939 = Identity(%onnx::Conv_861) %onnx::Conv_936 = Identity(%onnx::Conv_861) %onnx::Conv_930 = Identity(%onnx::Conv_861) %onnx::Conv_927 = Identity(%onnx::Conv_861) %onnx::Conv_924 = Identity(%onnx::Conv_861) %onnx::Conv_921 = Identity(%onnx::Conv_861) %onnx::Conv_918 = Identity(%onnx::Conv_861) %onnx::Conv_915 = Identity(%onnx::Conv_861) %onnx::Conv_912 = Identity(%onnx::Conv_864) %onnx::Conv_909 = Identity(%onnx::Conv_864) %onnx::Conv_906 = Identity(%onnx::Conv_864) %onnx::Conv_903 = Identity(%onnx::Conv_864) %onnx::Conv_900 = Identity(%onnx::Conv_864) %onnx::Conv_897 = Identity(%onnx::Conv_861) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_864) %onnx::Conv_888 = Identity(%onnx::Conv_864) %onnx::Conv_885 = Identity(%onnx::Conv_864) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_861) %onnx::Conv_876 = Identity(%onnx::Conv_864) %onnx::Conv_873 = Identity(%onnx::Conv_864) %onnx::Conv_870 = Identity(%onnx::Conv_864) %onnx::Conv_867 = Identity(%onnx::Conv_864) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_860, %onnx::Conv_861) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_4_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_4_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_4_output_0) %858 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %858 }
val_accuracy
88.882214
790,767,616
2,538,506
{'zcp_epe_nas': 137.77186071390202, 'zcp_fisher': 56.37574768066406, 'zcp_flops': 12652281856.0, 'zcp_grad_norm': 166.11090087890625, 'zcp_grasp': -35.8115234375, 'zcp_jacov': -16.05272899534407, 'zcp_l2_norm': 1039.5062255859375, 'zcp_nwot': 226.94234251997307, 'zcp_params': 2538506.0, 'zcp_plain': 0.15516687929630202, 'zcp_snip': 948.240966796875, 'zcp_synflow': 98.25696625603494, 'zcp_zen': 91.49634552001953, 'zcp_val_accuracy': 0.9396033883094781}
NASBench101_116894
NASBench101
116894
468d2b65219839ba0b512a17df188c20
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_869[FLOAT, 128x3x3x3] %onnx::Conv_870[FLOAT, 128] %onnx::Conv_872[FLOAT, 64x128x1x1] %onnx::Conv_873[FLOAT, 64] %onnx::Conv_875[FLOAT, 64x64x3x3] %onnx::Conv_878[FLOAT, 64x128x1x1] %onnx::Conv_881[FLOAT, 64x64x1x1] %onnx::Conv_884[FLOAT, 64x128x1x1] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_893[FLOAT, 64x64x3x3] %onnx::Conv_896[FLOAT, 64x128x1x1] %onnx::Conv_899[FLOAT, 64x64x1x1] %onnx::Conv_902[FLOAT, 64x128x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x3x3] %onnx::Conv_914[FLOAT, 64x128x1x1] %onnx::Conv_917[FLOAT, 64x64x1x1] %onnx::Conv_920[FLOAT, 64x128x1x1] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x3x3] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 256x128x1x1] %onnx::Conv_942[FLOAT, 256] %onnx::Conv_944[FLOAT, 128x256x1x1] %onnx::Conv_947[FLOAT, 128x128x3x3] %onnx::Conv_950[FLOAT, 128x256x1x1] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x256x1x1] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x3x3] %onnx::Conv_968[FLOAT, 128x256x1x1] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x256x1x1] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x3x3] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 512x256x1x1] %onnx::Conv_996[FLOAT, 512] %onnx::Conv_998[FLOAT, 256x512x1x1] %onnx::Conv_1001[FLOAT, 256x256x3x3] %onnx::Conv_1004[FLOAT, 256x512x1x1] %onnx::Conv_1007[FLOAT, 256x256x1x1] %onnx::Conv_1010[FLOAT, 256x512x1x1] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x3x3] %onnx::Conv_1022[FLOAT, 256x512x1x1] %onnx::Conv_1025[FLOAT, 256x256x1x1] %onnx::Conv_1028[FLOAT, 256x512x1x1] %onnx::Conv_1031[FLOAT, 512x512x1x1] ) { %onnx::Conv_1032 = Identity(%onnx::Conv_996) %onnx::Conv_1029 = Identity(%onnx::Conv_942) %onnx::Conv_1026 = Identity(%onnx::Conv_942) %onnx::Conv_1023 = Identity(%onnx::Conv_942) %onnx::Conv_1020 = Identity(%onnx::Conv_942) %onnx::Conv_1017 = Identity(%onnx::Conv_942) %onnx::Conv_1014 = Identity(%onnx::Conv_996) %onnx::Conv_1011 = Identity(%onnx::Conv_942) %onnx::Conv_1008 = Identity(%onnx::Conv_942) %onnx::Conv_1005 = Identity(%onnx::Conv_942) %onnx::Conv_1002 = Identity(%onnx::Conv_942) %onnx::Conv_999 = Identity(%onnx::Conv_942) %onnx::Conv_993 = Identity(%onnx::Conv_942) %onnx::Conv_990 = Identity(%onnx::Conv_942) %onnx::Conv_987 = Identity(%onnx::Conv_942) %onnx::Conv_984 = Identity(%onnx::Conv_942) %onnx::Conv_981 = Identity(%onnx::Conv_942) %onnx::Conv_978 = Identity(%onnx::Conv_942) %onnx::Conv_975 = Identity(%onnx::Conv_870) %onnx::Conv_972 = Identity(%onnx::Conv_870) %onnx::Conv_969 = Identity(%onnx::Conv_870) %onnx::Conv_966 = Identity(%onnx::Conv_870) %onnx::Conv_963 = Identity(%onnx::Conv_870) %onnx::Conv_960 = Identity(%onnx::Conv_942) %onnx::Conv_957 = Identity(%onnx::Conv_870) %onnx::Conv_954 = Identity(%onnx::Conv_870) %onnx::Conv_951 = Identity(%onnx::Conv_870) %onnx::Conv_948 = Identity(%onnx::Conv_870) %onnx::Conv_945 = Identity(%onnx::Conv_870) %onnx::Conv_939 = Identity(%onnx::Conv_870) %onnx::Conv_936 = Identity(%onnx::Conv_870) %onnx::Conv_933 = Identity(%onnx::Conv_870) %onnx::Conv_930 = Identity(%onnx::Conv_870) %onnx::Conv_927 = Identity(%onnx::Conv_870) %onnx::Conv_924 = Identity(%onnx::Conv_870) %onnx::Conv_921 = Identity(%onnx::Conv_873) %onnx::Conv_918 = Identity(%onnx::Conv_873) %onnx::Conv_915 = Identity(%onnx::Conv_873) %onnx::Conv_912 = Identity(%onnx::Conv_873) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_870) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_873) %onnx::Conv_897 = Identity(%onnx::Conv_873) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_873) %onnx::Conv_882 = Identity(%onnx::Conv_873) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_869, %onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_6_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_6_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_6_output_0) %867 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %867 }
val_accuracy
91.436297
1,453,467,648
4,779,018
{'zcp_epe_nas': 111.95143112751262, 'zcp_fisher': 12.028361320495605, 'zcp_flops': 23255482368.0, 'zcp_grad_norm': 86.63958740234375, 'zcp_grasp': -60.333892822265625, 'zcp_jacov': -16.053201274040262, 'zcp_l2_norm': 1086.5447998046875, 'zcp_nwot': 226.61016588438318, 'zcp_params': 4779018.0, 'zcp_plain': 0.20407940447330403, 'zcp_snip': 537.65869140625, 'zcp_synflow': 65.71858946889353, 'zcp_zen': 108.84280395507812, 'zcp_val_accuracy': 0.597455918788909}
NASBench101_349243
NASBench101
349243
d3251b7a328975b874ab1db2c18f3c6f
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_653[FLOAT, 128x3x3x3] %onnx::Conv_654[FLOAT, 128] %onnx::Conv_656[FLOAT, 128x128x1x1] %onnx::Conv_659[FLOAT, 128x128x3x3] %onnx::Conv_662[FLOAT, 128x128x3x3] %onnx::Conv_665[FLOAT, 128x128x1x1] %onnx::Conv_668[FLOAT, 128x128x1x1] %onnx::Conv_671[FLOAT, 128x128x3x3] %onnx::Conv_674[FLOAT, 128x128x3x3] %onnx::Conv_677[FLOAT, 128x128x1x1] %onnx::Conv_680[FLOAT, 128x128x1x1] %onnx::Conv_683[FLOAT, 128x128x3x3] %onnx::Conv_686[FLOAT, 128x128x3x3] %onnx::Conv_689[FLOAT, 128x128x1x1] %onnx::Conv_692[FLOAT, 256x128x1x1] %onnx::Conv_693[FLOAT, 256] %onnx::Conv_695[FLOAT, 256x256x3x3] %onnx::Conv_698[FLOAT, 256x256x3x3] %onnx::Conv_701[FLOAT, 256x128x1x1] %onnx::Conv_704[FLOAT, 256x256x1x1] %onnx::Conv_707[FLOAT, 256x256x3x3] %onnx::Conv_710[FLOAT, 256x256x3x3] %onnx::Conv_713[FLOAT, 256x256x1x1] %onnx::Conv_716[FLOAT, 256x256x1x1] %onnx::Conv_719[FLOAT, 256x256x3x3] %onnx::Conv_722[FLOAT, 256x256x3x3] %onnx::Conv_725[FLOAT, 256x256x1x1] %onnx::Conv_728[FLOAT, 512x256x1x1] %onnx::Conv_729[FLOAT, 512] %onnx::Conv_731[FLOAT, 512x512x3x3] %onnx::Conv_734[FLOAT, 512x512x3x3] %onnx::Conv_737[FLOAT, 512x256x1x1] %onnx::Conv_740[FLOAT, 512x512x1x1] %onnx::Conv_743[FLOAT, 512x512x3x3] %onnx::Conv_746[FLOAT, 512x512x3x3] %onnx::Conv_749[FLOAT, 512x512x1x1] %onnx::Conv_752[FLOAT, 512x512x1x1] %onnx::Conv_755[FLOAT, 512x512x3x3] %onnx::Conv_758[FLOAT, 512x512x3x3] %onnx::Conv_761[FLOAT, 512x512x1x1] ) { %onnx::Conv_762 = Identity(%onnx::Conv_729) %onnx::Conv_759 = Identity(%onnx::Conv_729) %onnx::Conv_756 = Identity(%onnx::Conv_729) %onnx::Conv_753 = Identity(%onnx::Conv_729) %onnx::Conv_750 = Identity(%onnx::Conv_729) %onnx::Conv_747 = Identity(%onnx::Conv_729) %onnx::Conv_744 = Identity(%onnx::Conv_729) %onnx::Conv_741 = Identity(%onnx::Conv_729) %onnx::Conv_738 = Identity(%onnx::Conv_729) %onnx::Conv_735 = Identity(%onnx::Conv_729) %onnx::Conv_732 = Identity(%onnx::Conv_729) %onnx::Conv_726 = Identity(%onnx::Conv_693) %onnx::Conv_723 = Identity(%onnx::Conv_693) %onnx::Conv_720 = Identity(%onnx::Conv_693) %onnx::Conv_717 = Identity(%onnx::Conv_693) %onnx::Conv_714 = Identity(%onnx::Conv_693) %onnx::Conv_711 = Identity(%onnx::Conv_693) %onnx::Conv_708 = Identity(%onnx::Conv_693) %onnx::Conv_705 = Identity(%onnx::Conv_693) %onnx::Conv_702 = Identity(%onnx::Conv_693) %onnx::Conv_699 = Identity(%onnx::Conv_693) %onnx::Conv_696 = Identity(%onnx::Conv_693) %onnx::Conv_690 = Identity(%onnx::Conv_654) %onnx::Conv_687 = Identity(%onnx::Conv_654) %onnx::Conv_684 = Identity(%onnx::Conv_654) %onnx::Conv_681 = Identity(%onnx::Conv_654) %onnx::Conv_678 = Identity(%onnx::Conv_654) %onnx::Conv_675 = Identity(%onnx::Conv_654) %onnx::Conv_672 = Identity(%onnx::Conv_654) %onnx::Conv_669 = Identity(%onnx::Conv_654) %onnx::Conv_666 = Identity(%onnx::Conv_654) %onnx::Conv_663 = Identity(%onnx::Conv_654) %onnx::Conv_660 = Identity(%onnx::Conv_654) %onnx::Conv_657 = Identity(%onnx::Conv_654) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_653, %onnx::Conv_654) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %651 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %651 }
val_accuracy
90.52484
6,002,845,696
20,346,506
{'zcp_epe_nas': 80.59721217334366, 'zcp_fisher': 53.84402084350586, 'zcp_flops': 96045531136.0, 'zcp_grad_norm': 129.1352081298828, 'zcp_grasp': -54.76593017578125, 'zcp_jacov': -16.054669843263348, 'zcp_l2_norm': 818.019287109375, 'zcp_nwot': 228.3483066761331, 'zcp_params': 20346506.0, 'zcp_plain': 0.269966453313827, 'zcp_snip': 1143.3572998046875, 'zcp_synflow': 103.60971635341527, 'zcp_zen': 94.1771240234375, 'zcp_val_accuracy': 0.927584111690521}
NASBench101_249244
NASBench101
249244
96dd61d8fbe43720e5f063fba2f38e6a
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_602[FLOAT, 128x3x3x3] %onnx::Conv_603[FLOAT, 128] %onnx::Conv_605[FLOAT, 43x128x1x1] %onnx::Conv_606[FLOAT, 43] %onnx::Conv_608[FLOAT, 43x43x3x3] %onnx::Conv_611[FLOAT, 42x42x1x1] %onnx::Conv_612[FLOAT, 42] %onnx::Conv_614[FLOAT, 43x128x1x1] %onnx::Conv_617[FLOAT, 43x43x3x3] %onnx::Conv_620[FLOAT, 42x42x1x1] %onnx::Conv_623[FLOAT, 43x128x1x1] %onnx::Conv_626[FLOAT, 43x43x3x3] %onnx::Conv_629[FLOAT, 42x42x1x1] %onnx::Conv_632[FLOAT, 86x128x1x1] %onnx::Conv_633[FLOAT, 86] %onnx::Conv_635[FLOAT, 85x85x3x3] %onnx::Conv_636[FLOAT, 85] %onnx::Conv_638[FLOAT, 85x85x1x1] %onnx::Conv_641[FLOAT, 86x256x1x1] %onnx::Conv_644[FLOAT, 85x85x3x3] %onnx::Conv_647[FLOAT, 85x85x1x1] %onnx::Conv_650[FLOAT, 86x256x1x1] %onnx::Conv_653[FLOAT, 85x85x3x3] %onnx::Conv_656[FLOAT, 85x85x1x1] %onnx::Conv_659[FLOAT, 171x256x1x1] %onnx::Conv_660[FLOAT, 171] %onnx::Conv_662[FLOAT, 171x171x3x3] %onnx::Conv_665[FLOAT, 170x170x1x1] %onnx::Conv_666[FLOAT, 170] %onnx::Conv_668[FLOAT, 171x512x1x1] %onnx::Conv_671[FLOAT, 171x171x3x3] %onnx::Conv_674[FLOAT, 170x170x1x1] %onnx::Conv_677[FLOAT, 171x512x1x1] %onnx::Conv_680[FLOAT, 171x171x3x3] %onnx::Conv_683[FLOAT, 170x170x1x1] ) { %onnx::Conv_684 = Identity(%onnx::Conv_666) %onnx::Conv_681 = Identity(%onnx::Conv_660) %onnx::Conv_678 = Identity(%onnx::Conv_660) %onnx::Conv_675 = Identity(%onnx::Conv_666) %onnx::Conv_672 = Identity(%onnx::Conv_660) %onnx::Conv_669 = Identity(%onnx::Conv_660) %onnx::Conv_663 = Identity(%onnx::Conv_660) %onnx::Conv_657 = Identity(%onnx::Conv_636) %onnx::Conv_654 = Identity(%onnx::Conv_636) %onnx::Conv_651 = Identity(%onnx::Conv_633) %onnx::Conv_648 = Identity(%onnx::Conv_636) %onnx::Conv_645 = Identity(%onnx::Conv_636) %onnx::Conv_642 = Identity(%onnx::Conv_633) %onnx::Conv_639 = Identity(%onnx::Conv_636) %onnx::Conv_630 = Identity(%onnx::Conv_612) %onnx::Conv_627 = Identity(%onnx::Conv_606) %onnx::Conv_624 = Identity(%onnx::Conv_606) %onnx::Conv_621 = Identity(%onnx::Conv_612) %onnx::Conv_618 = Identity(%onnx::Conv_606) %onnx::Conv_615 = Identity(%onnx::Conv_606) %onnx::Conv_609 = Identity(%onnx::Conv_606) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_602, %onnx::Conv_603) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_605, %onnx::Conv_606) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_608, %onnx::Conv_609) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_1_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_7_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_8_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Slice_1_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_611, %onnx::Conv_612) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_614, %onnx::Conv_615) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_617, %onnx::Conv_618) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_1_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_7_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_8_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Slice_1_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_620, %onnx::Conv_621) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_623, %onnx::Conv_624) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_626, %onnx::Conv_627) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_1_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_7_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_8_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Slice_1_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_629, %onnx::Conv_630) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_632, %onnx::Conv_633) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Slice_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_635, %onnx::Conv_636) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Slice_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Slice_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_1_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_7_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_8_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Slice_1_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_1_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_7_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_8_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Slice_1_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_1_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_7_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_8_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Slice_1_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %600 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %600 }
val_accuracy
89.413059
439,866,240
1,452,822
{'zcp_epe_nas': 143.62416205230318, 'zcp_fisher': 4.76273250579834, 'zcp_flops': 7037859840.0, 'zcp_grad_norm': 36.097084045410156, 'zcp_grasp': 0.10675048828125, 'zcp_jacov': -16.07201771548, 'zcp_l2_norm': 443.0638122558594, 'zcp_nwot': 207.73784068230964, 'zcp_params': 1452822.0, 'zcp_plain': 0.049291230738162, 'zcp_snip': 185.19158935546875, 'zcp_synflow': 79.5257886926558, 'zcp_zen': 52.47184371948242, 'zcp_val_accuracy': 0.9220753312110901}
NASBench101_197201
NASBench101
197201
775bae9d00bdf8e0599c434d21231c70
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_944[FLOAT, 128x3x3x3] %onnx::Conv_945[FLOAT, 128] %onnx::Conv_947[FLOAT, 43x128x1x1] %onnx::Conv_948[FLOAT, 43] %onnx::Conv_950[FLOAT, 43x43x3x3] %onnx::Conv_953[FLOAT, 43x43x3x3] %onnx::Conv_956[FLOAT, 43x43x3x3] %onnx::Conv_959[FLOAT, 42x42x3x3] %onnx::Conv_960[FLOAT, 42] %onnx::Conv_962[FLOAT, 42x42x1x1] %onnx::Conv_965[FLOAT, 43x128x1x1] %onnx::Conv_968[FLOAT, 43x43x3x3] %onnx::Conv_971[FLOAT, 43x43x3x3] %onnx::Conv_974[FLOAT, 43x43x3x3] %onnx::Conv_977[FLOAT, 42x42x3x3] %onnx::Conv_980[FLOAT, 42x42x1x1] %onnx::Conv_983[FLOAT, 43x128x1x1] %onnx::Conv_986[FLOAT, 43x43x3x3] %onnx::Conv_989[FLOAT, 43x43x3x3] %onnx::Conv_992[FLOAT, 43x43x3x3] %onnx::Conv_995[FLOAT, 42x42x3x3] %onnx::Conv_998[FLOAT, 42x42x1x1] %onnx::Conv_1001[FLOAT, 86x128x1x1] %onnx::Conv_1002[FLOAT, 86] %onnx::Conv_1004[FLOAT, 86x86x3x3] %onnx::Conv_1007[FLOAT, 85x85x3x3] %onnx::Conv_1008[FLOAT, 85] %onnx::Conv_1010[FLOAT, 85x85x3x3] %onnx::Conv_1013[FLOAT, 85x85x3x3] %onnx::Conv_1016[FLOAT, 85x85x1x1] %onnx::Conv_1019[FLOAT, 86x256x1x1] %onnx::Conv_1022[FLOAT, 86x86x3x3] %onnx::Conv_1025[FLOAT, 85x85x3x3] %onnx::Conv_1028[FLOAT, 85x85x3x3] %onnx::Conv_1031[FLOAT, 85x85x3x3] %onnx::Conv_1034[FLOAT, 85x85x1x1] %onnx::Conv_1037[FLOAT, 86x256x1x1] %onnx::Conv_1040[FLOAT, 86x86x3x3] %onnx::Conv_1043[FLOAT, 85x85x3x3] %onnx::Conv_1046[FLOAT, 85x85x3x3] %onnx::Conv_1049[FLOAT, 85x85x3x3] %onnx::Conv_1052[FLOAT, 85x85x1x1] %onnx::Conv_1055[FLOAT, 171x256x1x1] %onnx::Conv_1056[FLOAT, 171] %onnx::Conv_1058[FLOAT, 171x171x3x3] %onnx::Conv_1061[FLOAT, 171x171x3x3] %onnx::Conv_1064[FLOAT, 171x171x3x3] %onnx::Conv_1067[FLOAT, 170x170x3x3] %onnx::Conv_1068[FLOAT, 170] %onnx::Conv_1070[FLOAT, 170x170x1x1] %onnx::Conv_1073[FLOAT, 171x512x1x1] %onnx::Conv_1076[FLOAT, 171x171x3x3] %onnx::Conv_1079[FLOAT, 171x171x3x3] %onnx::Conv_1082[FLOAT, 171x171x3x3] %onnx::Conv_1085[FLOAT, 170x170x3x3] %onnx::Conv_1088[FLOAT, 170x170x1x1] %onnx::Conv_1091[FLOAT, 171x512x1x1] %onnx::Conv_1094[FLOAT, 171x171x3x3] %onnx::Conv_1097[FLOAT, 171x171x3x3] %onnx::Conv_1100[FLOAT, 171x171x3x3] %onnx::Conv_1103[FLOAT, 170x170x3x3] %onnx::Conv_1106[FLOAT, 170x170x1x1] ) { %onnx::Conv_1107 = Identity(%onnx::Conv_1068) %onnx::Conv_1104 = Identity(%onnx::Conv_1068) %onnx::Conv_1101 = Identity(%onnx::Conv_1056) %onnx::Conv_1098 = Identity(%onnx::Conv_1056) %onnx::Conv_1095 = Identity(%onnx::Conv_1056) %onnx::Conv_1092 = Identity(%onnx::Conv_1056) %onnx::Conv_1089 = Identity(%onnx::Conv_1068) %onnx::Conv_1086 = Identity(%onnx::Conv_1068) %onnx::Conv_1083 = Identity(%onnx::Conv_1056) %onnx::Conv_1080 = Identity(%onnx::Conv_1056) %onnx::Conv_1077 = Identity(%onnx::Conv_1056) %onnx::Conv_1074 = Identity(%onnx::Conv_1056) %onnx::Conv_1071 = Identity(%onnx::Conv_1068) %onnx::Conv_1065 = Identity(%onnx::Conv_1056) %onnx::Conv_1062 = Identity(%onnx::Conv_1056) %onnx::Conv_1059 = Identity(%onnx::Conv_1056) %onnx::Conv_1053 = Identity(%onnx::Conv_1008) %onnx::Conv_1050 = Identity(%onnx::Conv_1008) %onnx::Conv_1047 = Identity(%onnx::Conv_1008) %onnx::Conv_1044 = Identity(%onnx::Conv_1008) %onnx::Conv_1041 = Identity(%onnx::Conv_1002) %onnx::Conv_1038 = Identity(%onnx::Conv_1002) %onnx::Conv_1035 = Identity(%onnx::Conv_1008) %onnx::Conv_1032 = Identity(%onnx::Conv_1008) %onnx::Conv_1029 = Identity(%onnx::Conv_1008) %onnx::Conv_1026 = Identity(%onnx::Conv_1008) %onnx::Conv_1023 = Identity(%onnx::Conv_1002) %onnx::Conv_1020 = Identity(%onnx::Conv_1002) %onnx::Conv_1017 = Identity(%onnx::Conv_1008) %onnx::Conv_1014 = Identity(%onnx::Conv_1008) %onnx::Conv_1011 = Identity(%onnx::Conv_1008) %onnx::Conv_1005 = Identity(%onnx::Conv_1002) %onnx::Conv_999 = Identity(%onnx::Conv_960) %onnx::Conv_996 = Identity(%onnx::Conv_960) %onnx::Conv_993 = Identity(%onnx::Conv_948) %onnx::Conv_990 = Identity(%onnx::Conv_948) %onnx::Conv_987 = Identity(%onnx::Conv_948) %onnx::Conv_984 = Identity(%onnx::Conv_948) %onnx::Conv_981 = Identity(%onnx::Conv_960) %onnx::Conv_978 = Identity(%onnx::Conv_960) %onnx::Conv_975 = Identity(%onnx::Conv_948) %onnx::Conv_972 = Identity(%onnx::Conv_948) %onnx::Conv_969 = Identity(%onnx::Conv_948) %onnx::Conv_966 = Identity(%onnx::Conv_948) %onnx::Conv_963 = Identity(%onnx::Conv_960) %onnx::Conv_957 = Identity(%onnx::Conv_948) %onnx::Conv_954 = Identity(%onnx::Conv_948) %onnx::Conv_951 = Identity(%onnx::Conv_948) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_944, %onnx::Conv_945) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_7_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_9_output_0, %/layers.1/Constant_10_output_0, %/layers.1/Constant_8_output_0, %/layers.1/Constant_11_output_0) %/layers.1/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_1_output_0, %/layers.1/Constant_12_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_7_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_9_output_0, %/layers.2/Constant_10_output_0, %/layers.2/Constant_8_output_0, %/layers.2/Constant_11_output_0) %/layers.2/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_1_output_0, %/layers.2/Constant_12_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_7_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_9_output_0, %/layers.3/Constant_10_output_0, %/layers.3/Constant_8_output_0, %/layers.3/Constant_11_output_0) %/layers.3/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_1_output_0, %/layers.3/Constant_12_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_8_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_8_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_8_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_7_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_9_output_0, %/layers.9/Constant_10_output_0, %/layers.9/Constant_8_output_0, %/layers.9/Constant_11_output_0) %/layers.9/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_1_output_0, %/layers.9/Constant_12_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_7_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_9_output_0, %/layers.10/Constant_10_output_0, %/layers.10/Constant_8_output_0, %/layers.10/Constant_11_output_0) %/layers.10/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_1_output_0, %/layers.10/Constant_12_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_7_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_9_output_0, %/layers.11/Constant_10_output_0, %/layers.11/Constant_8_output_0, %/layers.11/Constant_11_output_0) %/layers.11/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_1_output_0, %/layers.11/Constant_12_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %942 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %942 }
val_accuracy
91.746795
1,351,389,312
4,554,828
{'zcp_epe_nas': 66.97055761546314, 'zcp_fisher': 208.91368103027344, 'zcp_flops': 21622228992.0, 'zcp_grad_norm': 268.0855712890625, 'zcp_grasp': 247.8681640625, 'zcp_jacov': -16.049587709991272, 'zcp_l2_norm': 810.9332275390625, 'zcp_nwot': 218.4459487397937, 'zcp_params': 4554828.0, 'zcp_plain': 0.038456708192825005, 'zcp_snip': 1292.1973876953125, 'zcp_synflow': 171.1196649225203, 'zcp_zen': 100.77078247070312, 'zcp_val_accuracy': 0.9072515964508051}
NASBench101_209074
NASBench101
209074
7e9cfba0e81e98be08bd3b9015928d82
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_698[FLOAT, 128x3x3x3] %onnx::Conv_699[FLOAT, 128] %onnx::Conv_701[FLOAT, 128x128x1x1] %onnx::Conv_704[FLOAT, 128x128x1x1] %onnx::Conv_707[FLOAT, 128x128x3x3] %onnx::Conv_710[FLOAT, 128x128x3x3] %onnx::Conv_713[FLOAT, 128x128x1x1] %onnx::Conv_716[FLOAT, 128x128x1x1] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x128x3x3] %onnx::Conv_725[FLOAT, 128x128x1x1] %onnx::Conv_728[FLOAT, 128x128x1x1] %onnx::Conv_731[FLOAT, 128x128x3x3] %onnx::Conv_734[FLOAT, 128x128x3x3] %onnx::Conv_737[FLOAT, 256x128x1x1] %onnx::Conv_738[FLOAT, 256] %onnx::Conv_740[FLOAT, 256x256x1x1] %onnx::Conv_743[FLOAT, 256x256x3x3] %onnx::Conv_746[FLOAT, 256x256x3x3] %onnx::Conv_749[FLOAT, 256x256x1x1] %onnx::Conv_752[FLOAT, 256x256x1x1] %onnx::Conv_755[FLOAT, 256x256x3x3] %onnx::Conv_758[FLOAT, 256x256x3x3] %onnx::Conv_761[FLOAT, 256x256x1x1] %onnx::Conv_764[FLOAT, 256x256x1x1] %onnx::Conv_767[FLOAT, 256x256x3x3] %onnx::Conv_770[FLOAT, 256x256x3x3] %onnx::Conv_773[FLOAT, 512x256x1x1] %onnx::Conv_774[FLOAT, 512] %onnx::Conv_776[FLOAT, 512x512x1x1] %onnx::Conv_779[FLOAT, 512x512x3x3] %onnx::Conv_782[FLOAT, 512x512x3x3] %onnx::Conv_785[FLOAT, 512x512x1x1] %onnx::Conv_788[FLOAT, 512x512x1x1] %onnx::Conv_791[FLOAT, 512x512x3x3] %onnx::Conv_794[FLOAT, 512x512x3x3] %onnx::Conv_797[FLOAT, 512x512x1x1] %onnx::Conv_800[FLOAT, 512x512x1x1] %onnx::Conv_803[FLOAT, 512x512x3x3] %onnx::Conv_806[FLOAT, 512x512x3x3] ) { %onnx::Conv_807 = Identity(%onnx::Conv_774) %onnx::Conv_804 = Identity(%onnx::Conv_774) %onnx::Conv_801 = Identity(%onnx::Conv_774) %onnx::Conv_798 = Identity(%onnx::Conv_774) %onnx::Conv_795 = Identity(%onnx::Conv_774) %onnx::Conv_792 = Identity(%onnx::Conv_774) %onnx::Conv_789 = Identity(%onnx::Conv_774) %onnx::Conv_786 = Identity(%onnx::Conv_774) %onnx::Conv_783 = Identity(%onnx::Conv_774) %onnx::Conv_780 = Identity(%onnx::Conv_774) %onnx::Conv_777 = Identity(%onnx::Conv_774) %onnx::Conv_771 = Identity(%onnx::Conv_738) %onnx::Conv_768 = Identity(%onnx::Conv_738) %onnx::Conv_765 = Identity(%onnx::Conv_738) %onnx::Conv_762 = Identity(%onnx::Conv_738) %onnx::Conv_759 = Identity(%onnx::Conv_738) %onnx::Conv_756 = Identity(%onnx::Conv_738) %onnx::Conv_753 = Identity(%onnx::Conv_738) %onnx::Conv_750 = Identity(%onnx::Conv_738) %onnx::Conv_747 = Identity(%onnx::Conv_738) %onnx::Conv_744 = Identity(%onnx::Conv_738) %onnx::Conv_741 = Identity(%onnx::Conv_738) %onnx::Conv_735 = Identity(%onnx::Conv_699) %onnx::Conv_732 = Identity(%onnx::Conv_699) %onnx::Conv_729 = Identity(%onnx::Conv_699) %onnx::Conv_726 = Identity(%onnx::Conv_699) %onnx::Conv_723 = Identity(%onnx::Conv_699) %onnx::Conv_720 = Identity(%onnx::Conv_699) %onnx::Conv_717 = Identity(%onnx::Conv_699) %onnx::Conv_714 = Identity(%onnx::Conv_699) %onnx::Conv_711 = Identity(%onnx::Conv_699) %onnx::Conv_708 = Identity(%onnx::Conv_699) %onnx::Conv_705 = Identity(%onnx::Conv_699) %onnx::Conv_702 = Identity(%onnx::Conv_699) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_698, %onnx::Conv_699) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %696 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %696 }
val_accuracy
89.84375
6,036,400,128
20,510,346
{'zcp_epe_nas': 144.66750777225246, 'zcp_fisher': 860.8822631835938, 'zcp_flops': 96582402048.0, 'zcp_grad_norm': 378.77667236328125, 'zcp_grasp': -19.626953125, 'zcp_jacov': -16.06220677475669, 'zcp_l2_norm': 834.4657592773438, 'zcp_nwot': 228.36281684141542, 'zcp_params': 20510346.0, 'zcp_plain': 0.073327824473381, 'zcp_snip': 3053.475341796875, 'zcp_synflow': 139.5221589512685, 'zcp_zen': 90.22240447998047, 'zcp_val_accuracy': 0.846454322338104}
NASBench101_247388
NASBench101
247388
95befee9361155b7f8a25bec1126c5f2
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_968[FLOAT, 128x3x3x3] %onnx::Conv_969[FLOAT, 128] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x128x1x1] %onnx::Conv_977[FLOAT, 128x128x3x3] %onnx::Conv_980[FLOAT, 128x128x3x3] %onnx::Conv_983[FLOAT, 128x128x3x3] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 128x128x1x1] %onnx::Conv_992[FLOAT, 128x128x1x1] %onnx::Conv_995[FLOAT, 128x128x1x1] %onnx::Conv_998[FLOAT, 128x128x3x3] %onnx::Conv_1001[FLOAT, 128x128x3x3] %onnx::Conv_1004[FLOAT, 128x128x3x3] %onnx::Conv_1007[FLOAT, 128x128x1x1] %onnx::Conv_1010[FLOAT, 128x128x1x1] %onnx::Conv_1013[FLOAT, 128x128x1x1] %onnx::Conv_1016[FLOAT, 128x128x1x1] %onnx::Conv_1019[FLOAT, 128x128x3x3] %onnx::Conv_1022[FLOAT, 128x128x3x3] %onnx::Conv_1025[FLOAT, 128x128x3x3] %onnx::Conv_1028[FLOAT, 128x128x1x1] %onnx::Conv_1031[FLOAT, 128x128x1x1] %onnx::Conv_1034[FLOAT, 256x128x1x1] %onnx::Conv_1035[FLOAT, 256] %onnx::Conv_1037[FLOAT, 256x256x1x1] %onnx::Conv_1040[FLOAT, 256x256x3x3] %onnx::Conv_1043[FLOAT, 256x256x3x3] %onnx::Conv_1046[FLOAT, 256x256x3x3] %onnx::Conv_1049[FLOAT, 256x128x1x1] %onnx::Conv_1052[FLOAT, 256x256x1x1] %onnx::Conv_1055[FLOAT, 256x256x1x1] %onnx::Conv_1058[FLOAT, 256x256x1x1] %onnx::Conv_1061[FLOAT, 256x256x3x3] %onnx::Conv_1064[FLOAT, 256x256x3x3] %onnx::Conv_1067[FLOAT, 256x256x3x3] %onnx::Conv_1070[FLOAT, 256x256x1x1] %onnx::Conv_1073[FLOAT, 256x256x1x1] %onnx::Conv_1076[FLOAT, 256x256x1x1] %onnx::Conv_1079[FLOAT, 256x256x1x1] %onnx::Conv_1082[FLOAT, 256x256x3x3] %onnx::Conv_1085[FLOAT, 256x256x3x3] %onnx::Conv_1088[FLOAT, 256x256x3x3] %onnx::Conv_1091[FLOAT, 256x256x1x1] %onnx::Conv_1094[FLOAT, 256x256x1x1] %onnx::Conv_1097[FLOAT, 512x256x1x1] %onnx::Conv_1098[FLOAT, 512] %onnx::Conv_1100[FLOAT, 512x512x1x1] %onnx::Conv_1103[FLOAT, 512x512x3x3] %onnx::Conv_1106[FLOAT, 512x512x3x3] %onnx::Conv_1109[FLOAT, 512x512x3x3] %onnx::Conv_1112[FLOAT, 512x256x1x1] %onnx::Conv_1115[FLOAT, 512x512x1x1] %onnx::Conv_1118[FLOAT, 512x512x1x1] %onnx::Conv_1121[FLOAT, 512x512x1x1] %onnx::Conv_1124[FLOAT, 512x512x3x3] %onnx::Conv_1127[FLOAT, 512x512x3x3] %onnx::Conv_1130[FLOAT, 512x512x3x3] %onnx::Conv_1133[FLOAT, 512x512x1x1] %onnx::Conv_1136[FLOAT, 512x512x1x1] %onnx::Conv_1139[FLOAT, 512x512x1x1] %onnx::Conv_1142[FLOAT, 512x512x1x1] %onnx::Conv_1145[FLOAT, 512x512x3x3] %onnx::Conv_1148[FLOAT, 512x512x3x3] %onnx::Conv_1151[FLOAT, 512x512x3x3] %onnx::Conv_1154[FLOAT, 512x512x1x1] %onnx::Conv_1157[FLOAT, 512x512x1x1] ) { %onnx::Conv_1158 = Identity(%onnx::Conv_1098) %onnx::Conv_1155 = Identity(%onnx::Conv_1098) %onnx::Conv_1152 = Identity(%onnx::Conv_1098) %onnx::Conv_1149 = Identity(%onnx::Conv_1098) %onnx::Conv_1146 = Identity(%onnx::Conv_1098) %onnx::Conv_1143 = Identity(%onnx::Conv_1098) %onnx::Conv_1140 = Identity(%onnx::Conv_1098) %onnx::Conv_1137 = Identity(%onnx::Conv_1098) %onnx::Conv_1134 = Identity(%onnx::Conv_1098) %onnx::Conv_1131 = Identity(%onnx::Conv_1098) %onnx::Conv_1128 = Identity(%onnx::Conv_1098) %onnx::Conv_1125 = Identity(%onnx::Conv_1098) %onnx::Conv_1122 = Identity(%onnx::Conv_1098) %onnx::Conv_1119 = Identity(%onnx::Conv_1098) %onnx::Conv_1116 = Identity(%onnx::Conv_1098) %onnx::Conv_1113 = Identity(%onnx::Conv_1098) %onnx::Conv_1110 = Identity(%onnx::Conv_1098) %onnx::Conv_1107 = Identity(%onnx::Conv_1098) %onnx::Conv_1104 = Identity(%onnx::Conv_1098) %onnx::Conv_1101 = Identity(%onnx::Conv_1098) %onnx::Conv_1095 = Identity(%onnx::Conv_1035) %onnx::Conv_1092 = Identity(%onnx::Conv_1035) %onnx::Conv_1089 = Identity(%onnx::Conv_1035) %onnx::Conv_1086 = Identity(%onnx::Conv_1035) %onnx::Conv_1083 = Identity(%onnx::Conv_1035) %onnx::Conv_1080 = Identity(%onnx::Conv_1035) %onnx::Conv_1077 = Identity(%onnx::Conv_1035) %onnx::Conv_1074 = Identity(%onnx::Conv_1035) %onnx::Conv_1071 = Identity(%onnx::Conv_1035) %onnx::Conv_1068 = Identity(%onnx::Conv_1035) %onnx::Conv_1065 = Identity(%onnx::Conv_1035) %onnx::Conv_1062 = Identity(%onnx::Conv_1035) %onnx::Conv_1059 = Identity(%onnx::Conv_1035) %onnx::Conv_1056 = Identity(%onnx::Conv_1035) %onnx::Conv_1053 = Identity(%onnx::Conv_1035) %onnx::Conv_1050 = Identity(%onnx::Conv_1035) %onnx::Conv_1047 = Identity(%onnx::Conv_1035) %onnx::Conv_1044 = Identity(%onnx::Conv_1035) %onnx::Conv_1041 = Identity(%onnx::Conv_1035) %onnx::Conv_1038 = Identity(%onnx::Conv_1035) %onnx::Conv_1032 = Identity(%onnx::Conv_969) %onnx::Conv_1029 = Identity(%onnx::Conv_969) %onnx::Conv_1026 = Identity(%onnx::Conv_969) %onnx::Conv_1023 = Identity(%onnx::Conv_969) %onnx::Conv_1020 = Identity(%onnx::Conv_969) %onnx::Conv_1017 = Identity(%onnx::Conv_969) %onnx::Conv_1014 = Identity(%onnx::Conv_969) %onnx::Conv_1011 = Identity(%onnx::Conv_969) %onnx::Conv_1008 = Identity(%onnx::Conv_969) %onnx::Conv_1005 = Identity(%onnx::Conv_969) %onnx::Conv_1002 = Identity(%onnx::Conv_969) %onnx::Conv_999 = Identity(%onnx::Conv_969) %onnx::Conv_996 = Identity(%onnx::Conv_969) %onnx::Conv_993 = Identity(%onnx::Conv_969) %onnx::Conv_990 = Identity(%onnx::Conv_969) %onnx::Conv_987 = Identity(%onnx::Conv_969) %onnx::Conv_984 = Identity(%onnx::Conv_969) %onnx::Conv_981 = Identity(%onnx::Conv_969) %onnx::Conv_978 = Identity(%onnx::Conv_969) %onnx::Conv_975 = Identity(%onnx::Conv_969) %onnx::Conv_972 = Identity(%onnx::Conv_969) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_968, %onnx::Conv_969) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %966 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %966 }
val_accuracy
92.618191
9,341,249,536
31,716,746
{'zcp_epe_nas': 93.7342774962215, 'zcp_fisher': 120.12560272216797, 'zcp_flops': 149459992576.0, 'zcp_grad_norm': 230.1598663330078, 'zcp_grasp': 49.3388671875, 'zcp_jacov': -16.050180559780962, 'zcp_l2_norm': 1454.6192626953125, 'zcp_nwot': 237.8062912988039, 'zcp_params': 31716746.0, 'zcp_plain': -0.024761833250522003, 'zcp_snip': 1828.964599609375, 'zcp_synflow': 161.42475171914705, 'zcp_zen': 131.2858123779297, 'zcp_val_accuracy': 0.9003405570983881}
NASBench101_170915
NASBench101
170915
67812f58150d0a2dab30fc67d887c37a
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_734[FLOAT, 128x3x3x3] %onnx::Conv_735[FLOAT, 128] %onnx::Conv_737[FLOAT, 64x128x1x1] %onnx::Conv_738[FLOAT, 64] %onnx::Conv_740[FLOAT, 64x64x3x3] %onnx::Conv_743[FLOAT, 64x128x1x1] %onnx::Conv_746[FLOAT, 64x64x3x3] %onnx::Conv_749[FLOAT, 64x64x3x3] %onnx::Conv_752[FLOAT, 64x128x1x1] %onnx::Conv_755[FLOAT, 64x64x3x3] %onnx::Conv_758[FLOAT, 64x128x1x1] %onnx::Conv_761[FLOAT, 64x64x3x3] %onnx::Conv_764[FLOAT, 64x64x3x3] %onnx::Conv_767[FLOAT, 64x128x1x1] %onnx::Conv_770[FLOAT, 64x64x3x3] %onnx::Conv_773[FLOAT, 64x128x1x1] %onnx::Conv_776[FLOAT, 64x64x3x3] %onnx::Conv_779[FLOAT, 64x64x3x3] %onnx::Conv_782[FLOAT, 128x128x1x1] %onnx::Conv_785[FLOAT, 128x128x3x3] %onnx::Conv_788[FLOAT, 128x128x1x1] %onnx::Conv_791[FLOAT, 128x128x3x3] %onnx::Conv_794[FLOAT, 128x128x3x3] %onnx::Conv_797[FLOAT, 128x256x1x1] %onnx::Conv_800[FLOAT, 128x128x3x3] %onnx::Conv_803[FLOAT, 128x256x1x1] %onnx::Conv_806[FLOAT, 128x128x3x3] %onnx::Conv_809[FLOAT, 128x128x3x3] %onnx::Conv_812[FLOAT, 128x256x1x1] %onnx::Conv_815[FLOAT, 128x128x3x3] %onnx::Conv_818[FLOAT, 128x256x1x1] %onnx::Conv_821[FLOAT, 128x128x3x3] %onnx::Conv_824[FLOAT, 128x128x3x3] %onnx::Conv_827[FLOAT, 256x256x1x1] %onnx::Conv_828[FLOAT, 256] %onnx::Conv_830[FLOAT, 256x256x3x3] %onnx::Conv_833[FLOAT, 256x256x1x1] %onnx::Conv_836[FLOAT, 256x256x3x3] %onnx::Conv_839[FLOAT, 256x256x3x3] %onnx::Conv_842[FLOAT, 256x512x1x1] %onnx::Conv_845[FLOAT, 256x256x3x3] %onnx::Conv_848[FLOAT, 256x512x1x1] %onnx::Conv_851[FLOAT, 256x256x3x3] %onnx::Conv_854[FLOAT, 256x256x3x3] %onnx::Conv_857[FLOAT, 256x512x1x1] %onnx::Conv_860[FLOAT, 256x256x3x3] %onnx::Conv_863[FLOAT, 256x512x1x1] %onnx::Conv_866[FLOAT, 256x256x3x3] %onnx::Conv_869[FLOAT, 256x256x3x3] ) { %onnx::Conv_870 = Identity(%onnx::Conv_828) %onnx::Conv_867 = Identity(%onnx::Conv_828) %onnx::Conv_864 = Identity(%onnx::Conv_828) %onnx::Conv_861 = Identity(%onnx::Conv_828) %onnx::Conv_858 = Identity(%onnx::Conv_828) %onnx::Conv_855 = Identity(%onnx::Conv_828) %onnx::Conv_852 = Identity(%onnx::Conv_828) %onnx::Conv_849 = Identity(%onnx::Conv_828) %onnx::Conv_846 = Identity(%onnx::Conv_828) %onnx::Conv_843 = Identity(%onnx::Conv_828) %onnx::Conv_840 = Identity(%onnx::Conv_828) %onnx::Conv_837 = Identity(%onnx::Conv_828) %onnx::Conv_834 = Identity(%onnx::Conv_828) %onnx::Conv_831 = Identity(%onnx::Conv_828) %onnx::Conv_825 = Identity(%onnx::Conv_735) %onnx::Conv_822 = Identity(%onnx::Conv_735) %onnx::Conv_819 = Identity(%onnx::Conv_735) %onnx::Conv_816 = Identity(%onnx::Conv_735) %onnx::Conv_813 = Identity(%onnx::Conv_735) %onnx::Conv_810 = Identity(%onnx::Conv_735) %onnx::Conv_807 = Identity(%onnx::Conv_735) %onnx::Conv_804 = Identity(%onnx::Conv_735) %onnx::Conv_801 = Identity(%onnx::Conv_735) %onnx::Conv_798 = Identity(%onnx::Conv_735) %onnx::Conv_795 = Identity(%onnx::Conv_735) %onnx::Conv_792 = Identity(%onnx::Conv_735) %onnx::Conv_789 = Identity(%onnx::Conv_735) %onnx::Conv_786 = Identity(%onnx::Conv_735) %onnx::Conv_783 = Identity(%onnx::Conv_735) %onnx::Conv_780 = Identity(%onnx::Conv_738) %onnx::Conv_777 = Identity(%onnx::Conv_738) %onnx::Conv_774 = Identity(%onnx::Conv_738) %onnx::Conv_771 = Identity(%onnx::Conv_738) %onnx::Conv_768 = Identity(%onnx::Conv_738) %onnx::Conv_765 = Identity(%onnx::Conv_738) %onnx::Conv_762 = Identity(%onnx::Conv_738) %onnx::Conv_759 = Identity(%onnx::Conv_738) %onnx::Conv_756 = Identity(%onnx::Conv_738) %onnx::Conv_753 = Identity(%onnx::Conv_738) %onnx::Conv_750 = Identity(%onnx::Conv_738) %onnx::Conv_747 = Identity(%onnx::Conv_738) %onnx::Conv_744 = Identity(%onnx::Conv_738) %onnx::Conv_741 = Identity(%onnx::Conv_738) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_734, %onnx::Conv_735) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %732 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %732 }
val_accuracy
92.568111
2,328,766,464
7,857,930
{'zcp_epe_nas': 105.34547422255984, 'zcp_fisher': 36.11372756958008, 'zcp_flops': 37260263424.0, 'zcp_grad_norm': 101.90604400634766, 'zcp_grasp': -4.7542724609375, 'zcp_jacov': -16.049760384585696, 'zcp_l2_norm': 844.2640380859375, 'zcp_nwot': 221.3864800494384, 'zcp_params': 7857930.0, 'zcp_plain': 0.030479291453957003, 'zcp_snip': 646.1006469726562, 'zcp_synflow': 103.76278885850314, 'zcp_zen': 100.45659637451172, 'zcp_val_accuracy': 0.824819684028625}
NASBench101_219739
NASBench101
219739
8529a2c3cc9f1bfb8d52abe8ff854749
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_554[FLOAT, 128x3x3x3] %onnx::Conv_555[FLOAT, 128] %onnx::Conv_557[FLOAT, 64x128x1x1] %onnx::Conv_558[FLOAT, 64] %onnx::Conv_560[FLOAT, 64x64x3x3] %onnx::Conv_563[FLOAT, 64x64x3x3] %onnx::Conv_566[FLOAT, 64x128x1x1] %onnx::Conv_569[FLOAT, 64x64x3x3] %onnx::Conv_572[FLOAT, 64x64x3x3] %onnx::Conv_575[FLOAT, 64x128x1x1] %onnx::Conv_578[FLOAT, 64x64x3x3] %onnx::Conv_581[FLOAT, 64x64x3x3] %onnx::Conv_584[FLOAT, 128x128x1x1] %onnx::Conv_587[FLOAT, 128x128x3x3] %onnx::Conv_590[FLOAT, 128x128x3x3] %onnx::Conv_593[FLOAT, 128x256x1x1] %onnx::Conv_596[FLOAT, 128x128x3x3] %onnx::Conv_599[FLOAT, 128x128x3x3] %onnx::Conv_602[FLOAT, 128x256x1x1] %onnx::Conv_605[FLOAT, 128x128x3x3] %onnx::Conv_608[FLOAT, 128x128x3x3] %onnx::Conv_611[FLOAT, 256x256x1x1] %onnx::Conv_612[FLOAT, 256] %onnx::Conv_614[FLOAT, 256x256x3x3] %onnx::Conv_617[FLOAT, 256x256x3x3] %onnx::Conv_620[FLOAT, 256x512x1x1] %onnx::Conv_623[FLOAT, 256x256x3x3] %onnx::Conv_626[FLOAT, 256x256x3x3] %onnx::Conv_629[FLOAT, 256x512x1x1] %onnx::Conv_632[FLOAT, 256x256x3x3] %onnx::Conv_635[FLOAT, 256x256x3x3] ) { %onnx::Conv_636 = Identity(%onnx::Conv_612) %onnx::Conv_633 = Identity(%onnx::Conv_612) %onnx::Conv_630 = Identity(%onnx::Conv_612) %onnx::Conv_627 = Identity(%onnx::Conv_612) %onnx::Conv_624 = Identity(%onnx::Conv_612) %onnx::Conv_621 = Identity(%onnx::Conv_612) %onnx::Conv_618 = Identity(%onnx::Conv_612) %onnx::Conv_615 = Identity(%onnx::Conv_612) %onnx::Conv_609 = Identity(%onnx::Conv_555) %onnx::Conv_606 = Identity(%onnx::Conv_555) %onnx::Conv_603 = Identity(%onnx::Conv_555) %onnx::Conv_600 = Identity(%onnx::Conv_555) %onnx::Conv_597 = Identity(%onnx::Conv_555) %onnx::Conv_594 = Identity(%onnx::Conv_555) %onnx::Conv_591 = Identity(%onnx::Conv_555) %onnx::Conv_588 = Identity(%onnx::Conv_555) %onnx::Conv_585 = Identity(%onnx::Conv_555) %onnx::Conv_582 = Identity(%onnx::Conv_558) %onnx::Conv_579 = Identity(%onnx::Conv_558) %onnx::Conv_576 = Identity(%onnx::Conv_558) %onnx::Conv_573 = Identity(%onnx::Conv_558) %onnx::Conv_570 = Identity(%onnx::Conv_558) %onnx::Conv_567 = Identity(%onnx::Conv_558) %onnx::Conv_564 = Identity(%onnx::Conv_558) %onnx::Conv_561 = Identity(%onnx::Conv_558) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_554, %onnx::Conv_555) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_557, %onnx::Conv_558) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_560, %onnx::Conv_561) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_563, %onnx::Conv_564) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_566, %onnx::Conv_567) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_569, %onnx::Conv_570) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_572, %onnx::Conv_573) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_575, %onnx::Conv_576) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_578, %onnx::Conv_579) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_581, %onnx::Conv_582) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_584, %onnx::Conv_585) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_587, %onnx::Conv_588) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_590, %onnx::Conv_591) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_593, %onnx::Conv_594) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_596, %onnx::Conv_597) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_599, %onnx::Conv_600) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_602, %onnx::Conv_603) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_605, %onnx::Conv_606) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_608, %onnx::Conv_609) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_611, %onnx::Conv_612) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_614, %onnx::Conv_615) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_617, %onnx::Conv_618) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_620, %onnx::Conv_621) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_623, %onnx::Conv_624) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_626, %onnx::Conv_627) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_629, %onnx::Conv_630) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_632, %onnx::Conv_633) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_635, %onnx::Conv_636) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %552 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %552 }
val_accuracy
87.910658
1,509,566,464
5,095,946
{'zcp_epe_nas': 54.67260789920791, 'zcp_fisher': 37.405025482177734, 'zcp_flops': 24153063424.0, 'zcp_grad_norm': 89.65570068359375, 'zcp_grasp': 4.06634521484375, 'zcp_jacov': -16.061709418610818, 'zcp_l2_norm': 499.2397766113281, 'zcp_nwot': 213.6985572464864, 'zcp_params': 5095946.0, 'zcp_plain': -0.008368464186787, 'zcp_snip': 604.2775268554688, 'zcp_synflow': 94.82923624604568, 'zcp_zen': 69.77677154541016, 'zcp_val_accuracy': 0.927383840084075}
NASBench101_202700
NASBench101
202700
7abc2659ddbd28c69108bd686b1df609
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_761[FLOAT, 128x3x3x3] %onnx::Conv_762[FLOAT, 128] %onnx::Conv_764[FLOAT, 64x128x1x1] %onnx::Conv_765[FLOAT, 64] %onnx::Conv_767[FLOAT, 64x64x3x3] %onnx::Conv_770[FLOAT, 64x64x1x1] %onnx::Conv_773[FLOAT, 64x64x1x1] %onnx::Conv_776[FLOAT, 64x128x1x1] %onnx::Conv_779[FLOAT, 64x128x1x1] %onnx::Conv_782[FLOAT, 64x64x3x3] %onnx::Conv_785[FLOAT, 64x64x1x1] %onnx::Conv_788[FLOAT, 64x64x1x1] %onnx::Conv_791[FLOAT, 64x128x1x1] %onnx::Conv_794[FLOAT, 64x128x1x1] %onnx::Conv_797[FLOAT, 64x64x3x3] %onnx::Conv_800[FLOAT, 64x64x1x1] %onnx::Conv_803[FLOAT, 64x64x1x1] %onnx::Conv_806[FLOAT, 64x128x1x1] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 128x128x3x3] %onnx::Conv_815[FLOAT, 128x128x1x1] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x256x1x1] %onnx::Conv_827[FLOAT, 128x128x3x3] %onnx::Conv_830[FLOAT, 128x128x1x1] %onnx::Conv_833[FLOAT, 128x128x1x1] %onnx::Conv_836[FLOAT, 128x256x1x1] %onnx::Conv_839[FLOAT, 128x256x1x1] %onnx::Conv_842[FLOAT, 128x128x3x3] %onnx::Conv_845[FLOAT, 128x128x1x1] %onnx::Conv_848[FLOAT, 128x128x1x1] %onnx::Conv_851[FLOAT, 128x256x1x1] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_855[FLOAT, 256] %onnx::Conv_857[FLOAT, 256x256x3x3] %onnx::Conv_860[FLOAT, 256x256x1x1] %onnx::Conv_863[FLOAT, 256x256x1x1] %onnx::Conv_866[FLOAT, 256x256x1x1] %onnx::Conv_869[FLOAT, 256x512x1x1] %onnx::Conv_872[FLOAT, 256x256x3x3] %onnx::Conv_875[FLOAT, 256x256x1x1] %onnx::Conv_878[FLOAT, 256x256x1x1] %onnx::Conv_881[FLOAT, 256x512x1x1] %onnx::Conv_884[FLOAT, 256x512x1x1] %onnx::Conv_887[FLOAT, 256x256x3x3] %onnx::Conv_890[FLOAT, 256x256x1x1] %onnx::Conv_893[FLOAT, 256x256x1x1] %onnx::Conv_896[FLOAT, 256x512x1x1] ) { %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_855) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_855) %onnx::Conv_867 = Identity(%onnx::Conv_855) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %onnx::Conv_852 = Identity(%onnx::Conv_762) %onnx::Conv_849 = Identity(%onnx::Conv_762) %onnx::Conv_846 = Identity(%onnx::Conv_762) %onnx::Conv_843 = Identity(%onnx::Conv_762) %onnx::Conv_840 = Identity(%onnx::Conv_762) %onnx::Conv_837 = Identity(%onnx::Conv_762) %onnx::Conv_834 = Identity(%onnx::Conv_762) %onnx::Conv_831 = Identity(%onnx::Conv_762) %onnx::Conv_828 = Identity(%onnx::Conv_762) %onnx::Conv_825 = Identity(%onnx::Conv_762) %onnx::Conv_822 = Identity(%onnx::Conv_762) %onnx::Conv_819 = Identity(%onnx::Conv_762) %onnx::Conv_816 = Identity(%onnx::Conv_762) %onnx::Conv_813 = Identity(%onnx::Conv_762) %onnx::Conv_810 = Identity(%onnx::Conv_762) %onnx::Conv_807 = Identity(%onnx::Conv_765) %onnx::Conv_804 = Identity(%onnx::Conv_765) %onnx::Conv_801 = Identity(%onnx::Conv_765) %onnx::Conv_798 = Identity(%onnx::Conv_765) %onnx::Conv_795 = Identity(%onnx::Conv_765) %onnx::Conv_792 = Identity(%onnx::Conv_765) %onnx::Conv_789 = Identity(%onnx::Conv_765) %onnx::Conv_786 = Identity(%onnx::Conv_765) %onnx::Conv_783 = Identity(%onnx::Conv_765) %onnx::Conv_780 = Identity(%onnx::Conv_765) %onnx::Conv_777 = Identity(%onnx::Conv_765) %onnx::Conv_774 = Identity(%onnx::Conv_765) %onnx::Conv_771 = Identity(%onnx::Conv_765) %onnx::Conv_768 = Identity(%onnx::Conv_765) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_761, %onnx::Conv_762) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %759 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %759 }
val_accuracy
90.755206
1,120,806,912
3,729,162
{'zcp_epe_nas': 75.5439403356259, 'zcp_fisher': 27.596586227416992, 'zcp_flops': 17932910592.0, 'zcp_grad_norm': 94.61026000976562, 'zcp_grasp': -4.775390625, 'zcp_jacov': -16.048063043539557, 'zcp_l2_norm': 844.161865234375, 'zcp_nwot': 221.77983190724785, 'zcp_params': 3729162.0, 'zcp_plain': 0.022877588868141, 'zcp_snip': 565.9212646484375, 'zcp_synflow': 87.32103392116156, 'zcp_zen': 83.08043670654297, 'zcp_val_accuracy': 0.921574532985687}
NASBench101_107368
NASBench101
107368
40dfb020c4bf38c7247fdf8843f3bced
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_968[FLOAT, 128x3x3x3] %onnx::Conv_969[FLOAT, 128] %onnx::Conv_971[FLOAT, 64x128x1x1] %onnx::Conv_972[FLOAT, 64] %onnx::Conv_974[FLOAT, 64x64x3x3] %onnx::Conv_977[FLOAT, 64x64x3x3] %onnx::Conv_980[FLOAT, 64x128x1x1] %onnx::Conv_983[FLOAT, 64x64x3x3] %onnx::Conv_986[FLOAT, 64x64x1x1] %onnx::Conv_989[FLOAT, 64x64x3x3] %onnx::Conv_992[FLOAT, 64x128x1x1] %onnx::Conv_995[FLOAT, 64x64x3x3] %onnx::Conv_998[FLOAT, 64x64x3x3] %onnx::Conv_1001[FLOAT, 64x128x1x1] %onnx::Conv_1004[FLOAT, 64x64x3x3] %onnx::Conv_1007[FLOAT, 64x64x1x1] %onnx::Conv_1010[FLOAT, 64x64x3x3] %onnx::Conv_1013[FLOAT, 64x128x1x1] %onnx::Conv_1016[FLOAT, 64x64x3x3] %onnx::Conv_1019[FLOAT, 64x64x3x3] %onnx::Conv_1022[FLOAT, 64x128x1x1] %onnx::Conv_1025[FLOAT, 64x64x3x3] %onnx::Conv_1028[FLOAT, 64x64x1x1] %onnx::Conv_1031[FLOAT, 64x64x3x3] %onnx::Conv_1034[FLOAT, 128x128x1x1] %onnx::Conv_1037[FLOAT, 128x128x3x3] %onnx::Conv_1040[FLOAT, 128x128x3x3] %onnx::Conv_1043[FLOAT, 128x128x1x1] %onnx::Conv_1046[FLOAT, 128x128x3x3] %onnx::Conv_1049[FLOAT, 128x128x1x1] %onnx::Conv_1052[FLOAT, 128x128x3x3] %onnx::Conv_1055[FLOAT, 128x256x1x1] %onnx::Conv_1058[FLOAT, 128x128x3x3] %onnx::Conv_1061[FLOAT, 128x128x3x3] %onnx::Conv_1064[FLOAT, 128x256x1x1] %onnx::Conv_1067[FLOAT, 128x128x3x3] %onnx::Conv_1070[FLOAT, 128x128x1x1] %onnx::Conv_1073[FLOAT, 128x128x3x3] %onnx::Conv_1076[FLOAT, 128x256x1x1] %onnx::Conv_1079[FLOAT, 128x128x3x3] %onnx::Conv_1082[FLOAT, 128x128x3x3] %onnx::Conv_1085[FLOAT, 128x256x1x1] %onnx::Conv_1088[FLOAT, 128x128x3x3] %onnx::Conv_1091[FLOAT, 128x128x1x1] %onnx::Conv_1094[FLOAT, 128x128x3x3] %onnx::Conv_1097[FLOAT, 256x256x1x1] %onnx::Conv_1098[FLOAT, 256] %onnx::Conv_1100[FLOAT, 256x256x3x3] %onnx::Conv_1103[FLOAT, 256x256x3x3] %onnx::Conv_1106[FLOAT, 256x256x1x1] %onnx::Conv_1109[FLOAT, 256x256x3x3] %onnx::Conv_1112[FLOAT, 256x256x1x1] %onnx::Conv_1115[FLOAT, 256x256x3x3] %onnx::Conv_1118[FLOAT, 256x512x1x1] %onnx::Conv_1121[FLOAT, 256x256x3x3] %onnx::Conv_1124[FLOAT, 256x256x3x3] %onnx::Conv_1127[FLOAT, 256x512x1x1] %onnx::Conv_1130[FLOAT, 256x256x3x3] %onnx::Conv_1133[FLOAT, 256x256x1x1] %onnx::Conv_1136[FLOAT, 256x256x3x3] %onnx::Conv_1139[FLOAT, 256x512x1x1] %onnx::Conv_1142[FLOAT, 256x256x3x3] %onnx::Conv_1145[FLOAT, 256x256x3x3] %onnx::Conv_1148[FLOAT, 256x512x1x1] %onnx::Conv_1151[FLOAT, 256x256x3x3] %onnx::Conv_1154[FLOAT, 256x256x1x1] %onnx::Conv_1157[FLOAT, 256x256x3x3] ) { %onnx::Conv_1158 = Identity(%onnx::Conv_1098) %onnx::Conv_1155 = Identity(%onnx::Conv_1098) %onnx::Conv_1152 = Identity(%onnx::Conv_1098) %onnx::Conv_1149 = Identity(%onnx::Conv_1098) %onnx::Conv_1146 = Identity(%onnx::Conv_1098) %onnx::Conv_1143 = Identity(%onnx::Conv_1098) %onnx::Conv_1140 = Identity(%onnx::Conv_1098) %onnx::Conv_1137 = Identity(%onnx::Conv_1098) %onnx::Conv_1134 = Identity(%onnx::Conv_1098) %onnx::Conv_1131 = Identity(%onnx::Conv_1098) %onnx::Conv_1128 = Identity(%onnx::Conv_1098) %onnx::Conv_1125 = Identity(%onnx::Conv_1098) %onnx::Conv_1122 = Identity(%onnx::Conv_1098) %onnx::Conv_1119 = Identity(%onnx::Conv_1098) %onnx::Conv_1116 = Identity(%onnx::Conv_1098) %onnx::Conv_1113 = Identity(%onnx::Conv_1098) %onnx::Conv_1110 = Identity(%onnx::Conv_1098) %onnx::Conv_1107 = Identity(%onnx::Conv_1098) %onnx::Conv_1104 = Identity(%onnx::Conv_1098) %onnx::Conv_1101 = Identity(%onnx::Conv_1098) %onnx::Conv_1095 = Identity(%onnx::Conv_969) %onnx::Conv_1092 = Identity(%onnx::Conv_969) %onnx::Conv_1089 = Identity(%onnx::Conv_969) %onnx::Conv_1086 = Identity(%onnx::Conv_969) %onnx::Conv_1083 = Identity(%onnx::Conv_969) %onnx::Conv_1080 = Identity(%onnx::Conv_969) %onnx::Conv_1077 = Identity(%onnx::Conv_969) %onnx::Conv_1074 = Identity(%onnx::Conv_969) %onnx::Conv_1071 = Identity(%onnx::Conv_969) %onnx::Conv_1068 = Identity(%onnx::Conv_969) %onnx::Conv_1065 = Identity(%onnx::Conv_969) %onnx::Conv_1062 = Identity(%onnx::Conv_969) %onnx::Conv_1059 = Identity(%onnx::Conv_969) %onnx::Conv_1056 = Identity(%onnx::Conv_969) %onnx::Conv_1053 = Identity(%onnx::Conv_969) %onnx::Conv_1050 = Identity(%onnx::Conv_969) %onnx::Conv_1047 = Identity(%onnx::Conv_969) %onnx::Conv_1044 = Identity(%onnx::Conv_969) %onnx::Conv_1041 = Identity(%onnx::Conv_969) %onnx::Conv_1038 = Identity(%onnx::Conv_969) %onnx::Conv_1035 = Identity(%onnx::Conv_969) %onnx::Conv_1032 = Identity(%onnx::Conv_972) %onnx::Conv_1029 = Identity(%onnx::Conv_972) %onnx::Conv_1026 = Identity(%onnx::Conv_972) %onnx::Conv_1023 = Identity(%onnx::Conv_972) %onnx::Conv_1020 = Identity(%onnx::Conv_972) %onnx::Conv_1017 = Identity(%onnx::Conv_972) %onnx::Conv_1014 = Identity(%onnx::Conv_972) %onnx::Conv_1011 = Identity(%onnx::Conv_972) %onnx::Conv_1008 = Identity(%onnx::Conv_972) %onnx::Conv_1005 = Identity(%onnx::Conv_972) %onnx::Conv_1002 = Identity(%onnx::Conv_972) %onnx::Conv_999 = Identity(%onnx::Conv_972) %onnx::Conv_996 = Identity(%onnx::Conv_972) %onnx::Conv_993 = Identity(%onnx::Conv_972) %onnx::Conv_990 = Identity(%onnx::Conv_972) %onnx::Conv_987 = Identity(%onnx::Conv_972) %onnx::Conv_984 = Identity(%onnx::Conv_972) %onnx::Conv_981 = Identity(%onnx::Conv_972) %onnx::Conv_978 = Identity(%onnx::Conv_972) %onnx::Conv_975 = Identity(%onnx::Conv_972) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_968, %onnx::Conv_969) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %966 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %966 }
val_accuracy
91.005611
3,089,246,208
10,443,786
{'zcp_epe_nas': 133.95832424572868, 'zcp_fisher': 799.2075805664062, 'zcp_flops': 49427939328.0, 'zcp_grad_norm': 551.6663208007812, 'zcp_grasp': 639.7265625, 'zcp_jacov': -16.07524077507859, 'zcp_l2_norm': 1144.6376953125, 'zcp_nwot': 226.6110253573819, 'zcp_params': 10443786.0, 'zcp_plain': 0.031720712780952, 'zcp_snip': 3158.73974609375, 'zcp_synflow': 182.0322787983772, 'zcp_zen': 122.4705810546875, 'zcp_val_accuracy': 0.8641827106475831}
NASBench101_68365
NASBench101
68365
29824797d9c97b603ef511217fb1a6dd
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_887[FLOAT, 128x3x3x3] %onnx::Conv_888[FLOAT, 128] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x3x3] %onnx::Conv_896[FLOAT, 128x128x1x1] %onnx::Conv_899[FLOAT, 128x128x3x3] %onnx::Conv_902[FLOAT, 128x128x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x3x3] %onnx::Conv_914[FLOAT, 128x128x1x1] %onnx::Conv_917[FLOAT, 128x128x3x3] %onnx::Conv_920[FLOAT, 128x128x1x1] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x3x3] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x3x3] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 128x128x1x1] %onnx::Conv_944[FLOAT, 256x128x1x1] %onnx::Conv_945[FLOAT, 256] %onnx::Conv_947[FLOAT, 256x256x3x3] %onnx::Conv_950[FLOAT, 256x128x1x1] %onnx::Conv_953[FLOAT, 256x256x3x3] %onnx::Conv_956[FLOAT, 256x256x1x1] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x3x3] %onnx::Conv_968[FLOAT, 256x256x1x1] %onnx::Conv_971[FLOAT, 256x256x3x3] %onnx::Conv_974[FLOAT, 256x256x1x1] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x3x3] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x3x3] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 512x256x1x1] %onnx::Conv_999[FLOAT, 512] %onnx::Conv_1001[FLOAT, 512x512x3x3] %onnx::Conv_1004[FLOAT, 512x256x1x1] %onnx::Conv_1007[FLOAT, 512x512x3x3] %onnx::Conv_1010[FLOAT, 512x512x1x1] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x3x3] %onnx::Conv_1022[FLOAT, 512x512x1x1] %onnx::Conv_1025[FLOAT, 512x512x3x3] %onnx::Conv_1028[FLOAT, 512x512x1x1] %onnx::Conv_1031[FLOAT, 512x512x1x1] %onnx::Conv_1034[FLOAT, 512x512x1x1] %onnx::Conv_1037[FLOAT, 512x512x3x3] %onnx::Conv_1040[FLOAT, 512x512x1x1] %onnx::Conv_1043[FLOAT, 512x512x3x3] %onnx::Conv_1046[FLOAT, 512x512x1x1] %onnx::Conv_1049[FLOAT, 512x512x1x1] ) { %onnx::Conv_1050 = Identity(%onnx::Conv_999) %onnx::Conv_1047 = Identity(%onnx::Conv_999) %onnx::Conv_1044 = Identity(%onnx::Conv_999) %onnx::Conv_1041 = Identity(%onnx::Conv_999) %onnx::Conv_1038 = Identity(%onnx::Conv_999) %onnx::Conv_1035 = Identity(%onnx::Conv_999) %onnx::Conv_1032 = Identity(%onnx::Conv_999) %onnx::Conv_1029 = Identity(%onnx::Conv_999) %onnx::Conv_1026 = Identity(%onnx::Conv_999) %onnx::Conv_1023 = Identity(%onnx::Conv_999) %onnx::Conv_1020 = Identity(%onnx::Conv_999) %onnx::Conv_1017 = Identity(%onnx::Conv_999) %onnx::Conv_1014 = Identity(%onnx::Conv_999) %onnx::Conv_1011 = Identity(%onnx::Conv_999) %onnx::Conv_1008 = Identity(%onnx::Conv_999) %onnx::Conv_1005 = Identity(%onnx::Conv_999) %onnx::Conv_1002 = Identity(%onnx::Conv_999) %onnx::Conv_996 = Identity(%onnx::Conv_945) %onnx::Conv_993 = Identity(%onnx::Conv_945) %onnx::Conv_990 = Identity(%onnx::Conv_945) %onnx::Conv_987 = Identity(%onnx::Conv_945) %onnx::Conv_984 = Identity(%onnx::Conv_945) %onnx::Conv_981 = Identity(%onnx::Conv_945) %onnx::Conv_978 = Identity(%onnx::Conv_945) %onnx::Conv_975 = Identity(%onnx::Conv_945) %onnx::Conv_972 = Identity(%onnx::Conv_945) %onnx::Conv_969 = Identity(%onnx::Conv_945) %onnx::Conv_966 = Identity(%onnx::Conv_945) %onnx::Conv_963 = Identity(%onnx::Conv_945) %onnx::Conv_960 = Identity(%onnx::Conv_945) %onnx::Conv_957 = Identity(%onnx::Conv_945) %onnx::Conv_954 = Identity(%onnx::Conv_945) %onnx::Conv_951 = Identity(%onnx::Conv_945) %onnx::Conv_948 = Identity(%onnx::Conv_945) %onnx::Conv_942 = Identity(%onnx::Conv_888) %onnx::Conv_939 = Identity(%onnx::Conv_888) %onnx::Conv_936 = Identity(%onnx::Conv_888) %onnx::Conv_933 = Identity(%onnx::Conv_888) %onnx::Conv_930 = Identity(%onnx::Conv_888) %onnx::Conv_927 = Identity(%onnx::Conv_888) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_888) %onnx::Conv_918 = Identity(%onnx::Conv_888) %onnx::Conv_915 = Identity(%onnx::Conv_888) %onnx::Conv_912 = Identity(%onnx::Conv_888) %onnx::Conv_909 = Identity(%onnx::Conv_888) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_903 = Identity(%onnx::Conv_888) %onnx::Conv_900 = Identity(%onnx::Conv_888) %onnx::Conv_897 = Identity(%onnx::Conv_888) %onnx::Conv_894 = Identity(%onnx::Conv_888) %onnx::Conv_891 = Identity(%onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_887, %onnx::Conv_888) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %885 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %885 }
val_accuracy
91.706729
6,617,835,520
22,421,642
{'zcp_epe_nas': 127.57354073165344, 'zcp_fisher': 746.046630859375, 'zcp_flops': 105885368320.0, 'zcp_grad_norm': 463.68798828125, 'zcp_grasp': 146.212890625, 'zcp_jacov': -16.053253863774373, 'zcp_l2_norm': 1242.4720458984375, 'zcp_nwot': 235.20601982652025, 'zcp_params': 22421642.0, 'zcp_plain': 0.17052146792411801, 'zcp_snip': 3899.53955078125, 'zcp_synflow': 126.42231276453931, 'zcp_zen': 117.4569091796875, 'zcp_val_accuracy': 0.702123403549194}
NASBench101_271954
NASBench101
271954
a4b4d8cb0e7624d43c7ca47ee3e71084
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_779[FLOAT, 128x3x3x3] %onnx::Conv_780[FLOAT, 128] %onnx::Conv_782[FLOAT, 64x128x1x1] %onnx::Conv_783[FLOAT, 64] %onnx::Conv_785[FLOAT, 64x64x3x3] %onnx::Conv_788[FLOAT, 64x128x1x1] %onnx::Conv_791[FLOAT, 64x64x3x3] %onnx::Conv_794[FLOAT, 64x64x3x3] %onnx::Conv_797[FLOAT, 64x128x1x1] %onnx::Conv_800[FLOAT, 64x64x3x3] %onnx::Conv_803[FLOAT, 64x128x1x1] %onnx::Conv_806[FLOAT, 64x64x3x3] %onnx::Conv_809[FLOAT, 64x64x3x3] %onnx::Conv_812[FLOAT, 64x128x1x1] %onnx::Conv_815[FLOAT, 64x64x3x3] %onnx::Conv_818[FLOAT, 64x128x1x1] %onnx::Conv_821[FLOAT, 64x64x3x3] %onnx::Conv_824[FLOAT, 64x64x3x3] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x128x3x3] %onnx::Conv_833[FLOAT, 128x128x1x1] %onnx::Conv_836[FLOAT, 128x128x3x3] %onnx::Conv_839[FLOAT, 128x128x3x3] %onnx::Conv_842[FLOAT, 128x256x1x1] %onnx::Conv_845[FLOAT, 128x128x3x3] %onnx::Conv_848[FLOAT, 128x256x1x1] %onnx::Conv_851[FLOAT, 128x128x3x3] %onnx::Conv_854[FLOAT, 128x128x3x3] %onnx::Conv_857[FLOAT, 128x256x1x1] %onnx::Conv_860[FLOAT, 128x128x3x3] %onnx::Conv_863[FLOAT, 128x256x1x1] %onnx::Conv_866[FLOAT, 128x128x3x3] %onnx::Conv_869[FLOAT, 128x128x3x3] %onnx::Conv_872[FLOAT, 256x256x1x1] %onnx::Conv_873[FLOAT, 256] %onnx::Conv_875[FLOAT, 256x256x3x3] %onnx::Conv_878[FLOAT, 256x256x1x1] %onnx::Conv_881[FLOAT, 256x256x3x3] %onnx::Conv_884[FLOAT, 256x256x3x3] %onnx::Conv_887[FLOAT, 256x512x1x1] %onnx::Conv_890[FLOAT, 256x256x3x3] %onnx::Conv_893[FLOAT, 256x512x1x1] %onnx::Conv_896[FLOAT, 256x256x3x3] %onnx::Conv_899[FLOAT, 256x256x3x3] %onnx::Conv_902[FLOAT, 256x512x1x1] %onnx::Conv_905[FLOAT, 256x256x3x3] %onnx::Conv_908[FLOAT, 256x512x1x1] %onnx::Conv_911[FLOAT, 256x256x3x3] %onnx::Conv_914[FLOAT, 256x256x3x3] ) { %onnx::Conv_915 = Identity(%onnx::Conv_873) %onnx::Conv_912 = Identity(%onnx::Conv_873) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_873) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_873) %onnx::Conv_897 = Identity(%onnx::Conv_873) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_873) %onnx::Conv_885 = Identity(%onnx::Conv_873) %onnx::Conv_882 = Identity(%onnx::Conv_873) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %onnx::Conv_870 = Identity(%onnx::Conv_780) %onnx::Conv_867 = Identity(%onnx::Conv_780) %onnx::Conv_864 = Identity(%onnx::Conv_780) %onnx::Conv_861 = Identity(%onnx::Conv_780) %onnx::Conv_858 = Identity(%onnx::Conv_780) %onnx::Conv_855 = Identity(%onnx::Conv_780) %onnx::Conv_852 = Identity(%onnx::Conv_780) %onnx::Conv_849 = Identity(%onnx::Conv_780) %onnx::Conv_846 = Identity(%onnx::Conv_780) %onnx::Conv_843 = Identity(%onnx::Conv_780) %onnx::Conv_840 = Identity(%onnx::Conv_780) %onnx::Conv_837 = Identity(%onnx::Conv_780) %onnx::Conv_834 = Identity(%onnx::Conv_780) %onnx::Conv_831 = Identity(%onnx::Conv_780) %onnx::Conv_828 = Identity(%onnx::Conv_780) %onnx::Conv_825 = Identity(%onnx::Conv_783) %onnx::Conv_822 = Identity(%onnx::Conv_783) %onnx::Conv_819 = Identity(%onnx::Conv_783) %onnx::Conv_816 = Identity(%onnx::Conv_783) %onnx::Conv_813 = Identity(%onnx::Conv_783) %onnx::Conv_810 = Identity(%onnx::Conv_783) %onnx::Conv_807 = Identity(%onnx::Conv_783) %onnx::Conv_804 = Identity(%onnx::Conv_783) %onnx::Conv_801 = Identity(%onnx::Conv_783) %onnx::Conv_798 = Identity(%onnx::Conv_783) %onnx::Conv_795 = Identity(%onnx::Conv_783) %onnx::Conv_792 = Identity(%onnx::Conv_783) %onnx::Conv_789 = Identity(%onnx::Conv_783) %onnx::Conv_786 = Identity(%onnx::Conv_783) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_779, %onnx::Conv_780) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %777 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %777 }
val_accuracy
93.449521
2,328,766,464
7,857,930
{'zcp_epe_nas': 84.9410325005173, 'zcp_fisher': 8.853334426879883, 'zcp_flops': 37260263424.0, 'zcp_grad_norm': 49.722591400146484, 'zcp_grasp': 0.9528350830078121, 'zcp_jacov': -16.050818112774508, 'zcp_l2_norm': 843.9344482421875, 'zcp_nwot': 221.39794251065757, 'zcp_params': 7857930.0, 'zcp_plain': 0.0010488423286, 'zcp_snip': 320.076904296875, 'zcp_synflow': 103.59086043375534, 'zcp_zen': 96.52534484863281, 'zcp_val_accuracy': 0.8588742017745971}
NASBench101_378132
NASBench101
378132
e49f726fecb0ec6c1f004be208c8c2e9
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_662[FLOAT, 128x3x3x3] %onnx::Conv_663[FLOAT, 128] %onnx::Conv_665[FLOAT, 43x128x1x1] %onnx::Conv_666[FLOAT, 43] %onnx::Conv_668[FLOAT, 43x128x1x1] %onnx::Conv_671[FLOAT, 42x128x1x1] %onnx::Conv_672[FLOAT, 42] %onnx::Conv_674[FLOAT, 42x42x1x1] %onnx::Conv_677[FLOAT, 43x128x1x1] %onnx::Conv_680[FLOAT, 43x128x1x1] %onnx::Conv_683[FLOAT, 42x128x1x1] %onnx::Conv_686[FLOAT, 42x42x1x1] %onnx::Conv_689[FLOAT, 43x128x1x1] %onnx::Conv_692[FLOAT, 43x128x1x1] %onnx::Conv_695[FLOAT, 42x128x1x1] %onnx::Conv_698[FLOAT, 42x42x1x1] %onnx::Conv_701[FLOAT, 86x128x1x1] %onnx::Conv_702[FLOAT, 86] %onnx::Conv_704[FLOAT, 85x128x1x1] %onnx::Conv_705[FLOAT, 85] %onnx::Conv_707[FLOAT, 85x128x1x1] %onnx::Conv_710[FLOAT, 85x85x1x1] %onnx::Conv_713[FLOAT, 86x256x1x1] %onnx::Conv_716[FLOAT, 85x256x1x1] %onnx::Conv_719[FLOAT, 85x256x1x1] %onnx::Conv_722[FLOAT, 85x85x1x1] %onnx::Conv_725[FLOAT, 86x256x1x1] %onnx::Conv_728[FLOAT, 85x256x1x1] %onnx::Conv_731[FLOAT, 85x256x1x1] %onnx::Conv_734[FLOAT, 85x85x1x1] %onnx::Conv_737[FLOAT, 171x256x1x1] %onnx::Conv_738[FLOAT, 171] %onnx::Conv_740[FLOAT, 171x256x1x1] %onnx::Conv_743[FLOAT, 170x256x1x1] %onnx::Conv_744[FLOAT, 170] %onnx::Conv_746[FLOAT, 170x170x1x1] %onnx::Conv_749[FLOAT, 171x512x1x1] %onnx::Conv_752[FLOAT, 171x512x1x1] %onnx::Conv_755[FLOAT, 170x512x1x1] %onnx::Conv_758[FLOAT, 170x170x1x1] %onnx::Conv_761[FLOAT, 171x512x1x1] %onnx::Conv_764[FLOAT, 171x512x1x1] %onnx::Conv_767[FLOAT, 170x512x1x1] %onnx::Conv_770[FLOAT, 170x170x1x1] ) { %onnx::Conv_771 = Identity(%onnx::Conv_744) %onnx::Conv_768 = Identity(%onnx::Conv_744) %onnx::Conv_765 = Identity(%onnx::Conv_738) %onnx::Conv_762 = Identity(%onnx::Conv_738) %onnx::Conv_759 = Identity(%onnx::Conv_744) %onnx::Conv_756 = Identity(%onnx::Conv_744) %onnx::Conv_753 = Identity(%onnx::Conv_738) %onnx::Conv_750 = Identity(%onnx::Conv_738) %onnx::Conv_747 = Identity(%onnx::Conv_744) %onnx::Conv_741 = Identity(%onnx::Conv_738) %onnx::Conv_735 = Identity(%onnx::Conv_705) %onnx::Conv_732 = Identity(%onnx::Conv_705) %onnx::Conv_729 = Identity(%onnx::Conv_705) %onnx::Conv_726 = Identity(%onnx::Conv_702) %onnx::Conv_723 = Identity(%onnx::Conv_705) %onnx::Conv_720 = Identity(%onnx::Conv_705) %onnx::Conv_717 = Identity(%onnx::Conv_705) %onnx::Conv_714 = Identity(%onnx::Conv_702) %onnx::Conv_711 = Identity(%onnx::Conv_705) %onnx::Conv_708 = Identity(%onnx::Conv_705) %onnx::Conv_699 = Identity(%onnx::Conv_672) %onnx::Conv_696 = Identity(%onnx::Conv_672) %onnx::Conv_693 = Identity(%onnx::Conv_666) %onnx::Conv_690 = Identity(%onnx::Conv_666) %onnx::Conv_687 = Identity(%onnx::Conv_672) %onnx::Conv_684 = Identity(%onnx::Conv_672) %onnx::Conv_681 = Identity(%onnx::Conv_666) %onnx::Conv_678 = Identity(%onnx::Conv_666) %onnx::Conv_675 = Identity(%onnx::Conv_672) %onnx::Conv_669 = Identity(%onnx::Conv_666) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_662, %onnx::Conv_663) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_1_output_0, %/layers.1/Constant_4_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_1_output_0, %/layers.2/Constant_4_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_1_output_0, %/layers.3/Constant_4_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_1_output_0, %/layers.9/Constant_4_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_1_output_0, %/layers.10/Constant_4_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_1_output_0, %/layers.11/Constant_4_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %660 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %660 }
val_accuracy
88.631809
316,925,952
998,019
{'zcp_epe_nas': 105.80751487844496, 'zcp_fisher': 2.230963706970215, 'zcp_flops': 5070815232.0, 'zcp_grad_norm': 25.658418655395508, 'zcp_grasp': -2.715728759765625, 'zcp_jacov': -16.044298321071267, 'zcp_l2_norm': 712.739013671875, 'zcp_nwot': 212.19537124363964, 'zcp_params': 998019.0, 'zcp_plain': 0.058691933751106005, 'zcp_snip': 134.84588623046875, 'zcp_synflow': 58.030624517674, 'zcp_zen': 64.12300109863281, 'zcp_val_accuracy': 0.8822115659713741}
NASBench101_104719
NASBench101
104719
3f544ee5a599073a71a0ae6c3198515e
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_848[FLOAT, 128x3x3x3] %onnx::Conv_849[FLOAT, 128] %onnx::Conv_851[FLOAT, 43x128x1x1] %onnx::Conv_852[FLOAT, 43] %onnx::Conv_854[FLOAT, 43x43x1x1] %onnx::Conv_857[FLOAT, 43x43x3x3] %onnx::Conv_860[FLOAT, 43x43x1x1] %onnx::Conv_863[FLOAT, 42x128x1x1] %onnx::Conv_864[FLOAT, 42] %onnx::Conv_866[FLOAT, 43x128x1x1] %onnx::Conv_869[FLOAT, 43x43x1x1] %onnx::Conv_872[FLOAT, 43x43x3x3] %onnx::Conv_875[FLOAT, 43x43x1x1] %onnx::Conv_878[FLOAT, 42x128x1x1] %onnx::Conv_881[FLOAT, 43x128x1x1] %onnx::Conv_884[FLOAT, 43x43x1x1] %onnx::Conv_887[FLOAT, 43x43x3x3] %onnx::Conv_890[FLOAT, 43x43x1x1] %onnx::Conv_893[FLOAT, 42x128x1x1] %onnx::Conv_896[FLOAT, 86x128x1x1] %onnx::Conv_897[FLOAT, 86] %onnx::Conv_899[FLOAT, 86x86x1x1] %onnx::Conv_902[FLOAT, 86x86x3x3] %onnx::Conv_905[FLOAT, 85x85x1x1] %onnx::Conv_906[FLOAT, 85] %onnx::Conv_908[FLOAT, 85x128x1x1] %onnx::Conv_911[FLOAT, 86x256x1x1] %onnx::Conv_914[FLOAT, 86x86x1x1] %onnx::Conv_917[FLOAT, 86x86x3x3] %onnx::Conv_920[FLOAT, 85x85x1x1] %onnx::Conv_923[FLOAT, 85x256x1x1] %onnx::Conv_926[FLOAT, 86x256x1x1] %onnx::Conv_929[FLOAT, 86x86x1x1] %onnx::Conv_932[FLOAT, 86x86x3x3] %onnx::Conv_935[FLOAT, 85x85x1x1] %onnx::Conv_938[FLOAT, 85x256x1x1] %onnx::Conv_941[FLOAT, 171x256x1x1] %onnx::Conv_942[FLOAT, 171] %onnx::Conv_944[FLOAT, 171x171x1x1] %onnx::Conv_947[FLOAT, 171x171x3x3] %onnx::Conv_950[FLOAT, 171x171x1x1] %onnx::Conv_953[FLOAT, 170x256x1x1] %onnx::Conv_954[FLOAT, 170] %onnx::Conv_956[FLOAT, 171x512x1x1] %onnx::Conv_959[FLOAT, 171x171x1x1] %onnx::Conv_962[FLOAT, 171x171x3x3] %onnx::Conv_965[FLOAT, 171x171x1x1] %onnx::Conv_968[FLOAT, 170x512x1x1] %onnx::Conv_971[FLOAT, 171x512x1x1] %onnx::Conv_974[FLOAT, 171x171x1x1] %onnx::Conv_977[FLOAT, 171x171x3x3] %onnx::Conv_980[FLOAT, 171x171x1x1] %onnx::Conv_983[FLOAT, 170x512x1x1] ) { %onnx::Conv_984 = Identity(%onnx::Conv_954) %onnx::Conv_981 = Identity(%onnx::Conv_942) %onnx::Conv_978 = Identity(%onnx::Conv_942) %onnx::Conv_975 = Identity(%onnx::Conv_942) %onnx::Conv_972 = Identity(%onnx::Conv_942) %onnx::Conv_969 = Identity(%onnx::Conv_954) %onnx::Conv_966 = Identity(%onnx::Conv_942) %onnx::Conv_963 = Identity(%onnx::Conv_942) %onnx::Conv_960 = Identity(%onnx::Conv_942) %onnx::Conv_957 = Identity(%onnx::Conv_942) %onnx::Conv_951 = Identity(%onnx::Conv_942) %onnx::Conv_948 = Identity(%onnx::Conv_942) %onnx::Conv_945 = Identity(%onnx::Conv_942) %onnx::Conv_939 = Identity(%onnx::Conv_906) %onnx::Conv_936 = Identity(%onnx::Conv_906) %onnx::Conv_933 = Identity(%onnx::Conv_897) %onnx::Conv_930 = Identity(%onnx::Conv_897) %onnx::Conv_927 = Identity(%onnx::Conv_897) %onnx::Conv_924 = Identity(%onnx::Conv_906) %onnx::Conv_921 = Identity(%onnx::Conv_906) %onnx::Conv_918 = Identity(%onnx::Conv_897) %onnx::Conv_915 = Identity(%onnx::Conv_897) %onnx::Conv_912 = Identity(%onnx::Conv_897) %onnx::Conv_909 = Identity(%onnx::Conv_906) %onnx::Conv_903 = Identity(%onnx::Conv_897) %onnx::Conv_900 = Identity(%onnx::Conv_897) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_852) %onnx::Conv_888 = Identity(%onnx::Conv_852) %onnx::Conv_885 = Identity(%onnx::Conv_852) %onnx::Conv_882 = Identity(%onnx::Conv_852) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_852) %onnx::Conv_873 = Identity(%onnx::Conv_852) %onnx::Conv_870 = Identity(%onnx::Conv_852) %onnx::Conv_867 = Identity(%onnx::Conv_852) %onnx::Conv_861 = Identity(%onnx::Conv_852) %onnx::Conv_858 = Identity(%onnx::Conv_852) %onnx::Conv_855 = Identity(%onnx::Conv_852) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_848, %onnx::Conv_849) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_6_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_7_output_0) %/layers.1/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_8_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_6_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_7_output_0) %/layers.2/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_8_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_6_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_7_output_0) %/layers.3/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_8_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_6_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_7_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_9_output_0, %/layers.5/Constant_10_output_0, %/layers.5/Constant_8_output_0, %/layers.5/Constant_11_output_0) %/layers.5/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_12_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_6_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_7_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_9_output_0, %/layers.6/Constant_10_output_0, %/layers.6/Constant_8_output_0, %/layers.6/Constant_11_output_0) %/layers.6/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_12_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_6_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_7_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_7_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_11_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_9_output_0, %/layers.7/Constant_10_output_0, %/layers.7/Constant_8_output_0, %/layers.7/Constant_11_output_0) %/layers.7/Constant_12_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_12_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_6_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_7_output_0) %/layers.9/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_8_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_6_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_7_output_0) %/layers.10/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_8_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_6_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_7_output_0) %/layers.11/Constant_8_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_8_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %846 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %846 }
val_accuracy
89.603364
569,263,744
1,865,903
{'zcp_epe_nas': 74.0248051652612, 'zcp_fisher': 22.637733459472656, 'zcp_flops': 9108219904.0, 'zcp_grad_norm': 106.58428192138672, 'zcp_grasp': -14.2822265625, 'zcp_jacov': -16.058256657716882, 'zcp_l2_norm': 763.7921142578125, 'zcp_nwot': 216.12760723436784, 'zcp_params': 1865903.0, 'zcp_plain': 0.087394565343856, 'zcp_snip': 483.0113830566406, 'zcp_synflow': 100.66954401444089, 'zcp_zen': 70.99523162841797, 'zcp_val_accuracy': 0.872896611690521}
NASBench101_386999
NASBench101
386999
e9f1cbec20cf9b95e0bd17f8ff876d69
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_851[FLOAT, 128x3x3x3] %onnx::Conv_852[FLOAT, 128] %onnx::Conv_854[FLOAT, 43x128x1x1] %onnx::Conv_855[FLOAT, 43] %onnx::Conv_857[FLOAT, 43x43x3x3] %onnx::Conv_860[FLOAT, 43x128x1x1] %onnx::Conv_863[FLOAT, 43x43x3x3] %onnx::Conv_866[FLOAT, 42x128x1x1] %onnx::Conv_867[FLOAT, 42] %onnx::Conv_869[FLOAT, 42x42x1x1] %onnx::Conv_872[FLOAT, 43x128x1x1] %onnx::Conv_875[FLOAT, 43x43x3x3] %onnx::Conv_878[FLOAT, 43x128x1x1] %onnx::Conv_881[FLOAT, 43x43x3x3] %onnx::Conv_884[FLOAT, 42x128x1x1] %onnx::Conv_887[FLOAT, 42x42x1x1] %onnx::Conv_890[FLOAT, 43x128x1x1] %onnx::Conv_893[FLOAT, 43x43x3x3] %onnx::Conv_896[FLOAT, 43x128x1x1] %onnx::Conv_899[FLOAT, 43x43x3x3] %onnx::Conv_902[FLOAT, 42x128x1x1] %onnx::Conv_905[FLOAT, 42x42x1x1] %onnx::Conv_908[FLOAT, 86x128x1x1] %onnx::Conv_909[FLOAT, 86] %onnx::Conv_911[FLOAT, 86x86x3x3] %onnx::Conv_914[FLOAT, 85x128x1x1] %onnx::Conv_915[FLOAT, 85] %onnx::Conv_917[FLOAT, 85x85x3x3] %onnx::Conv_920[FLOAT, 85x128x1x1] %onnx::Conv_923[FLOAT, 85x85x1x1] %onnx::Conv_926[FLOAT, 86x256x1x1] %onnx::Conv_929[FLOAT, 86x86x3x3] %onnx::Conv_932[FLOAT, 85x256x1x1] %onnx::Conv_935[FLOAT, 85x85x3x3] %onnx::Conv_938[FLOAT, 85x256x1x1] %onnx::Conv_941[FLOAT, 85x85x1x1] %onnx::Conv_944[FLOAT, 86x256x1x1] %onnx::Conv_947[FLOAT, 86x86x3x3] %onnx::Conv_950[FLOAT, 85x256x1x1] %onnx::Conv_953[FLOAT, 85x85x3x3] %onnx::Conv_956[FLOAT, 85x256x1x1] %onnx::Conv_959[FLOAT, 85x85x1x1] %onnx::Conv_962[FLOAT, 171x256x1x1] %onnx::Conv_963[FLOAT, 171] %onnx::Conv_965[FLOAT, 171x171x3x3] %onnx::Conv_968[FLOAT, 171x256x1x1] %onnx::Conv_971[FLOAT, 171x171x3x3] %onnx::Conv_974[FLOAT, 170x256x1x1] %onnx::Conv_975[FLOAT, 170] %onnx::Conv_977[FLOAT, 170x170x1x1] %onnx::Conv_980[FLOAT, 171x512x1x1] %onnx::Conv_983[FLOAT, 171x171x3x3] %onnx::Conv_986[FLOAT, 171x512x1x1] %onnx::Conv_989[FLOAT, 171x171x3x3] %onnx::Conv_992[FLOAT, 170x512x1x1] %onnx::Conv_995[FLOAT, 170x170x1x1] %onnx::Conv_998[FLOAT, 171x512x1x1] %onnx::Conv_1001[FLOAT, 171x171x3x3] %onnx::Conv_1004[FLOAT, 171x512x1x1] %onnx::Conv_1007[FLOAT, 171x171x3x3] %onnx::Conv_1010[FLOAT, 170x512x1x1] %onnx::Conv_1013[FLOAT, 170x170x1x1] ) { %onnx::Conv_1014 = Identity(%onnx::Conv_975) %onnx::Conv_1011 = Identity(%onnx::Conv_975) %onnx::Conv_1008 = Identity(%onnx::Conv_963) %onnx::Conv_1005 = Identity(%onnx::Conv_963) %onnx::Conv_1002 = Identity(%onnx::Conv_963) %onnx::Conv_999 = Identity(%onnx::Conv_963) %onnx::Conv_996 = Identity(%onnx::Conv_975) %onnx::Conv_993 = Identity(%onnx::Conv_975) %onnx::Conv_990 = Identity(%onnx::Conv_963) %onnx::Conv_987 = Identity(%onnx::Conv_963) %onnx::Conv_984 = Identity(%onnx::Conv_963) %onnx::Conv_981 = Identity(%onnx::Conv_963) %onnx::Conv_978 = Identity(%onnx::Conv_975) %onnx::Conv_972 = Identity(%onnx::Conv_963) %onnx::Conv_969 = Identity(%onnx::Conv_963) %onnx::Conv_966 = Identity(%onnx::Conv_963) %onnx::Conv_960 = Identity(%onnx::Conv_915) %onnx::Conv_957 = Identity(%onnx::Conv_915) %onnx::Conv_954 = Identity(%onnx::Conv_915) %onnx::Conv_951 = Identity(%onnx::Conv_915) %onnx::Conv_948 = Identity(%onnx::Conv_909) %onnx::Conv_945 = Identity(%onnx::Conv_909) %onnx::Conv_942 = Identity(%onnx::Conv_915) %onnx::Conv_939 = Identity(%onnx::Conv_915) %onnx::Conv_936 = Identity(%onnx::Conv_915) %onnx::Conv_933 = Identity(%onnx::Conv_915) %onnx::Conv_930 = Identity(%onnx::Conv_909) %onnx::Conv_927 = Identity(%onnx::Conv_909) %onnx::Conv_924 = Identity(%onnx::Conv_915) %onnx::Conv_921 = Identity(%onnx::Conv_915) %onnx::Conv_918 = Identity(%onnx::Conv_915) %onnx::Conv_912 = Identity(%onnx::Conv_909) %onnx::Conv_906 = Identity(%onnx::Conv_867) %onnx::Conv_903 = Identity(%onnx::Conv_867) %onnx::Conv_900 = Identity(%onnx::Conv_855) %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_867) %onnx::Conv_885 = Identity(%onnx::Conv_867) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_867) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_851, %onnx::Conv_852) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/Add_1_output_0, %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_5_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/Add_1_output_0, %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_5_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/Add_1_output_0, %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_5_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/Constant_5_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/Add_1_output_0, %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/Constant_5_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/Add_1_output_0, %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/Constant_5_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/Add_1_output_0, %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/Add_1_output_0, %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_5_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/Add_1_output_0, %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_5_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/Add_1_output_0, %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_5_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %849 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %849 }
val_accuracy
93.820113
929,334,528
3,075,240
{'zcp_epe_nas': 103.68307054563441, 'zcp_fisher': 1.4257274866104122, 'zcp_flops': 14869352448.0, 'zcp_grad_norm': 26.585988998413086, 'zcp_grasp': -0.325653076171875, 'zcp_jacov': -16.053894271078782, 'zcp_l2_norm': 957.2021484375, 'zcp_nwot': 218.5367155365878, 'zcp_params': 3075240.0, 'zcp_plain': -0.023423369973897, 'zcp_snip': 142.42567443847656, 'zcp_synflow': 110.2659670917428, 'zcp_zen': 93.08619689941406, 'zcp_val_accuracy': 0.9046474099159241}
NASBench101_195365
NASBench101
195365
76333875ef5a97c539554f4c6e631643
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_743[FLOAT, 128x3x3x3] %onnx::Conv_744[FLOAT, 128] %onnx::Conv_746[FLOAT, 64x128x1x1] %onnx::Conv_747[FLOAT, 64] %onnx::Conv_749[FLOAT, 64x128x1x1] %onnx::Conv_752[FLOAT, 64x128x1x1] %onnx::Conv_755[FLOAT, 64x128x1x1] %onnx::Conv_758[FLOAT, 64x64x1x1] %onnx::Conv_761[FLOAT, 64x128x1x1] %onnx::Conv_764[FLOAT, 64x128x1x1] %onnx::Conv_767[FLOAT, 64x128x1x1] %onnx::Conv_770[FLOAT, 64x128x1x1] %onnx::Conv_773[FLOAT, 64x64x1x1] %onnx::Conv_776[FLOAT, 64x128x1x1] %onnx::Conv_779[FLOAT, 64x128x1x1] %onnx::Conv_782[FLOAT, 64x128x1x1] %onnx::Conv_785[FLOAT, 64x128x1x1] %onnx::Conv_788[FLOAT, 64x64x1x1] %onnx::Conv_791[FLOAT, 128x128x1x1] %onnx::Conv_794[FLOAT, 128x128x1x1] %onnx::Conv_797[FLOAT, 128x128x1x1] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 128x128x1x1] %onnx::Conv_806[FLOAT, 128x256x1x1] %onnx::Conv_809[FLOAT, 128x256x1x1] %onnx::Conv_812[FLOAT, 128x256x1x1] %onnx::Conv_815[FLOAT, 128x256x1x1] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x256x1x1] %onnx::Conv_824[FLOAT, 128x256x1x1] %onnx::Conv_827[FLOAT, 128x256x1x1] %onnx::Conv_830[FLOAT, 128x256x1x1] %onnx::Conv_833[FLOAT, 128x128x1x1] %onnx::Conv_836[FLOAT, 256x256x1x1] %onnx::Conv_837[FLOAT, 256] %onnx::Conv_839[FLOAT, 256x256x1x1] %onnx::Conv_842[FLOAT, 256x256x1x1] %onnx::Conv_845[FLOAT, 256x256x1x1] %onnx::Conv_848[FLOAT, 256x256x1x1] %onnx::Conv_851[FLOAT, 256x512x1x1] %onnx::Conv_854[FLOAT, 256x512x1x1] %onnx::Conv_857[FLOAT, 256x512x1x1] %onnx::Conv_860[FLOAT, 256x512x1x1] %onnx::Conv_863[FLOAT, 256x256x1x1] %onnx::Conv_866[FLOAT, 256x512x1x1] %onnx::Conv_869[FLOAT, 256x512x1x1] %onnx::Conv_872[FLOAT, 256x512x1x1] %onnx::Conv_875[FLOAT, 256x512x1x1] %onnx::Conv_878[FLOAT, 256x256x1x1] ) { %onnx::Conv_879 = Identity(%onnx::Conv_837) %onnx::Conv_876 = Identity(%onnx::Conv_837) %onnx::Conv_873 = Identity(%onnx::Conv_837) %onnx::Conv_870 = Identity(%onnx::Conv_837) %onnx::Conv_867 = Identity(%onnx::Conv_837) %onnx::Conv_864 = Identity(%onnx::Conv_837) %onnx::Conv_861 = Identity(%onnx::Conv_837) %onnx::Conv_858 = Identity(%onnx::Conv_837) %onnx::Conv_855 = Identity(%onnx::Conv_837) %onnx::Conv_852 = Identity(%onnx::Conv_837) %onnx::Conv_849 = Identity(%onnx::Conv_837) %onnx::Conv_846 = Identity(%onnx::Conv_837) %onnx::Conv_843 = Identity(%onnx::Conv_837) %onnx::Conv_840 = Identity(%onnx::Conv_837) %onnx::Conv_834 = Identity(%onnx::Conv_744) %onnx::Conv_831 = Identity(%onnx::Conv_744) %onnx::Conv_828 = Identity(%onnx::Conv_744) %onnx::Conv_825 = Identity(%onnx::Conv_744) %onnx::Conv_822 = Identity(%onnx::Conv_744) %onnx::Conv_819 = Identity(%onnx::Conv_744) %onnx::Conv_816 = Identity(%onnx::Conv_744) %onnx::Conv_813 = Identity(%onnx::Conv_744) %onnx::Conv_810 = Identity(%onnx::Conv_744) %onnx::Conv_807 = Identity(%onnx::Conv_744) %onnx::Conv_804 = Identity(%onnx::Conv_744) %onnx::Conv_801 = Identity(%onnx::Conv_744) %onnx::Conv_798 = Identity(%onnx::Conv_744) %onnx::Conv_795 = Identity(%onnx::Conv_744) %onnx::Conv_792 = Identity(%onnx::Conv_744) %onnx::Conv_789 = Identity(%onnx::Conv_747) %onnx::Conv_786 = Identity(%onnx::Conv_747) %onnx::Conv_783 = Identity(%onnx::Conv_747) %onnx::Conv_780 = Identity(%onnx::Conv_747) %onnx::Conv_777 = Identity(%onnx::Conv_747) %onnx::Conv_774 = Identity(%onnx::Conv_747) %onnx::Conv_771 = Identity(%onnx::Conv_747) %onnx::Conv_768 = Identity(%onnx::Conv_747) %onnx::Conv_765 = Identity(%onnx::Conv_747) %onnx::Conv_762 = Identity(%onnx::Conv_747) %onnx::Conv_759 = Identity(%onnx::Conv_747) %onnx::Conv_756 = Identity(%onnx::Conv_747) %onnx::Conv_753 = Identity(%onnx::Conv_747) %onnx::Conv_750 = Identity(%onnx::Conv_747) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_743, %onnx::Conv_744) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %741 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %741 }
val_accuracy
90.334535
634,267,648
2,017,034
{'zcp_epe_nas': 65.37499750725146, 'zcp_fisher': 1.733893156051635, 'zcp_flops': 10148282368.0, 'zcp_grad_norm': 27.289024353027344, 'zcp_grasp': -0.19237518310546803, 'zcp_jacov': -16.05690838167255, 'zcp_l2_norm': 937.173583984375, 'zcp_nwot': 221.54579291336753, 'zcp_params': 2017034.0, 'zcp_plain': 0.044391531497240004, 'zcp_snip': 166.13990783691406, 'zcp_synflow': 63.685073767448266, 'zcp_zen': 77.03488159179688, 'zcp_val_accuracy': 0.778044879436492}
NASBench101_276553
NASBench101
276553
a76afbe19cf2cb0bf3efa6722c2dd262
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_1076[FLOAT, 128x3x3x3] %onnx::Conv_1077[FLOAT, 128] %onnx::Conv_1079[FLOAT, 128x128x1x1] %onnx::Conv_1082[FLOAT, 128x128x3x3] %onnx::Conv_1085[FLOAT, 128x128x1x1] %onnx::Conv_1088[FLOAT, 128x128x1x1] %onnx::Conv_1091[FLOAT, 128x128x3x3] %onnx::Conv_1094[FLOAT, 128x128x3x3] %onnx::Conv_1097[FLOAT, 128x128x1x1] %onnx::Conv_1100[FLOAT, 128x128x1x1] %onnx::Conv_1103[FLOAT, 128x128x1x1] %onnx::Conv_1106[FLOAT, 128x128x3x3] %onnx::Conv_1109[FLOAT, 128x128x1x1] %onnx::Conv_1112[FLOAT, 128x128x1x1] %onnx::Conv_1115[FLOAT, 128x128x3x3] %onnx::Conv_1118[FLOAT, 128x128x3x3] %onnx::Conv_1121[FLOAT, 128x128x1x1] %onnx::Conv_1124[FLOAT, 128x128x1x1] %onnx::Conv_1127[FLOAT, 128x128x1x1] %onnx::Conv_1130[FLOAT, 128x128x3x3] %onnx::Conv_1133[FLOAT, 128x128x1x1] %onnx::Conv_1136[FLOAT, 128x128x1x1] %onnx::Conv_1139[FLOAT, 128x128x3x3] %onnx::Conv_1142[FLOAT, 128x128x3x3] %onnx::Conv_1145[FLOAT, 128x128x1x1] %onnx::Conv_1148[FLOAT, 128x128x1x1] %onnx::Conv_1151[FLOAT, 256x128x1x1] %onnx::Conv_1152[FLOAT, 256] %onnx::Conv_1154[FLOAT, 256x256x3x3] %onnx::Conv_1157[FLOAT, 256x128x1x1] %onnx::Conv_1160[FLOAT, 256x256x1x1] %onnx::Conv_1163[FLOAT, 256x256x3x3] %onnx::Conv_1166[FLOAT, 256x256x3x3] %onnx::Conv_1169[FLOAT, 256x256x1x1] %onnx::Conv_1172[FLOAT, 256x128x1x1] %onnx::Conv_1175[FLOAT, 256x256x1x1] %onnx::Conv_1178[FLOAT, 256x256x3x3] %onnx::Conv_1181[FLOAT, 256x256x1x1] %onnx::Conv_1184[FLOAT, 256x256x1x1] %onnx::Conv_1187[FLOAT, 256x256x3x3] %onnx::Conv_1190[FLOAT, 256x256x3x3] %onnx::Conv_1193[FLOAT, 256x256x1x1] %onnx::Conv_1196[FLOAT, 256x256x1x1] %onnx::Conv_1199[FLOAT, 256x256x1x1] %onnx::Conv_1202[FLOAT, 256x256x3x3] %onnx::Conv_1205[FLOAT, 256x256x1x1] %onnx::Conv_1208[FLOAT, 256x256x1x1] %onnx::Conv_1211[FLOAT, 256x256x3x3] %onnx::Conv_1214[FLOAT, 256x256x3x3] %onnx::Conv_1217[FLOAT, 256x256x1x1] %onnx::Conv_1220[FLOAT, 256x256x1x1] %onnx::Conv_1223[FLOAT, 512x256x1x1] %onnx::Conv_1224[FLOAT, 512] %onnx::Conv_1226[FLOAT, 512x512x3x3] %onnx::Conv_1229[FLOAT, 512x256x1x1] %onnx::Conv_1232[FLOAT, 512x512x1x1] %onnx::Conv_1235[FLOAT, 512x512x3x3] %onnx::Conv_1238[FLOAT, 512x512x3x3] %onnx::Conv_1241[FLOAT, 512x512x1x1] %onnx::Conv_1244[FLOAT, 512x256x1x1] %onnx::Conv_1247[FLOAT, 512x512x1x1] %onnx::Conv_1250[FLOAT, 512x512x3x3] %onnx::Conv_1253[FLOAT, 512x512x1x1] %onnx::Conv_1256[FLOAT, 512x512x1x1] %onnx::Conv_1259[FLOAT, 512x512x3x3] %onnx::Conv_1262[FLOAT, 512x512x3x3] %onnx::Conv_1265[FLOAT, 512x512x1x1] %onnx::Conv_1268[FLOAT, 512x512x1x1] %onnx::Conv_1271[FLOAT, 512x512x1x1] %onnx::Conv_1274[FLOAT, 512x512x3x3] %onnx::Conv_1277[FLOAT, 512x512x1x1] %onnx::Conv_1280[FLOAT, 512x512x1x1] %onnx::Conv_1283[FLOAT, 512x512x3x3] %onnx::Conv_1286[FLOAT, 512x512x3x3] %onnx::Conv_1289[FLOAT, 512x512x1x1] %onnx::Conv_1292[FLOAT, 512x512x1x1] ) { %onnx::Conv_1293 = Identity(%onnx::Conv_1224) %onnx::Conv_1290 = Identity(%onnx::Conv_1224) %onnx::Conv_1287 = Identity(%onnx::Conv_1224) %onnx::Conv_1284 = Identity(%onnx::Conv_1224) %onnx::Conv_1281 = Identity(%onnx::Conv_1224) %onnx::Conv_1278 = Identity(%onnx::Conv_1224) %onnx::Conv_1275 = Identity(%onnx::Conv_1224) %onnx::Conv_1272 = Identity(%onnx::Conv_1224) %onnx::Conv_1269 = Identity(%onnx::Conv_1224) %onnx::Conv_1266 = Identity(%onnx::Conv_1224) %onnx::Conv_1263 = Identity(%onnx::Conv_1224) %onnx::Conv_1260 = Identity(%onnx::Conv_1224) %onnx::Conv_1257 = Identity(%onnx::Conv_1224) %onnx::Conv_1254 = Identity(%onnx::Conv_1224) %onnx::Conv_1251 = Identity(%onnx::Conv_1224) %onnx::Conv_1248 = Identity(%onnx::Conv_1224) %onnx::Conv_1245 = Identity(%onnx::Conv_1224) %onnx::Conv_1242 = Identity(%onnx::Conv_1224) %onnx::Conv_1239 = Identity(%onnx::Conv_1224) %onnx::Conv_1236 = Identity(%onnx::Conv_1224) %onnx::Conv_1233 = Identity(%onnx::Conv_1224) %onnx::Conv_1230 = Identity(%onnx::Conv_1224) %onnx::Conv_1227 = Identity(%onnx::Conv_1224) %onnx::Conv_1221 = Identity(%onnx::Conv_1152) %onnx::Conv_1218 = Identity(%onnx::Conv_1152) %onnx::Conv_1215 = Identity(%onnx::Conv_1152) %onnx::Conv_1212 = Identity(%onnx::Conv_1152) %onnx::Conv_1209 = Identity(%onnx::Conv_1152) %onnx::Conv_1206 = Identity(%onnx::Conv_1152) %onnx::Conv_1203 = Identity(%onnx::Conv_1152) %onnx::Conv_1200 = Identity(%onnx::Conv_1152) %onnx::Conv_1197 = Identity(%onnx::Conv_1152) %onnx::Conv_1194 = Identity(%onnx::Conv_1152) %onnx::Conv_1191 = Identity(%onnx::Conv_1152) %onnx::Conv_1188 = Identity(%onnx::Conv_1152) %onnx::Conv_1185 = Identity(%onnx::Conv_1152) %onnx::Conv_1182 = Identity(%onnx::Conv_1152) %onnx::Conv_1179 = Identity(%onnx::Conv_1152) %onnx::Conv_1176 = Identity(%onnx::Conv_1152) %onnx::Conv_1173 = Identity(%onnx::Conv_1152) %onnx::Conv_1170 = Identity(%onnx::Conv_1152) %onnx::Conv_1167 = Identity(%onnx::Conv_1152) %onnx::Conv_1164 = Identity(%onnx::Conv_1152) %onnx::Conv_1161 = Identity(%onnx::Conv_1152) %onnx::Conv_1158 = Identity(%onnx::Conv_1152) %onnx::Conv_1155 = Identity(%onnx::Conv_1152) %onnx::Conv_1149 = Identity(%onnx::Conv_1077) %onnx::Conv_1146 = Identity(%onnx::Conv_1077) %onnx::Conv_1143 = Identity(%onnx::Conv_1077) %onnx::Conv_1140 = Identity(%onnx::Conv_1077) %onnx::Conv_1137 = Identity(%onnx::Conv_1077) %onnx::Conv_1134 = Identity(%onnx::Conv_1077) %onnx::Conv_1131 = Identity(%onnx::Conv_1077) %onnx::Conv_1128 = Identity(%onnx::Conv_1077) %onnx::Conv_1125 = Identity(%onnx::Conv_1077) %onnx::Conv_1122 = Identity(%onnx::Conv_1077) %onnx::Conv_1119 = Identity(%onnx::Conv_1077) %onnx::Conv_1116 = Identity(%onnx::Conv_1077) %onnx::Conv_1113 = Identity(%onnx::Conv_1077) %onnx::Conv_1110 = Identity(%onnx::Conv_1077) %onnx::Conv_1107 = Identity(%onnx::Conv_1077) %onnx::Conv_1104 = Identity(%onnx::Conv_1077) %onnx::Conv_1101 = Identity(%onnx::Conv_1077) %onnx::Conv_1098 = Identity(%onnx::Conv_1077) %onnx::Conv_1095 = Identity(%onnx::Conv_1077) %onnx::Conv_1092 = Identity(%onnx::Conv_1077) %onnx::Conv_1089 = Identity(%onnx::Conv_1077) %onnx::Conv_1086 = Identity(%onnx::Conv_1077) %onnx::Conv_1083 = Identity(%onnx::Conv_1077) %onnx::Conv_1080 = Identity(%onnx::Conv_1077) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_7_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_7_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_7_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1160, %onnx::Conv_1161) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_1163, %onnx::Conv_1164) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_1166, %onnx::Conv_1167) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1169, %onnx::Conv_1170) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1172, %onnx::Conv_1173) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_1175, %onnx::Conv_1176) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1178, %onnx::Conv_1179) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_1181, %onnx::Conv_1182) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1184, %onnx::Conv_1185) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_1187, %onnx::Conv_1188) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_1190, %onnx::Conv_1191) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1193, %onnx::Conv_1194) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_7_output_0, %onnx::Conv_1196, %onnx::Conv_1197) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_1199, %onnx::Conv_1200) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1202, %onnx::Conv_1203) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_1205, %onnx::Conv_1206) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1208, %onnx::Conv_1209) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_1211, %onnx::Conv_1212) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_1214, %onnx::Conv_1215) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1217, %onnx::Conv_1218) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_7_output_0, %onnx::Conv_1220, %onnx::Conv_1221) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_7_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1223, %onnx::Conv_1224) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1226, %onnx::Conv_1227) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1229, %onnx::Conv_1230) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1232, %onnx::Conv_1233) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_1235, %onnx::Conv_1236) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1238, %onnx::Conv_1239) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1241, %onnx::Conv_1242) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1244, %onnx::Conv_1245) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1247, %onnx::Conv_1248) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1250, %onnx::Conv_1251) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1253, %onnx::Conv_1254) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1256, %onnx::Conv_1257) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1259, %onnx::Conv_1260) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1262, %onnx::Conv_1263) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1265, %onnx::Conv_1266) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_7_output_0, %onnx::Conv_1268, %onnx::Conv_1269) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1271, %onnx::Conv_1272) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1274, %onnx::Conv_1275) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1277, %onnx::Conv_1278) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1280, %onnx::Conv_1281) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1283, %onnx::Conv_1284) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1286, %onnx::Conv_1287) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1289, %onnx::Conv_1290) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_7_output_0, %onnx::Conv_1292, %onnx::Conv_1293) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_7_output_0) %1074 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %1074 }
val_accuracy
94.501203
9,615,190,016
32,590,474
{'zcp_epe_nas': 86.4858382132378, 'zcp_fisher': 57.1596794128418, 'zcp_flops': 153843040256.0, 'zcp_grad_norm': 162.8563690185547, 'zcp_grasp': 2.288330078125, 'zcp_jacov': -16.050889685924105, 'zcp_l2_norm': 1650.7342529296875, 'zcp_nwot': 239.67804711596386, 'zcp_params': 32590474.0, 'zcp_plain': 0.013300213962793002, 'zcp_snip': 1393.430419921875, 'zcp_synflow': 167.61745173876366, 'zcp_zen': 151.09808349609375, 'zcp_val_accuracy': 0.905048072338104}
NASBench101_60060
NASBench101
60060
247c57c9453929f474c04f206abead16
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_869[FLOAT, 128x3x3x3] %onnx::Conv_870[FLOAT, 128] %onnx::Conv_872[FLOAT, 64x128x1x1] %onnx::Conv_873[FLOAT, 64] %onnx::Conv_875[FLOAT, 64x64x1x1] %onnx::Conv_878[FLOAT, 64x64x1x1] %onnx::Conv_881[FLOAT, 64x64x1x1] %onnx::Conv_884[FLOAT, 64x64x1x1] %onnx::Conv_887[FLOAT, 128x128x1x1] %onnx::Conv_890[FLOAT, 64x128x1x1] %onnx::Conv_893[FLOAT, 64x64x1x1] %onnx::Conv_896[FLOAT, 64x64x1x1] %onnx::Conv_899[FLOAT, 64x64x1x1] %onnx::Conv_902[FLOAT, 64x64x1x1] %onnx::Conv_905[FLOAT, 128x128x1x1] %onnx::Conv_908[FLOAT, 64x128x1x1] %onnx::Conv_911[FLOAT, 64x64x1x1] %onnx::Conv_914[FLOAT, 64x64x1x1] %onnx::Conv_917[FLOAT, 64x64x1x1] %onnx::Conv_920[FLOAT, 64x64x1x1] %onnx::Conv_923[FLOAT, 128x128x1x1] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x1x1] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x1x1] %onnx::Conv_941[FLOAT, 256x128x1x1] %onnx::Conv_942[FLOAT, 256] %onnx::Conv_944[FLOAT, 128x256x1x1] %onnx::Conv_947[FLOAT, 128x128x1x1] %onnx::Conv_950[FLOAT, 128x128x1x1] %onnx::Conv_953[FLOAT, 128x128x1x1] %onnx::Conv_956[FLOAT, 128x128x1x1] %onnx::Conv_959[FLOAT, 256x256x1x1] %onnx::Conv_962[FLOAT, 128x256x1x1] %onnx::Conv_965[FLOAT, 128x128x1x1] %onnx::Conv_968[FLOAT, 128x128x1x1] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x128x1x1] %onnx::Conv_977[FLOAT, 256x256x1x1] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x1x1] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_992[FLOAT, 256x256x1x1] %onnx::Conv_995[FLOAT, 512x256x1x1] %onnx::Conv_996[FLOAT, 512] %onnx::Conv_998[FLOAT, 256x512x1x1] %onnx::Conv_1001[FLOAT, 256x256x1x1] %onnx::Conv_1004[FLOAT, 256x256x1x1] %onnx::Conv_1007[FLOAT, 256x256x1x1] %onnx::Conv_1010[FLOAT, 256x256x1x1] %onnx::Conv_1013[FLOAT, 512x512x1x1] %onnx::Conv_1016[FLOAT, 256x512x1x1] %onnx::Conv_1019[FLOAT, 256x256x1x1] %onnx::Conv_1022[FLOAT, 256x256x1x1] %onnx::Conv_1025[FLOAT, 256x256x1x1] %onnx::Conv_1028[FLOAT, 256x256x1x1] %onnx::Conv_1031[FLOAT, 512x512x1x1] ) { %onnx::Conv_1032 = Identity(%onnx::Conv_996) %onnx::Conv_1029 = Identity(%onnx::Conv_942) %onnx::Conv_1026 = Identity(%onnx::Conv_942) %onnx::Conv_1023 = Identity(%onnx::Conv_942) %onnx::Conv_1020 = Identity(%onnx::Conv_942) %onnx::Conv_1017 = Identity(%onnx::Conv_942) %onnx::Conv_1014 = Identity(%onnx::Conv_996) %onnx::Conv_1011 = Identity(%onnx::Conv_942) %onnx::Conv_1008 = Identity(%onnx::Conv_942) %onnx::Conv_1005 = Identity(%onnx::Conv_942) %onnx::Conv_1002 = Identity(%onnx::Conv_942) %onnx::Conv_999 = Identity(%onnx::Conv_942) %onnx::Conv_993 = Identity(%onnx::Conv_942) %onnx::Conv_990 = Identity(%onnx::Conv_942) %onnx::Conv_987 = Identity(%onnx::Conv_942) %onnx::Conv_984 = Identity(%onnx::Conv_942) %onnx::Conv_981 = Identity(%onnx::Conv_942) %onnx::Conv_978 = Identity(%onnx::Conv_942) %onnx::Conv_975 = Identity(%onnx::Conv_870) %onnx::Conv_972 = Identity(%onnx::Conv_870) %onnx::Conv_969 = Identity(%onnx::Conv_870) %onnx::Conv_966 = Identity(%onnx::Conv_870) %onnx::Conv_963 = Identity(%onnx::Conv_870) %onnx::Conv_960 = Identity(%onnx::Conv_942) %onnx::Conv_957 = Identity(%onnx::Conv_870) %onnx::Conv_954 = Identity(%onnx::Conv_870) %onnx::Conv_951 = Identity(%onnx::Conv_870) %onnx::Conv_948 = Identity(%onnx::Conv_870) %onnx::Conv_945 = Identity(%onnx::Conv_870) %onnx::Conv_939 = Identity(%onnx::Conv_870) %onnx::Conv_936 = Identity(%onnx::Conv_870) %onnx::Conv_933 = Identity(%onnx::Conv_870) %onnx::Conv_930 = Identity(%onnx::Conv_870) %onnx::Conv_927 = Identity(%onnx::Conv_870) %onnx::Conv_924 = Identity(%onnx::Conv_870) %onnx::Conv_921 = Identity(%onnx::Conv_873) %onnx::Conv_918 = Identity(%onnx::Conv_873) %onnx::Conv_915 = Identity(%onnx::Conv_873) %onnx::Conv_912 = Identity(%onnx::Conv_873) %onnx::Conv_909 = Identity(%onnx::Conv_873) %onnx::Conv_906 = Identity(%onnx::Conv_870) %onnx::Conv_903 = Identity(%onnx::Conv_873) %onnx::Conv_900 = Identity(%onnx::Conv_873) %onnx::Conv_897 = Identity(%onnx::Conv_873) %onnx::Conv_894 = Identity(%onnx::Conv_873) %onnx::Conv_891 = Identity(%onnx::Conv_873) %onnx::Conv_888 = Identity(%onnx::Conv_870) %onnx::Conv_885 = Identity(%onnx::Conv_873) %onnx::Conv_882 = Identity(%onnx::Conv_873) %onnx::Conv_879 = Identity(%onnx::Conv_873) %onnx::Conv_876 = Identity(%onnx::Conv_873) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_869, %onnx::Conv_870) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %867 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %867 }
val_accuracy
89.873797
732,047,360
2,362,378
{'zcp_epe_nas': 94.76832709130264, 'zcp_fisher': 32.10411834716797, 'zcp_flops': 11712757760.0, 'zcp_grad_norm': 120.28022003173828, 'zcp_grasp': -26.876220703125, 'zcp_jacov': -16.04411615479534, 'zcp_l2_norm': 994.5850830078125, 'zcp_nwot': 227.22786983382463, 'zcp_params': 2362378.0, 'zcp_plain': 0.024694249033927, 'zcp_snip': 681.69580078125, 'zcp_synflow': 104.16289513019547, 'zcp_zen': 82.28567504882812, 'zcp_val_accuracy': 0.906049668788909}
NASBench101_384735
NASBench101
384735
e896cfb97999d1938faf8a62f3ecdf67
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_752[FLOAT, 128x3x3x3] %onnx::Conv_753[FLOAT, 128] %onnx::Conv_755[FLOAT, 64x128x1x1] %onnx::Conv_756[FLOAT, 64] %onnx::Conv_758[FLOAT, 64x64x3x3] %onnx::Conv_761[FLOAT, 64x64x3x3] %onnx::Conv_764[FLOAT, 64x64x3x3] %onnx::Conv_767[FLOAT, 64x64x1x1] %onnx::Conv_770[FLOAT, 64x128x1x1] %onnx::Conv_773[FLOAT, 64x64x3x3] %onnx::Conv_776[FLOAT, 64x64x3x3] %onnx::Conv_779[FLOAT, 64x64x3x3] %onnx::Conv_782[FLOAT, 64x64x1x1] %onnx::Conv_785[FLOAT, 64x128x1x1] %onnx::Conv_788[FLOAT, 64x64x3x3] %onnx::Conv_791[FLOAT, 64x64x3x3] %onnx::Conv_794[FLOAT, 64x64x3x3] %onnx::Conv_797[FLOAT, 64x64x1x1] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 128x128x3x3] %onnx::Conv_806[FLOAT, 128x128x3x3] %onnx::Conv_809[FLOAT, 128x128x3x3] %onnx::Conv_812[FLOAT, 128x128x1x1] %onnx::Conv_815[FLOAT, 128x256x1x1] %onnx::Conv_818[FLOAT, 128x128x3x3] %onnx::Conv_821[FLOAT, 128x128x3x3] %onnx::Conv_824[FLOAT, 128x128x3x3] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x256x1x1] %onnx::Conv_833[FLOAT, 128x128x3x3] %onnx::Conv_836[FLOAT, 128x128x3x3] %onnx::Conv_839[FLOAT, 128x128x3x3] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 256x256x1x1] %onnx::Conv_846[FLOAT, 256] %onnx::Conv_848[FLOAT, 256x256x3x3] %onnx::Conv_851[FLOAT, 256x256x3x3] %onnx::Conv_854[FLOAT, 256x256x3x3] %onnx::Conv_857[FLOAT, 256x256x1x1] %onnx::Conv_860[FLOAT, 256x512x1x1] %onnx::Conv_863[FLOAT, 256x256x3x3] %onnx::Conv_866[FLOAT, 256x256x3x3] %onnx::Conv_869[FLOAT, 256x256x3x3] %onnx::Conv_872[FLOAT, 256x256x1x1] %onnx::Conv_875[FLOAT, 256x512x1x1] %onnx::Conv_878[FLOAT, 256x256x3x3] %onnx::Conv_881[FLOAT, 256x256x3x3] %onnx::Conv_884[FLOAT, 256x256x3x3] %onnx::Conv_887[FLOAT, 256x256x1x1] ) { %onnx::Conv_888 = Identity(%onnx::Conv_846) %onnx::Conv_885 = Identity(%onnx::Conv_846) %onnx::Conv_882 = Identity(%onnx::Conv_846) %onnx::Conv_879 = Identity(%onnx::Conv_846) %onnx::Conv_876 = Identity(%onnx::Conv_846) %onnx::Conv_873 = Identity(%onnx::Conv_846) %onnx::Conv_870 = Identity(%onnx::Conv_846) %onnx::Conv_867 = Identity(%onnx::Conv_846) %onnx::Conv_864 = Identity(%onnx::Conv_846) %onnx::Conv_861 = Identity(%onnx::Conv_846) %onnx::Conv_858 = Identity(%onnx::Conv_846) %onnx::Conv_855 = Identity(%onnx::Conv_846) %onnx::Conv_852 = Identity(%onnx::Conv_846) %onnx::Conv_849 = Identity(%onnx::Conv_846) %onnx::Conv_843 = Identity(%onnx::Conv_753) %onnx::Conv_840 = Identity(%onnx::Conv_753) %onnx::Conv_837 = Identity(%onnx::Conv_753) %onnx::Conv_834 = Identity(%onnx::Conv_753) %onnx::Conv_831 = Identity(%onnx::Conv_753) %onnx::Conv_828 = Identity(%onnx::Conv_753) %onnx::Conv_825 = Identity(%onnx::Conv_753) %onnx::Conv_822 = Identity(%onnx::Conv_753) %onnx::Conv_819 = Identity(%onnx::Conv_753) %onnx::Conv_816 = Identity(%onnx::Conv_753) %onnx::Conv_813 = Identity(%onnx::Conv_753) %onnx::Conv_810 = Identity(%onnx::Conv_753) %onnx::Conv_807 = Identity(%onnx::Conv_753) %onnx::Conv_804 = Identity(%onnx::Conv_753) %onnx::Conv_801 = Identity(%onnx::Conv_753) %onnx::Conv_798 = Identity(%onnx::Conv_756) %onnx::Conv_795 = Identity(%onnx::Conv_756) %onnx::Conv_792 = Identity(%onnx::Conv_756) %onnx::Conv_789 = Identity(%onnx::Conv_756) %onnx::Conv_786 = Identity(%onnx::Conv_756) %onnx::Conv_783 = Identity(%onnx::Conv_756) %onnx::Conv_780 = Identity(%onnx::Conv_756) %onnx::Conv_777 = Identity(%onnx::Conv_756) %onnx::Conv_774 = Identity(%onnx::Conv_756) %onnx::Conv_771 = Identity(%onnx::Conv_756) %onnx::Conv_768 = Identity(%onnx::Conv_756) %onnx::Conv_765 = Identity(%onnx::Conv_756) %onnx::Conv_762 = Identity(%onnx::Conv_756) %onnx::Conv_759 = Identity(%onnx::Conv_756) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_752, %onnx::Conv_753) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %750 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %750 }
val_accuracy
90.164262
2,270,046,208
7,681,802
{'zcp_epe_nas': 99.94365483838487, 'zcp_fisher': 333.2935791015625, 'zcp_flops': 36320739328.0, 'zcp_grad_norm': 288.6656799316406, 'zcp_grasp': 338.3134765625, 'zcp_jacov': -16.06166841162664, 'zcp_l2_norm': 799.0023803710938, 'zcp_nwot': 221.28185448421726, 'zcp_params': 7681802.0, 'zcp_plain': 0.01383364573121, 'zcp_snip': 1752.80859375, 'zcp_synflow': 150.17217050079702, 'zcp_zen': 95.8568344116211, 'zcp_val_accuracy': 0.8955328464508051}
NASBench101_96218
NASBench101
96218
3a368bb7cad4834f329b6bcc5c762057
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_788[FLOAT, 128x3x3x3] %onnx::Conv_789[FLOAT, 128] %onnx::Conv_791[FLOAT, 64x128x1x1] %onnx::Conv_792[FLOAT, 64] %onnx::Conv_794[FLOAT, 64x64x1x1] %onnx::Conv_797[FLOAT, 64x64x3x3] %onnx::Conv_800[FLOAT, 64x64x1x1] %onnx::Conv_803[FLOAT, 64x64x3x3] %onnx::Conv_806[FLOAT, 64x128x1x1] %onnx::Conv_809[FLOAT, 64x64x1x1] %onnx::Conv_812[FLOAT, 64x64x3x3] %onnx::Conv_815[FLOAT, 64x64x1x1] %onnx::Conv_818[FLOAT, 64x64x3x3] %onnx::Conv_821[FLOAT, 64x128x1x1] %onnx::Conv_824[FLOAT, 64x64x1x1] %onnx::Conv_827[FLOAT, 64x64x3x3] %onnx::Conv_830[FLOAT, 64x64x1x1] %onnx::Conv_833[FLOAT, 64x64x3x3] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x128x1x1] %onnx::Conv_842[FLOAT, 128x128x3x3] %onnx::Conv_845[FLOAT, 128x128x1x1] %onnx::Conv_848[FLOAT, 128x128x3x3] %onnx::Conv_851[FLOAT, 128x256x1x1] %onnx::Conv_854[FLOAT, 128x128x1x1] %onnx::Conv_857[FLOAT, 128x128x3x3] %onnx::Conv_860[FLOAT, 128x128x1x1] %onnx::Conv_863[FLOAT, 128x128x3x3] %onnx::Conv_866[FLOAT, 128x256x1x1] %onnx::Conv_869[FLOAT, 128x128x1x1] %onnx::Conv_872[FLOAT, 128x128x3x3] %onnx::Conv_875[FLOAT, 128x128x1x1] %onnx::Conv_878[FLOAT, 128x128x3x3] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_882[FLOAT, 256] %onnx::Conv_884[FLOAT, 256x256x1x1] %onnx::Conv_887[FLOAT, 256x256x3x3] %onnx::Conv_890[FLOAT, 256x256x1x1] %onnx::Conv_893[FLOAT, 256x256x3x3] %onnx::Conv_896[FLOAT, 256x512x1x1] %onnx::Conv_899[FLOAT, 256x256x1x1] %onnx::Conv_902[FLOAT, 256x256x3x3] %onnx::Conv_905[FLOAT, 256x256x1x1] %onnx::Conv_908[FLOAT, 256x256x3x3] %onnx::Conv_911[FLOAT, 256x512x1x1] %onnx::Conv_914[FLOAT, 256x256x1x1] %onnx::Conv_917[FLOAT, 256x256x3x3] %onnx::Conv_920[FLOAT, 256x256x1x1] %onnx::Conv_923[FLOAT, 256x256x3x3] ) { %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %onnx::Conv_879 = Identity(%onnx::Conv_789) %onnx::Conv_876 = Identity(%onnx::Conv_789) %onnx::Conv_873 = Identity(%onnx::Conv_789) %onnx::Conv_870 = Identity(%onnx::Conv_789) %onnx::Conv_867 = Identity(%onnx::Conv_789) %onnx::Conv_864 = Identity(%onnx::Conv_789) %onnx::Conv_861 = Identity(%onnx::Conv_789) %onnx::Conv_858 = Identity(%onnx::Conv_789) %onnx::Conv_855 = Identity(%onnx::Conv_789) %onnx::Conv_852 = Identity(%onnx::Conv_789) %onnx::Conv_849 = Identity(%onnx::Conv_789) %onnx::Conv_846 = Identity(%onnx::Conv_789) %onnx::Conv_843 = Identity(%onnx::Conv_789) %onnx::Conv_840 = Identity(%onnx::Conv_789) %onnx::Conv_837 = Identity(%onnx::Conv_789) %onnx::Conv_834 = Identity(%onnx::Conv_792) %onnx::Conv_831 = Identity(%onnx::Conv_792) %onnx::Conv_828 = Identity(%onnx::Conv_792) %onnx::Conv_825 = Identity(%onnx::Conv_792) %onnx::Conv_822 = Identity(%onnx::Conv_792) %onnx::Conv_819 = Identity(%onnx::Conv_792) %onnx::Conv_816 = Identity(%onnx::Conv_792) %onnx::Conv_813 = Identity(%onnx::Conv_792) %onnx::Conv_810 = Identity(%onnx::Conv_792) %onnx::Conv_807 = Identity(%onnx::Conv_792) %onnx::Conv_804 = Identity(%onnx::Conv_792) %onnx::Conv_801 = Identity(%onnx::Conv_792) %onnx::Conv_798 = Identity(%onnx::Conv_792) %onnx::Conv_795 = Identity(%onnx::Conv_792) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_788, %onnx::Conv_789) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %786 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %786 }
val_accuracy
93.679887
1,666,066,432
5,617,418
{'zcp_epe_nas': 104.86247733308733, 'zcp_fisher': 44.49345397949219, 'zcp_flops': 26657062912.0, 'zcp_grad_norm': 132.2180633544922, 'zcp_grasp': -29.870361328125, 'zcp_jacov': -16.053918074298206, 'zcp_l2_norm': 798.0888061523438, 'zcp_nwot': 221.35675071875536, 'zcp_params': 5617418.0, 'zcp_plain': -0.0009719256777310001, 'zcp_snip': 700.8294067382812, 'zcp_synflow': 146.19958219289182, 'zcp_zen': 85.17007446289062, 'zcp_val_accuracy': 0.854066491127014}
NASBench101_147346
NASBench101
147346
591e587d999da71eb0779c5a083098ba
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_794[FLOAT, 128x3x3x3] %onnx::Conv_795[FLOAT, 128] %onnx::Conv_797[FLOAT, 43x128x1x1] %onnx::Conv_798[FLOAT, 43] %onnx::Conv_800[FLOAT, 43x43x1x1] %onnx::Conv_803[FLOAT, 43x43x1x1] %onnx::Conv_806[FLOAT, 42x42x1x1] %onnx::Conv_807[FLOAT, 42] %onnx::Conv_809[FLOAT, 42x42x3x3] %onnx::Conv_812[FLOAT, 43x128x1x1] %onnx::Conv_815[FLOAT, 43x43x1x1] %onnx::Conv_818[FLOAT, 43x43x1x1] %onnx::Conv_821[FLOAT, 42x42x1x1] %onnx::Conv_824[FLOAT, 42x42x3x3] %onnx::Conv_827[FLOAT, 43x128x1x1] %onnx::Conv_830[FLOAT, 43x43x1x1] %onnx::Conv_833[FLOAT, 43x43x1x1] %onnx::Conv_836[FLOAT, 42x42x1x1] %onnx::Conv_839[FLOAT, 42x42x3x3] %onnx::Conv_842[FLOAT, 86x128x1x1] %onnx::Conv_843[FLOAT, 86] %onnx::Conv_845[FLOAT, 86x86x1x1] %onnx::Conv_848[FLOAT, 85x85x1x1] %onnx::Conv_849[FLOAT, 85] %onnx::Conv_851[FLOAT, 85x85x1x1] %onnx::Conv_854[FLOAT, 85x85x3x3] %onnx::Conv_857[FLOAT, 86x256x1x1] %onnx::Conv_860[FLOAT, 86x86x1x1] %onnx::Conv_863[FLOAT, 85x85x1x1] %onnx::Conv_866[FLOAT, 85x85x1x1] %onnx::Conv_869[FLOAT, 85x85x3x3] %onnx::Conv_872[FLOAT, 86x256x1x1] %onnx::Conv_875[FLOAT, 86x86x1x1] %onnx::Conv_878[FLOAT, 85x85x1x1] %onnx::Conv_881[FLOAT, 85x85x1x1] %onnx::Conv_884[FLOAT, 85x85x3x3] %onnx::Conv_887[FLOAT, 171x256x1x1] %onnx::Conv_888[FLOAT, 171] %onnx::Conv_890[FLOAT, 171x171x1x1] %onnx::Conv_893[FLOAT, 171x171x1x1] %onnx::Conv_896[FLOAT, 170x170x1x1] %onnx::Conv_897[FLOAT, 170] %onnx::Conv_899[FLOAT, 170x170x3x3] %onnx::Conv_902[FLOAT, 171x512x1x1] %onnx::Conv_905[FLOAT, 171x171x1x1] %onnx::Conv_908[FLOAT, 171x171x1x1] %onnx::Conv_911[FLOAT, 170x170x1x1] %onnx::Conv_914[FLOAT, 170x170x3x3] %onnx::Conv_917[FLOAT, 171x512x1x1] %onnx::Conv_920[FLOAT, 171x171x1x1] %onnx::Conv_923[FLOAT, 171x171x1x1] %onnx::Conv_926[FLOAT, 170x170x1x1] %onnx::Conv_929[FLOAT, 170x170x3x3] ) { %onnx::Conv_930 = Identity(%onnx::Conv_897) %onnx::Conv_927 = Identity(%onnx::Conv_897) %onnx::Conv_924 = Identity(%onnx::Conv_888) %onnx::Conv_921 = Identity(%onnx::Conv_888) %onnx::Conv_918 = Identity(%onnx::Conv_888) %onnx::Conv_915 = Identity(%onnx::Conv_897) %onnx::Conv_912 = Identity(%onnx::Conv_897) %onnx::Conv_909 = Identity(%onnx::Conv_888) %onnx::Conv_906 = Identity(%onnx::Conv_888) %onnx::Conv_903 = Identity(%onnx::Conv_888) %onnx::Conv_900 = Identity(%onnx::Conv_897) %onnx::Conv_894 = Identity(%onnx::Conv_888) %onnx::Conv_891 = Identity(%onnx::Conv_888) %onnx::Conv_885 = Identity(%onnx::Conv_849) %onnx::Conv_882 = Identity(%onnx::Conv_849) %onnx::Conv_879 = Identity(%onnx::Conv_849) %onnx::Conv_876 = Identity(%onnx::Conv_843) %onnx::Conv_873 = Identity(%onnx::Conv_843) %onnx::Conv_870 = Identity(%onnx::Conv_849) %onnx::Conv_867 = Identity(%onnx::Conv_849) %onnx::Conv_864 = Identity(%onnx::Conv_849) %onnx::Conv_861 = Identity(%onnx::Conv_843) %onnx::Conv_858 = Identity(%onnx::Conv_843) %onnx::Conv_855 = Identity(%onnx::Conv_849) %onnx::Conv_852 = Identity(%onnx::Conv_849) %onnx::Conv_846 = Identity(%onnx::Conv_843) %onnx::Conv_840 = Identity(%onnx::Conv_807) %onnx::Conv_837 = Identity(%onnx::Conv_807) %onnx::Conv_834 = Identity(%onnx::Conv_798) %onnx::Conv_831 = Identity(%onnx::Conv_798) %onnx::Conv_828 = Identity(%onnx::Conv_798) %onnx::Conv_825 = Identity(%onnx::Conv_807) %onnx::Conv_822 = Identity(%onnx::Conv_807) %onnx::Conv_819 = Identity(%onnx::Conv_798) %onnx::Conv_816 = Identity(%onnx::Conv_798) %onnx::Conv_813 = Identity(%onnx::Conv_798) %onnx::Conv_810 = Identity(%onnx::Conv_807) %onnx::Conv_804 = Identity(%onnx::Conv_798) %onnx::Conv_801 = Identity(%onnx::Conv_798) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_794, %onnx::Conv_795) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_1_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Constant_5_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_6_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_1_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Constant_5_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_6_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_1_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Constant_5_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_6_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/Constant_2_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_1_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Slice_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_1_output_0 = Slice(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_6_output_0, %/layers.5/Constant_7_output_0, %/layers.5/Constant_5_output_0, %/layers.5/Constant_8_output_0) %/layers.5/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/Slice_1_output_0, %/layers.5/Constant_9_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_10_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/Constant_2_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_1_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Slice_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_1_output_0 = Slice(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_6_output_0, %/layers.6/Constant_7_output_0, %/layers.6/Constant_5_output_0, %/layers.6/Constant_8_output_0) %/layers.6/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/Slice_1_output_0, %/layers.6/Constant_9_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_10_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/Constant_2_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_1_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Slice_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_1_output_0 = Slice(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_6_output_0, %/layers.7/Constant_7_output_0, %/layers.7/Constant_5_output_0, %/layers.7/Constant_8_output_0) %/layers.7/Constant_9_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/Slice_1_output_0, %/layers.7/Constant_9_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_10_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_10_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_1_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Constant_5_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_6_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_1_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Constant_5_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_6_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_2_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_1_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Constant_5_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Constant_5_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_6_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_6_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %792 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %792 }
val_accuracy
89.693511
505,286,400
1,675,305
{'zcp_epe_nas': 110.42365645324438, 'zcp_fisher': 37.01976013183594, 'zcp_flops': 8084582400.0, 'zcp_grad_norm': 115.68225860595703, 'zcp_grasp': -104.74853515625, 'zcp_jacov': -16.057605960571138, 'zcp_l2_norm': 688.13232421875, 'zcp_nwot': 216.08482251427446, 'zcp_params': 1675305.0, 'zcp_plain': -0.0037589031271630003, 'zcp_snip': 495.3979797363281, 'zcp_synflow': 99.81876792331859, 'zcp_zen': 66.20257568359375, 'zcp_val_accuracy': 0.917568087577819}
NASBench101_155215
NASBench101
155215
5defaff6a74b4a53329b5c06fef0f1e2
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_689[FLOAT, 128x3x3x3] %onnx::Conv_690[FLOAT, 128] %onnx::Conv_692[FLOAT, 128x128x1x1] %onnx::Conv_695[FLOAT, 128x128x3x3] %onnx::Conv_698[FLOAT, 128x128x1x1] %onnx::Conv_701[FLOAT, 128x128x1x1] %onnx::Conv_704[FLOAT, 128x128x1x1] %onnx::Conv_707[FLOAT, 128x128x3x3] %onnx::Conv_710[FLOAT, 128x128x1x1] %onnx::Conv_713[FLOAT, 128x128x1x1] %onnx::Conv_716[FLOAT, 128x128x1x1] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x128x1x1] %onnx::Conv_725[FLOAT, 128x128x1x1] %onnx::Conv_728[FLOAT, 256x128x1x1] %onnx::Conv_729[FLOAT, 256] %onnx::Conv_731[FLOAT, 256x256x3x3] %onnx::Conv_734[FLOAT, 256x256x1x1] %onnx::Conv_737[FLOAT, 256x128x1x1] %onnx::Conv_740[FLOAT, 256x256x1x1] %onnx::Conv_743[FLOAT, 256x256x3x3] %onnx::Conv_746[FLOAT, 256x256x1x1] %onnx::Conv_749[FLOAT, 256x256x1x1] %onnx::Conv_752[FLOAT, 256x256x1x1] %onnx::Conv_755[FLOAT, 256x256x3x3] %onnx::Conv_758[FLOAT, 256x256x1x1] %onnx::Conv_761[FLOAT, 256x256x1x1] %onnx::Conv_764[FLOAT, 512x256x1x1] %onnx::Conv_765[FLOAT, 512] %onnx::Conv_767[FLOAT, 512x512x3x3] %onnx::Conv_770[FLOAT, 512x512x1x1] %onnx::Conv_773[FLOAT, 512x256x1x1] %onnx::Conv_776[FLOAT, 512x512x1x1] %onnx::Conv_779[FLOAT, 512x512x3x3] %onnx::Conv_782[FLOAT, 512x512x1x1] %onnx::Conv_785[FLOAT, 512x512x1x1] %onnx::Conv_788[FLOAT, 512x512x1x1] %onnx::Conv_791[FLOAT, 512x512x3x3] %onnx::Conv_794[FLOAT, 512x512x1x1] %onnx::Conv_797[FLOAT, 512x512x1x1] ) { %onnx::Conv_798 = Identity(%onnx::Conv_765) %onnx::Conv_795 = Identity(%onnx::Conv_765) %onnx::Conv_792 = Identity(%onnx::Conv_765) %onnx::Conv_789 = Identity(%onnx::Conv_765) %onnx::Conv_786 = Identity(%onnx::Conv_765) %onnx::Conv_783 = Identity(%onnx::Conv_765) %onnx::Conv_780 = Identity(%onnx::Conv_765) %onnx::Conv_777 = Identity(%onnx::Conv_765) %onnx::Conv_774 = Identity(%onnx::Conv_765) %onnx::Conv_771 = Identity(%onnx::Conv_765) %onnx::Conv_768 = Identity(%onnx::Conv_765) %onnx::Conv_762 = Identity(%onnx::Conv_729) %onnx::Conv_759 = Identity(%onnx::Conv_729) %onnx::Conv_756 = Identity(%onnx::Conv_729) %onnx::Conv_753 = Identity(%onnx::Conv_729) %onnx::Conv_750 = Identity(%onnx::Conv_729) %onnx::Conv_747 = Identity(%onnx::Conv_729) %onnx::Conv_744 = Identity(%onnx::Conv_729) %onnx::Conv_741 = Identity(%onnx::Conv_729) %onnx::Conv_738 = Identity(%onnx::Conv_729) %onnx::Conv_735 = Identity(%onnx::Conv_729) %onnx::Conv_732 = Identity(%onnx::Conv_729) %onnx::Conv_726 = Identity(%onnx::Conv_690) %onnx::Conv_723 = Identity(%onnx::Conv_690) %onnx::Conv_720 = Identity(%onnx::Conv_690) %onnx::Conv_717 = Identity(%onnx::Conv_690) %onnx::Conv_714 = Identity(%onnx::Conv_690) %onnx::Conv_711 = Identity(%onnx::Conv_690) %onnx::Conv_708 = Identity(%onnx::Conv_690) %onnx::Conv_705 = Identity(%onnx::Conv_690) %onnx::Conv_702 = Identity(%onnx::Conv_690) %onnx::Conv_699 = Identity(%onnx::Conv_690) %onnx::Conv_696 = Identity(%onnx::Conv_690) %onnx::Conv_693 = Identity(%onnx::Conv_690) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_689, %onnx::Conv_690) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %687 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %687 }
val_accuracy
89.142627
3,586,926,592
12,088,970
{'zcp_epe_nas': 84.69911236254715, 'zcp_fisher': 963.9620971679688, 'zcp_flops': 57390825472.0, 'zcp_grad_norm': 502.6861572265625, 'zcp_grasp': -1307.7734375, 'zcp_jacov': -16.043380493292943, 'zcp_l2_norm': 819.1888427734375, 'zcp_nwot': 228.8739933412864, 'zcp_params': 12088970.0, 'zcp_plain': 0.5766413807868951, 'zcp_snip': 3971.99462890625, 'zcp_synflow': 100.11623868054711, 'zcp_zen': 84.88836669921875, 'zcp_val_accuracy': 0.9149639606475831}
NASBench101_314119
NASBench101
314119
be0971e87d2282a397d6d5c465cece98
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_788[FLOAT, 128x3x3x3] %onnx::Conv_789[FLOAT, 128] %onnx::Conv_791[FLOAT, 64x128x1x1] %onnx::Conv_792[FLOAT, 64] %onnx::Conv_794[FLOAT, 64x64x3x3] %onnx::Conv_797[FLOAT, 64x64x1x1] %onnx::Conv_800[FLOAT, 64x128x1x1] %onnx::Conv_803[FLOAT, 64x128x1x1] %onnx::Conv_806[FLOAT, 64x128x1x1] %onnx::Conv_809[FLOAT, 64x64x3x3] %onnx::Conv_812[FLOAT, 64x64x1x1] %onnx::Conv_815[FLOAT, 64x128x1x1] %onnx::Conv_818[FLOAT, 64x128x1x1] %onnx::Conv_821[FLOAT, 64x128x1x1] %onnx::Conv_824[FLOAT, 64x64x3x3] %onnx::Conv_827[FLOAT, 64x64x1x1] %onnx::Conv_830[FLOAT, 64x128x1x1] %onnx::Conv_833[FLOAT, 64x128x1x1] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x128x3x3] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 128x128x1x1] %onnx::Conv_848[FLOAT, 128x128x1x1] %onnx::Conv_851[FLOAT, 128x256x1x1] %onnx::Conv_854[FLOAT, 128x128x3x3] %onnx::Conv_857[FLOAT, 128x128x1x1] %onnx::Conv_860[FLOAT, 128x256x1x1] %onnx::Conv_863[FLOAT, 128x256x1x1] %onnx::Conv_866[FLOAT, 128x256x1x1] %onnx::Conv_869[FLOAT, 128x128x3x3] %onnx::Conv_872[FLOAT, 128x128x1x1] %onnx::Conv_875[FLOAT, 128x256x1x1] %onnx::Conv_878[FLOAT, 128x256x1x1] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_882[FLOAT, 256] %onnx::Conv_884[FLOAT, 256x256x3x3] %onnx::Conv_887[FLOAT, 256x256x1x1] %onnx::Conv_890[FLOAT, 256x256x1x1] %onnx::Conv_893[FLOAT, 256x256x1x1] %onnx::Conv_896[FLOAT, 256x512x1x1] %onnx::Conv_899[FLOAT, 256x256x3x3] %onnx::Conv_902[FLOAT, 256x256x1x1] %onnx::Conv_905[FLOAT, 256x512x1x1] %onnx::Conv_908[FLOAT, 256x512x1x1] %onnx::Conv_911[FLOAT, 256x512x1x1] %onnx::Conv_914[FLOAT, 256x256x3x3] %onnx::Conv_917[FLOAT, 256x256x1x1] %onnx::Conv_920[FLOAT, 256x512x1x1] %onnx::Conv_923[FLOAT, 256x512x1x1] ) { %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %onnx::Conv_879 = Identity(%onnx::Conv_789) %onnx::Conv_876 = Identity(%onnx::Conv_789) %onnx::Conv_873 = Identity(%onnx::Conv_789) %onnx::Conv_870 = Identity(%onnx::Conv_789) %onnx::Conv_867 = Identity(%onnx::Conv_789) %onnx::Conv_864 = Identity(%onnx::Conv_789) %onnx::Conv_861 = Identity(%onnx::Conv_789) %onnx::Conv_858 = Identity(%onnx::Conv_789) %onnx::Conv_855 = Identity(%onnx::Conv_789) %onnx::Conv_852 = Identity(%onnx::Conv_789) %onnx::Conv_849 = Identity(%onnx::Conv_789) %onnx::Conv_846 = Identity(%onnx::Conv_789) %onnx::Conv_843 = Identity(%onnx::Conv_789) %onnx::Conv_840 = Identity(%onnx::Conv_789) %onnx::Conv_837 = Identity(%onnx::Conv_789) %onnx::Conv_834 = Identity(%onnx::Conv_792) %onnx::Conv_831 = Identity(%onnx::Conv_792) %onnx::Conv_828 = Identity(%onnx::Conv_792) %onnx::Conv_825 = Identity(%onnx::Conv_792) %onnx::Conv_822 = Identity(%onnx::Conv_792) %onnx::Conv_819 = Identity(%onnx::Conv_792) %onnx::Conv_816 = Identity(%onnx::Conv_792) %onnx::Conv_813 = Identity(%onnx::Conv_792) %onnx::Conv_810 = Identity(%onnx::Conv_792) %onnx::Conv_807 = Identity(%onnx::Conv_792) %onnx::Conv_804 = Identity(%onnx::Conv_792) %onnx::Conv_801 = Identity(%onnx::Conv_792) %onnx::Conv_798 = Identity(%onnx::Conv_792) %onnx::Conv_795 = Identity(%onnx::Conv_792) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_788, %onnx::Conv_789) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %786 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %786 }
val_accuracy
90.745193
1,179,527,168
3,905,290
{'zcp_epe_nas': 76.33841416847979, 'zcp_fisher': 19.83978271484375, 'zcp_flops': 18872434688.0, 'zcp_grad_norm': 85.17721557617188, 'zcp_grasp': -56.65838623046875, 'zcp_jacov': -16.05240442873484, 'zcp_l2_norm': 890.2379150390625, 'zcp_nwot': 221.55439060530094, 'zcp_params': 3905290.0, 'zcp_plain': 0.17044444382190702, 'zcp_snip': 519.2542114257812, 'zcp_synflow': 84.5200362090148, 'zcp_zen': 84.68426513671875, 'zcp_val_accuracy': 0.9173678159713741}
NASBench101_91432
NASBench101
91432
3754bcf8d9afcae609289397c3f752a0
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_680[FLOAT, 128x3x3x3] %onnx::Conv_681[FLOAT, 128] %onnx::Conv_683[FLOAT, 64x128x1x1] %onnx::Conv_684[FLOAT, 64] %onnx::Conv_686[FLOAT, 64x64x1x1] %onnx::Conv_689[FLOAT, 64x64x3x3] %onnx::Conv_692[FLOAT, 64x64x3x3] %onnx::Conv_695[FLOAT, 64x128x1x1] %onnx::Conv_698[FLOAT, 64x64x1x1] %onnx::Conv_701[FLOAT, 64x64x3x3] %onnx::Conv_704[FLOAT, 64x64x3x3] %onnx::Conv_707[FLOAT, 64x128x1x1] %onnx::Conv_710[FLOAT, 64x64x1x1] %onnx::Conv_713[FLOAT, 64x64x3x3] %onnx::Conv_716[FLOAT, 64x64x3x3] %onnx::Conv_719[FLOAT, 128x128x1x1] %onnx::Conv_722[FLOAT, 128x128x1x1] %onnx::Conv_725[FLOAT, 128x128x3x3] %onnx::Conv_728[FLOAT, 128x128x3x3] %onnx::Conv_731[FLOAT, 128x256x1x1] %onnx::Conv_734[FLOAT, 128x128x1x1] %onnx::Conv_737[FLOAT, 128x128x3x3] %onnx::Conv_740[FLOAT, 128x128x3x3] %onnx::Conv_743[FLOAT, 128x256x1x1] %onnx::Conv_746[FLOAT, 128x128x1x1] %onnx::Conv_749[FLOAT, 128x128x3x3] %onnx::Conv_752[FLOAT, 128x128x3x3] %onnx::Conv_755[FLOAT, 256x256x1x1] %onnx::Conv_756[FLOAT, 256] %onnx::Conv_758[FLOAT, 256x256x1x1] %onnx::Conv_761[FLOAT, 256x256x3x3] %onnx::Conv_764[FLOAT, 256x256x3x3] %onnx::Conv_767[FLOAT, 256x512x1x1] %onnx::Conv_770[FLOAT, 256x256x1x1] %onnx::Conv_773[FLOAT, 256x256x3x3] %onnx::Conv_776[FLOAT, 256x256x3x3] %onnx::Conv_779[FLOAT, 256x512x1x1] %onnx::Conv_782[FLOAT, 256x256x1x1] %onnx::Conv_785[FLOAT, 256x256x3x3] %onnx::Conv_788[FLOAT, 256x256x3x3] ) { %onnx::Conv_789 = Identity(%onnx::Conv_756) %onnx::Conv_786 = Identity(%onnx::Conv_756) %onnx::Conv_783 = Identity(%onnx::Conv_756) %onnx::Conv_780 = Identity(%onnx::Conv_756) %onnx::Conv_777 = Identity(%onnx::Conv_756) %onnx::Conv_774 = Identity(%onnx::Conv_756) %onnx::Conv_771 = Identity(%onnx::Conv_756) %onnx::Conv_768 = Identity(%onnx::Conv_756) %onnx::Conv_765 = Identity(%onnx::Conv_756) %onnx::Conv_762 = Identity(%onnx::Conv_756) %onnx::Conv_759 = Identity(%onnx::Conv_756) %onnx::Conv_753 = Identity(%onnx::Conv_681) %onnx::Conv_750 = Identity(%onnx::Conv_681) %onnx::Conv_747 = Identity(%onnx::Conv_681) %onnx::Conv_744 = Identity(%onnx::Conv_681) %onnx::Conv_741 = Identity(%onnx::Conv_681) %onnx::Conv_738 = Identity(%onnx::Conv_681) %onnx::Conv_735 = Identity(%onnx::Conv_681) %onnx::Conv_732 = Identity(%onnx::Conv_681) %onnx::Conv_729 = Identity(%onnx::Conv_681) %onnx::Conv_726 = Identity(%onnx::Conv_681) %onnx::Conv_723 = Identity(%onnx::Conv_681) %onnx::Conv_720 = Identity(%onnx::Conv_681) %onnx::Conv_717 = Identity(%onnx::Conv_684) %onnx::Conv_714 = Identity(%onnx::Conv_684) %onnx::Conv_711 = Identity(%onnx::Conv_684) %onnx::Conv_708 = Identity(%onnx::Conv_684) %onnx::Conv_705 = Identity(%onnx::Conv_684) %onnx::Conv_702 = Identity(%onnx::Conv_684) %onnx::Conv_699 = Identity(%onnx::Conv_684) %onnx::Conv_696 = Identity(%onnx::Conv_684) %onnx::Conv_693 = Identity(%onnx::Conv_684) %onnx::Conv_690 = Identity(%onnx::Conv_684) %onnx::Conv_687 = Identity(%onnx::Conv_684) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_680, %onnx::Conv_681) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/maxpool/MaxPool_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/maxpool/MaxPool_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/maxpool/MaxPool_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/maxpool/MaxPool_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/maxpool/MaxPool_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/maxpool/MaxPool_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %678 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %678 }
val_accuracy
86.137819
1,587,816,448
5,356,682
{'zcp_epe_nas': 133.62355240649407, 'zcp_fisher': 58.17823791503906, 'zcp_flops': 25405063168.0, 'zcp_grad_norm': 146.87393188476562, 'zcp_grasp': -52.14892578125, 'zcp_jacov': -16.058512732423253, 'zcp_l2_norm': 648.0989990234375, 'zcp_nwot': 218.33700188241409, 'zcp_params': 5356682.0, 'zcp_plain': -0.014623865485191002, 'zcp_snip': 846.2041625976562, 'zcp_synflow': 117.26219450741101, 'zcp_zen': 76.33055114746094, 'zcp_val_accuracy': 0.8783053159713741}
NASBench101_76571
NASBench101
76571
2e696581fdfcbc3a279ecfe9252b9662
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_797[FLOAT, 128x3x3x3] %onnx::Conv_798[FLOAT, 128] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 128x128x3x3] %onnx::Conv_806[FLOAT, 128x128x1x1] %onnx::Conv_809[FLOAT, 128x128x3x3] %onnx::Conv_812[FLOAT, 128x128x1x1] %onnx::Conv_815[FLOAT, 128x128x1x1] %onnx::Conv_818[FLOAT, 128x128x3x3] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x128x3x3] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x128x1x1] %onnx::Conv_833[FLOAT, 128x128x3x3] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x128x3x3] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 256x128x1x1] %onnx::Conv_846[FLOAT, 256] %onnx::Conv_848[FLOAT, 256x256x3x3] %onnx::Conv_851[FLOAT, 256x128x1x1] %onnx::Conv_854[FLOAT, 256x256x3x3] %onnx::Conv_857[FLOAT, 256x256x1x1] %onnx::Conv_860[FLOAT, 256x256x1x1] %onnx::Conv_863[FLOAT, 256x256x3x3] %onnx::Conv_866[FLOAT, 256x256x1x1] %onnx::Conv_869[FLOAT, 256x256x3x3] %onnx::Conv_872[FLOAT, 256x256x1x1] %onnx::Conv_875[FLOAT, 256x256x1x1] %onnx::Conv_878[FLOAT, 256x256x3x3] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_884[FLOAT, 256x256x3x3] %onnx::Conv_887[FLOAT, 256x256x1x1] %onnx::Conv_890[FLOAT, 512x256x1x1] %onnx::Conv_891[FLOAT, 512] %onnx::Conv_893[FLOAT, 512x512x3x3] %onnx::Conv_896[FLOAT, 512x256x1x1] %onnx::Conv_899[FLOAT, 512x512x3x3] %onnx::Conv_902[FLOAT, 512x512x1x1] %onnx::Conv_905[FLOAT, 512x512x1x1] %onnx::Conv_908[FLOAT, 512x512x3x3] %onnx::Conv_911[FLOAT, 512x512x1x1] %onnx::Conv_914[FLOAT, 512x512x3x3] %onnx::Conv_917[FLOAT, 512x512x1x1] %onnx::Conv_920[FLOAT, 512x512x1x1] %onnx::Conv_923[FLOAT, 512x512x3x3] %onnx::Conv_926[FLOAT, 512x512x1x1] %onnx::Conv_929[FLOAT, 512x512x3x3] %onnx::Conv_932[FLOAT, 512x512x1x1] ) { %onnx::Conv_933 = Identity(%onnx::Conv_891) %onnx::Conv_930 = Identity(%onnx::Conv_891) %onnx::Conv_927 = Identity(%onnx::Conv_891) %onnx::Conv_924 = Identity(%onnx::Conv_891) %onnx::Conv_921 = Identity(%onnx::Conv_891) %onnx::Conv_918 = Identity(%onnx::Conv_891) %onnx::Conv_915 = Identity(%onnx::Conv_891) %onnx::Conv_912 = Identity(%onnx::Conv_891) %onnx::Conv_909 = Identity(%onnx::Conv_891) %onnx::Conv_906 = Identity(%onnx::Conv_891) %onnx::Conv_903 = Identity(%onnx::Conv_891) %onnx::Conv_900 = Identity(%onnx::Conv_891) %onnx::Conv_897 = Identity(%onnx::Conv_891) %onnx::Conv_894 = Identity(%onnx::Conv_891) %onnx::Conv_888 = Identity(%onnx::Conv_846) %onnx::Conv_885 = Identity(%onnx::Conv_846) %onnx::Conv_882 = Identity(%onnx::Conv_846) %onnx::Conv_879 = Identity(%onnx::Conv_846) %onnx::Conv_876 = Identity(%onnx::Conv_846) %onnx::Conv_873 = Identity(%onnx::Conv_846) %onnx::Conv_870 = Identity(%onnx::Conv_846) %onnx::Conv_867 = Identity(%onnx::Conv_846) %onnx::Conv_864 = Identity(%onnx::Conv_846) %onnx::Conv_861 = Identity(%onnx::Conv_846) %onnx::Conv_858 = Identity(%onnx::Conv_846) %onnx::Conv_855 = Identity(%onnx::Conv_846) %onnx::Conv_852 = Identity(%onnx::Conv_846) %onnx::Conv_849 = Identity(%onnx::Conv_846) %onnx::Conv_843 = Identity(%onnx::Conv_798) %onnx::Conv_840 = Identity(%onnx::Conv_798) %onnx::Conv_837 = Identity(%onnx::Conv_798) %onnx::Conv_834 = Identity(%onnx::Conv_798) %onnx::Conv_831 = Identity(%onnx::Conv_798) %onnx::Conv_828 = Identity(%onnx::Conv_798) %onnx::Conv_825 = Identity(%onnx::Conv_798) %onnx::Conv_822 = Identity(%onnx::Conv_798) %onnx::Conv_819 = Identity(%onnx::Conv_798) %onnx::Conv_816 = Identity(%onnx::Conv_798) %onnx::Conv_813 = Identity(%onnx::Conv_798) %onnx::Conv_810 = Identity(%onnx::Conv_798) %onnx::Conv_807 = Identity(%onnx::Conv_798) %onnx::Conv_804 = Identity(%onnx::Conv_798) %onnx::Conv_801 = Identity(%onnx::Conv_798) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_797, %onnx::Conv_798) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_5_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_7_output_0 = Add(%/layers.1/Add_6_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_7_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_5_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_7_output_0 = Add(%/layers.2/Add_6_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_7_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_5_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_7_output_0 = Add(%/layers.3/Add_6_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_7_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/maxpool/MaxPool_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_5_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_7_output_0 = Add(%/layers.5/Add_6_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_7_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_5_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_7_output_0 = Add(%/layers.6/Add_6_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_7_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_5_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_7_output_0 = Add(%/layers.7/Add_6_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_7_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/maxpool/MaxPool_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_5_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_7_output_0 = Add(%/layers.9/Add_6_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_7_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_5_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_7_output_0 = Add(%/layers.10/Add_6_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_7_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_5_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_7_output_0 = Add(%/layers.11/Add_6_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_7_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/maxpool/MaxPool_output_0) %795 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %795 }
val_accuracy
89.503205
6,310,340,608
21,384,074
{'zcp_epe_nas': 93.15300971922072, 'zcp_fisher': 1385.650634765625, 'zcp_flops': 100965449728.0, 'zcp_grad_norm': 680.8296508789062, 'zcp_grasp': 448.1171875, 'zcp_jacov': -16.039913978596942, 'zcp_l2_norm': 1030.0399169921875, 'zcp_nwot': 232.4050463619921, 'zcp_params': 21384074.0, 'zcp_plain': 0.10372827202081601, 'zcp_snip': 5920.02294921875, 'zcp_synflow': 106.16458040329394, 'zcp_zen': 107.96797180175781, 'zcp_val_accuracy': 0.8691906929016111}
NASBench101_405442
NASBench101
405442
f518dea89dc53234d0b093681a5b8c31
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_770[FLOAT, 128x3x3x3] %onnx::Conv_771[FLOAT, 128] %onnx::Conv_773[FLOAT, 128x128x1x1] %onnx::Conv_776[FLOAT, 128x128x1x1] %onnx::Conv_779[FLOAT, 128x128x1x1] %onnx::Conv_782[FLOAT, 128x128x3x3] %onnx::Conv_785[FLOAT, 128x128x1x1] %onnx::Conv_788[FLOAT, 128x128x1x1] %onnx::Conv_791[FLOAT, 128x128x1x1] %onnx::Conv_794[FLOAT, 128x128x1x1] %onnx::Conv_797[FLOAT, 128x128x3x3] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 128x128x1x1] %onnx::Conv_806[FLOAT, 128x128x1x1] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 128x128x3x3] %onnx::Conv_815[FLOAT, 128x128x1x1] %onnx::Conv_818[FLOAT, 256x128x1x1] %onnx::Conv_819[FLOAT, 256] %onnx::Conv_821[FLOAT, 256x256x1x1] %onnx::Conv_824[FLOAT, 256x256x1x1] %onnx::Conv_827[FLOAT, 256x256x3x3] %onnx::Conv_830[FLOAT, 256x128x1x1] %onnx::Conv_833[FLOAT, 256x256x1x1] %onnx::Conv_836[FLOAT, 256x256x1x1] %onnx::Conv_839[FLOAT, 256x256x1x1] %onnx::Conv_842[FLOAT, 256x256x3x3] %onnx::Conv_845[FLOAT, 256x256x1x1] %onnx::Conv_848[FLOAT, 256x256x1x1] %onnx::Conv_851[FLOAT, 256x256x1x1] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_857[FLOAT, 256x256x3x3] %onnx::Conv_860[FLOAT, 256x256x1x1] %onnx::Conv_863[FLOAT, 512x256x1x1] %onnx::Conv_864[FLOAT, 512] %onnx::Conv_866[FLOAT, 512x512x1x1] %onnx::Conv_869[FLOAT, 512x512x1x1] %onnx::Conv_872[FLOAT, 512x512x3x3] %onnx::Conv_875[FLOAT, 512x256x1x1] %onnx::Conv_878[FLOAT, 512x512x1x1] %onnx::Conv_881[FLOAT, 512x512x1x1] %onnx::Conv_884[FLOAT, 512x512x1x1] %onnx::Conv_887[FLOAT, 512x512x3x3] %onnx::Conv_890[FLOAT, 512x512x1x1] %onnx::Conv_893[FLOAT, 512x512x1x1] %onnx::Conv_896[FLOAT, 512x512x1x1] %onnx::Conv_899[FLOAT, 512x512x1x1] %onnx::Conv_902[FLOAT, 512x512x3x3] %onnx::Conv_905[FLOAT, 512x512x1x1] ) { %onnx::Conv_906 = Identity(%onnx::Conv_864) %onnx::Conv_903 = Identity(%onnx::Conv_864) %onnx::Conv_900 = Identity(%onnx::Conv_864) %onnx::Conv_897 = Identity(%onnx::Conv_864) %onnx::Conv_894 = Identity(%onnx::Conv_864) %onnx::Conv_891 = Identity(%onnx::Conv_864) %onnx::Conv_888 = Identity(%onnx::Conv_864) %onnx::Conv_885 = Identity(%onnx::Conv_864) %onnx::Conv_882 = Identity(%onnx::Conv_864) %onnx::Conv_879 = Identity(%onnx::Conv_864) %onnx::Conv_876 = Identity(%onnx::Conv_864) %onnx::Conv_873 = Identity(%onnx::Conv_864) %onnx::Conv_870 = Identity(%onnx::Conv_864) %onnx::Conv_867 = Identity(%onnx::Conv_864) %onnx::Conv_861 = Identity(%onnx::Conv_819) %onnx::Conv_858 = Identity(%onnx::Conv_819) %onnx::Conv_855 = Identity(%onnx::Conv_819) %onnx::Conv_852 = Identity(%onnx::Conv_819) %onnx::Conv_849 = Identity(%onnx::Conv_819) %onnx::Conv_846 = Identity(%onnx::Conv_819) %onnx::Conv_843 = Identity(%onnx::Conv_819) %onnx::Conv_840 = Identity(%onnx::Conv_819) %onnx::Conv_837 = Identity(%onnx::Conv_819) %onnx::Conv_834 = Identity(%onnx::Conv_819) %onnx::Conv_831 = Identity(%onnx::Conv_819) %onnx::Conv_828 = Identity(%onnx::Conv_819) %onnx::Conv_825 = Identity(%onnx::Conv_819) %onnx::Conv_822 = Identity(%onnx::Conv_819) %onnx::Conv_816 = Identity(%onnx::Conv_771) %onnx::Conv_813 = Identity(%onnx::Conv_771) %onnx::Conv_810 = Identity(%onnx::Conv_771) %onnx::Conv_807 = Identity(%onnx::Conv_771) %onnx::Conv_804 = Identity(%onnx::Conv_771) %onnx::Conv_801 = Identity(%onnx::Conv_771) %onnx::Conv_798 = Identity(%onnx::Conv_771) %onnx::Conv_795 = Identity(%onnx::Conv_771) %onnx::Conv_792 = Identity(%onnx::Conv_771) %onnx::Conv_789 = Identity(%onnx::Conv_771) %onnx::Conv_786 = Identity(%onnx::Conv_771) %onnx::Conv_783 = Identity(%onnx::Conv_771) %onnx::Conv_780 = Identity(%onnx::Conv_771) %onnx::Conv_777 = Identity(%onnx::Conv_771) %onnx::Conv_774 = Identity(%onnx::Conv_771) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_770, %onnx::Conv_771) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.5/maxpool/MaxPool_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.5/maxpool/MaxPool_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.5/maxpool/MaxPool_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_5_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.5/maxpool/MaxPool_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.5/maxpool/MaxPool_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.5/maxpool/MaxPool_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_5_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.5/maxpool/MaxPool_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.5/maxpool/MaxPool_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.5/maxpool/MaxPool_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_5_output_0) %768 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %768 }
val_accuracy
89.252806
3,894,421,504
13,126,538
{'zcp_epe_nas': 155.86207450772258, 'zcp_fisher': 628.3414306640625, 'zcp_flops': 62310744064.0, 'zcp_grad_norm': 450.24700927734375, 'zcp_grasp': 115.76171875, 'zcp_jacov': -16.05099637647368, 'zcp_l2_norm': 1030.7447509765625, 'zcp_nwot': 232.4703707991385, 'zcp_params': 13126538.0, 'zcp_plain': 0.09749621897935801, 'zcp_snip': 3389.664794921875, 'zcp_synflow': 119.9374317573208, 'zcp_zen': 93.15367889404297, 'zcp_val_accuracy': 0.9014422893524171}
NASBench101_288512
NASBench101
288512
aead1b25d0d1824ed7efcdc34f12121f
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_761[FLOAT, 128x3x3x3] %onnx::Conv_762[FLOAT, 128] %onnx::Conv_764[FLOAT, 128x128x1x1] %onnx::Conv_767[FLOAT, 128x128x1x1] %onnx::Conv_770[FLOAT, 128x128x1x1] %onnx::Conv_773[FLOAT, 128x128x1x1] %onnx::Conv_776[FLOAT, 128x128x3x3] %onnx::Conv_779[FLOAT, 128x128x1x1] %onnx::Conv_782[FLOAT, 128x128x1x1] %onnx::Conv_785[FLOAT, 128x128x1x1] %onnx::Conv_788[FLOAT, 128x128x1x1] %onnx::Conv_791[FLOAT, 128x128x3x3] %onnx::Conv_794[FLOAT, 128x128x1x1] %onnx::Conv_797[FLOAT, 128x128x1x1] %onnx::Conv_800[FLOAT, 128x128x1x1] %onnx::Conv_803[FLOAT, 128x128x1x1] %onnx::Conv_806[FLOAT, 128x128x3x3] %onnx::Conv_809[FLOAT, 256x128x1x1] %onnx::Conv_810[FLOAT, 256] %onnx::Conv_812[FLOAT, 256x128x1x1] %onnx::Conv_815[FLOAT, 256x256x1x1] %onnx::Conv_818[FLOAT, 256x128x1x1] %onnx::Conv_821[FLOAT, 256x256x3x3] %onnx::Conv_824[FLOAT, 256x256x1x1] %onnx::Conv_827[FLOAT, 256x256x1x1] %onnx::Conv_830[FLOAT, 256x256x1x1] %onnx::Conv_833[FLOAT, 256x256x1x1] %onnx::Conv_836[FLOAT, 256x256x3x3] %onnx::Conv_839[FLOAT, 256x256x1x1] %onnx::Conv_842[FLOAT, 256x256x1x1] %onnx::Conv_845[FLOAT, 256x256x1x1] %onnx::Conv_848[FLOAT, 256x256x1x1] %onnx::Conv_851[FLOAT, 256x256x3x3] %onnx::Conv_854[FLOAT, 512x256x1x1] %onnx::Conv_855[FLOAT, 512] %onnx::Conv_857[FLOAT, 512x256x1x1] %onnx::Conv_860[FLOAT, 512x512x1x1] %onnx::Conv_863[FLOAT, 512x256x1x1] %onnx::Conv_866[FLOAT, 512x512x3x3] %onnx::Conv_869[FLOAT, 512x512x1x1] %onnx::Conv_872[FLOAT, 512x512x1x1] %onnx::Conv_875[FLOAT, 512x512x1x1] %onnx::Conv_878[FLOAT, 512x512x1x1] %onnx::Conv_881[FLOAT, 512x512x3x3] %onnx::Conv_884[FLOAT, 512x512x1x1] %onnx::Conv_887[FLOAT, 512x512x1x1] %onnx::Conv_890[FLOAT, 512x512x1x1] %onnx::Conv_893[FLOAT, 512x512x1x1] %onnx::Conv_896[FLOAT, 512x512x3x3] ) { %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_855) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_855) %onnx::Conv_867 = Identity(%onnx::Conv_855) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %onnx::Conv_852 = Identity(%onnx::Conv_810) %onnx::Conv_849 = Identity(%onnx::Conv_810) %onnx::Conv_846 = Identity(%onnx::Conv_810) %onnx::Conv_843 = Identity(%onnx::Conv_810) %onnx::Conv_840 = Identity(%onnx::Conv_810) %onnx::Conv_837 = Identity(%onnx::Conv_810) %onnx::Conv_834 = Identity(%onnx::Conv_810) %onnx::Conv_831 = Identity(%onnx::Conv_810) %onnx::Conv_828 = Identity(%onnx::Conv_810) %onnx::Conv_825 = Identity(%onnx::Conv_810) %onnx::Conv_822 = Identity(%onnx::Conv_810) %onnx::Conv_819 = Identity(%onnx::Conv_810) %onnx::Conv_816 = Identity(%onnx::Conv_810) %onnx::Conv_813 = Identity(%onnx::Conv_810) %onnx::Conv_807 = Identity(%onnx::Conv_762) %onnx::Conv_804 = Identity(%onnx::Conv_762) %onnx::Conv_801 = Identity(%onnx::Conv_762) %onnx::Conv_798 = Identity(%onnx::Conv_762) %onnx::Conv_795 = Identity(%onnx::Conv_762) %onnx::Conv_792 = Identity(%onnx::Conv_762) %onnx::Conv_789 = Identity(%onnx::Conv_762) %onnx::Conv_786 = Identity(%onnx::Conv_762) %onnx::Conv_783 = Identity(%onnx::Conv_762) %onnx::Conv_780 = Identity(%onnx::Conv_762) %onnx::Conv_777 = Identity(%onnx::Conv_762) %onnx::Conv_774 = Identity(%onnx::Conv_762) %onnx::Conv_771 = Identity(%onnx::Conv_762) %onnx::Conv_768 = Identity(%onnx::Conv_762) %onnx::Conv_765 = Identity(%onnx::Conv_762) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_761, %onnx::Conv_762) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %759 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %759 }
val_accuracy
92.558092
3,860,867,072
12,962,698
{'zcp_epe_nas': 96.47829837588597, 'zcp_fisher': 10.54910945892334, 'zcp_flops': 61773873152.0, 'zcp_grad_norm': 47.84504699707031, 'zcp_grasp': -0.32354736328125, 'zcp_jacov': -16.05586018710691, 'zcp_l2_norm': 1014.4370727539062, 'zcp_nwot': 231.32033164006813, 'zcp_params': 12962698.0, 'zcp_plain': 0.020172709599137, 'zcp_snip': 428.9503479003906, 'zcp_synflow': 94.36763277791462, 'zcp_zen': 89.01126861572266, 'zcp_val_accuracy': 0.9248797893524171}
NASBench101_196601
NASBench101
196601
76f7261de6e2ee64515b4c5ef5686e0a
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_653[FLOAT, 128x3x3x3] %onnx::Conv_654[FLOAT, 128] %onnx::Conv_656[FLOAT, 64x128x1x1] %onnx::Conv_657[FLOAT, 64] %onnx::Conv_659[FLOAT, 64x64x1x1] %onnx::Conv_662[FLOAT, 64x64x3x3] %onnx::Conv_665[FLOAT, 128x128x1x1] %onnx::Conv_668[FLOAT, 64x128x1x1] %onnx::Conv_671[FLOAT, 64x64x1x1] %onnx::Conv_674[FLOAT, 64x64x3x3] %onnx::Conv_677[FLOAT, 128x128x1x1] %onnx::Conv_680[FLOAT, 64x128x1x1] %onnx::Conv_683[FLOAT, 64x64x1x1] %onnx::Conv_686[FLOAT, 64x64x3x3] %onnx::Conv_689[FLOAT, 128x128x1x1] %onnx::Conv_692[FLOAT, 128x128x1x1] %onnx::Conv_695[FLOAT, 128x128x1x1] %onnx::Conv_698[FLOAT, 128x128x3x3] %onnx::Conv_701[FLOAT, 256x128x1x1] %onnx::Conv_702[FLOAT, 256] %onnx::Conv_704[FLOAT, 128x256x1x1] %onnx::Conv_707[FLOAT, 128x128x1x1] %onnx::Conv_710[FLOAT, 128x128x3x3] %onnx::Conv_713[FLOAT, 256x256x1x1] %onnx::Conv_716[FLOAT, 128x256x1x1] %onnx::Conv_719[FLOAT, 128x128x1x1] %onnx::Conv_722[FLOAT, 128x128x3x3] %onnx::Conv_725[FLOAT, 256x256x1x1] %onnx::Conv_728[FLOAT, 256x256x1x1] %onnx::Conv_731[FLOAT, 256x256x1x1] %onnx::Conv_734[FLOAT, 256x256x3x3] %onnx::Conv_737[FLOAT, 512x256x1x1] %onnx::Conv_738[FLOAT, 512] %onnx::Conv_740[FLOAT, 256x512x1x1] %onnx::Conv_743[FLOAT, 256x256x1x1] %onnx::Conv_746[FLOAT, 256x256x3x3] %onnx::Conv_749[FLOAT, 512x512x1x1] %onnx::Conv_752[FLOAT, 256x512x1x1] %onnx::Conv_755[FLOAT, 256x256x1x1] %onnx::Conv_758[FLOAT, 256x256x3x3] %onnx::Conv_761[FLOAT, 512x512x1x1] ) { %onnx::Conv_762 = Identity(%onnx::Conv_738) %onnx::Conv_759 = Identity(%onnx::Conv_702) %onnx::Conv_756 = Identity(%onnx::Conv_702) %onnx::Conv_753 = Identity(%onnx::Conv_702) %onnx::Conv_750 = Identity(%onnx::Conv_738) %onnx::Conv_747 = Identity(%onnx::Conv_702) %onnx::Conv_744 = Identity(%onnx::Conv_702) %onnx::Conv_741 = Identity(%onnx::Conv_702) %onnx::Conv_735 = Identity(%onnx::Conv_702) %onnx::Conv_732 = Identity(%onnx::Conv_702) %onnx::Conv_729 = Identity(%onnx::Conv_702) %onnx::Conv_726 = Identity(%onnx::Conv_702) %onnx::Conv_723 = Identity(%onnx::Conv_654) %onnx::Conv_720 = Identity(%onnx::Conv_654) %onnx::Conv_717 = Identity(%onnx::Conv_654) %onnx::Conv_714 = Identity(%onnx::Conv_702) %onnx::Conv_711 = Identity(%onnx::Conv_654) %onnx::Conv_708 = Identity(%onnx::Conv_654) %onnx::Conv_705 = Identity(%onnx::Conv_654) %onnx::Conv_699 = Identity(%onnx::Conv_654) %onnx::Conv_696 = Identity(%onnx::Conv_654) %onnx::Conv_693 = Identity(%onnx::Conv_654) %onnx::Conv_690 = Identity(%onnx::Conv_654) %onnx::Conv_687 = Identity(%onnx::Conv_657) %onnx::Conv_684 = Identity(%onnx::Conv_657) %onnx::Conv_681 = Identity(%onnx::Conv_657) %onnx::Conv_678 = Identity(%onnx::Conv_654) %onnx::Conv_675 = Identity(%onnx::Conv_657) %onnx::Conv_672 = Identity(%onnx::Conv_657) %onnx::Conv_669 = Identity(%onnx::Conv_657) %onnx::Conv_666 = Identity(%onnx::Conv_654) %onnx::Conv_663 = Identity(%onnx::Conv_657) %onnx::Conv_660 = Identity(%onnx::Conv_657) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_653, %onnx::Conv_654) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.2/maxpool/MaxPool_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Concat_output_0, %/layers.1/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.2/maxpool/MaxPool_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Concat_output_0, %/layers.2/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.2/maxpool/MaxPool_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Concat_output_0, %/layers.3/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Add_3_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.2/maxpool/MaxPool_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Concat_output_0, %/layers.5/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.2/maxpool/MaxPool_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Concat_output_0, %/layers.6/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.2/maxpool/MaxPool_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Concat_output_0, %/layers.7/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Add_3_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.2/maxpool/MaxPool_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Concat_output_0, %/layers.9/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.2/maxpool/MaxPool_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Concat_output_0, %/layers.10/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.2/maxpool/MaxPool_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Concat_output_0, %/layers.11/input_op.6/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Add_3_output_0) %651 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %651 }
val_accuracy
89.383012
1,179,527,168
3,905,290
{'zcp_epe_nas': 96.62091946073915, 'zcp_fisher': 10.526192665100098, 'zcp_flops': 18872434688.0, 'zcp_grad_norm': 59.177616119384766, 'zcp_grasp': -3.655487060546875, 'zcp_jacov': -16.05645135168732, 'zcp_l2_norm': 695.5436401367188, 'zcp_nwot': 221.61949426711323, 'zcp_params': 3905290.0, 'zcp_plain': 0.040025394409894006, 'zcp_snip': 383.167724609375, 'zcp_synflow': 84.18463077088383, 'zcp_zen': 74.1512451171875, 'zcp_val_accuracy': 0.8886218070983881}
NASBench101_178353
NASBench101
178353
6bf75fe7c6c2f33f91630eea17cc14ad
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_653[FLOAT, 128x3x3x3] %onnx::Conv_654[FLOAT, 128] %onnx::Conv_656[FLOAT, 64x128x1x1] %onnx::Conv_657[FLOAT, 64] %onnx::Conv_659[FLOAT, 64x64x3x3] %onnx::Conv_662[FLOAT, 64x64x3x3] %onnx::Conv_665[FLOAT, 64x64x1x1] %onnx::Conv_668[FLOAT, 64x128x1x1] %onnx::Conv_671[FLOAT, 64x64x3x3] %onnx::Conv_674[FLOAT, 64x64x3x3] %onnx::Conv_677[FLOAT, 64x64x1x1] %onnx::Conv_680[FLOAT, 64x128x1x1] %onnx::Conv_683[FLOAT, 64x64x3x3] %onnx::Conv_686[FLOAT, 64x64x3x3] %onnx::Conv_689[FLOAT, 64x64x1x1] %onnx::Conv_692[FLOAT, 128x128x1x1] %onnx::Conv_695[FLOAT, 128x128x3x3] %onnx::Conv_698[FLOAT, 128x128x3x3] %onnx::Conv_701[FLOAT, 128x128x1x1] %onnx::Conv_704[FLOAT, 128x256x1x1] %onnx::Conv_707[FLOAT, 128x128x3x3] %onnx::Conv_710[FLOAT, 128x128x3x3] %onnx::Conv_713[FLOAT, 128x128x1x1] %onnx::Conv_716[FLOAT, 128x256x1x1] %onnx::Conv_719[FLOAT, 128x128x3x3] %onnx::Conv_722[FLOAT, 128x128x3x3] %onnx::Conv_725[FLOAT, 128x128x1x1] %onnx::Conv_728[FLOAT, 256x256x1x1] %onnx::Conv_729[FLOAT, 256] %onnx::Conv_731[FLOAT, 256x256x3x3] %onnx::Conv_734[FLOAT, 256x256x3x3] %onnx::Conv_737[FLOAT, 256x256x1x1] %onnx::Conv_740[FLOAT, 256x512x1x1] %onnx::Conv_743[FLOAT, 256x256x3x3] %onnx::Conv_746[FLOAT, 256x256x3x3] %onnx::Conv_749[FLOAT, 256x256x1x1] %onnx::Conv_752[FLOAT, 256x512x1x1] %onnx::Conv_755[FLOAT, 256x256x3x3] %onnx::Conv_758[FLOAT, 256x256x3x3] %onnx::Conv_761[FLOAT, 256x256x1x1] ) { %onnx::Conv_762 = Identity(%onnx::Conv_729) %onnx::Conv_759 = Identity(%onnx::Conv_729) %onnx::Conv_756 = Identity(%onnx::Conv_729) %onnx::Conv_753 = Identity(%onnx::Conv_729) %onnx::Conv_750 = Identity(%onnx::Conv_729) %onnx::Conv_747 = Identity(%onnx::Conv_729) %onnx::Conv_744 = Identity(%onnx::Conv_729) %onnx::Conv_741 = Identity(%onnx::Conv_729) %onnx::Conv_738 = Identity(%onnx::Conv_729) %onnx::Conv_735 = Identity(%onnx::Conv_729) %onnx::Conv_732 = Identity(%onnx::Conv_729) %onnx::Conv_726 = Identity(%onnx::Conv_654) %onnx::Conv_723 = Identity(%onnx::Conv_654) %onnx::Conv_720 = Identity(%onnx::Conv_654) %onnx::Conv_717 = Identity(%onnx::Conv_654) %onnx::Conv_714 = Identity(%onnx::Conv_654) %onnx::Conv_711 = Identity(%onnx::Conv_654) %onnx::Conv_708 = Identity(%onnx::Conv_654) %onnx::Conv_705 = Identity(%onnx::Conv_654) %onnx::Conv_702 = Identity(%onnx::Conv_654) %onnx::Conv_699 = Identity(%onnx::Conv_654) %onnx::Conv_696 = Identity(%onnx::Conv_654) %onnx::Conv_693 = Identity(%onnx::Conv_654) %onnx::Conv_690 = Identity(%onnx::Conv_657) %onnx::Conv_687 = Identity(%onnx::Conv_657) %onnx::Conv_684 = Identity(%onnx::Conv_657) %onnx::Conv_681 = Identity(%onnx::Conv_657) %onnx::Conv_678 = Identity(%onnx::Conv_657) %onnx::Conv_675 = Identity(%onnx::Conv_657) %onnx::Conv_672 = Identity(%onnx::Conv_657) %onnx::Conv_669 = Identity(%onnx::Conv_657) %onnx::Conv_666 = Identity(%onnx::Conv_657) %onnx::Conv_663 = Identity(%onnx::Conv_657) %onnx::Conv_660 = Identity(%onnx::Conv_657) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_653, %onnx::Conv_654) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/maxpool/MaxPool_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/maxpool/MaxPool_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/maxpool/MaxPool_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/maxpool/MaxPool_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/maxpool/MaxPool_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_719, %onnx::Conv_720) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_722, %onnx::Conv_723) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_725, %onnx::Conv_726) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/maxpool/MaxPool_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_728, %onnx::Conv_729) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_731, %onnx::Conv_732) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_734, %onnx::Conv_735) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_737, %onnx::Conv_738) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/maxpool/MaxPool_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_740, %onnx::Conv_741) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_743, %onnx::Conv_744) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_746, %onnx::Conv_747) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_749, %onnx::Conv_750) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/maxpool/MaxPool_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_752, %onnx::Conv_753) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_755, %onnx::Conv_756) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.3/maxpool/MaxPool_output_0, %onnx::Conv_758, %onnx::Conv_759) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_761, %onnx::Conv_762) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/maxpool/MaxPool_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %651 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %651 }
val_accuracy
90.444714
1,587,816,448
5,356,682
{'zcp_epe_nas': 107.81915217726235, 'zcp_fisher': 63.16537094116211, 'zcp_flops': 25405063168.0, 'zcp_grad_norm': 134.44894409179688, 'zcp_grasp': -7.220947265625, 'zcp_jacov': -16.058321201448454, 'zcp_l2_norm': 648.2389526367188, 'zcp_nwot': 218.2626878959138, 'zcp_params': 5356682.0, 'zcp_plain': -0.004019159823656001, 'zcp_snip': 783.3238525390625, 'zcp_synflow': 117.29245026346568, 'zcp_zen': 76.11992645263672, 'zcp_val_accuracy': 0.871694684028625}
NASBench101_151377
NASBench101
151377
5b97da46a4066eab24a262168bdfa435
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_761[FLOAT, 128x3x3x3] %onnx::Conv_762[FLOAT, 128] %onnx::Conv_764[FLOAT, 64x128x1x1] %onnx::Conv_765[FLOAT, 64] %onnx::Conv_767[FLOAT, 64x64x1x1] %onnx::Conv_770[FLOAT, 64x64x3x3] %onnx::Conv_773[FLOAT, 64x128x1x1] %onnx::Conv_776[FLOAT, 64x64x1x1] %onnx::Conv_779[FLOAT, 64x128x1x1] %onnx::Conv_782[FLOAT, 64x64x1x1] %onnx::Conv_785[FLOAT, 64x64x3x3] %onnx::Conv_788[FLOAT, 64x128x1x1] %onnx::Conv_791[FLOAT, 64x64x1x1] %onnx::Conv_794[FLOAT, 64x128x1x1] %onnx::Conv_797[FLOAT, 64x64x1x1] %onnx::Conv_800[FLOAT, 64x64x3x3] %onnx::Conv_803[FLOAT, 64x128x1x1] %onnx::Conv_806[FLOAT, 64x64x1x1] %onnx::Conv_809[FLOAT, 128x128x1x1] %onnx::Conv_812[FLOAT, 128x128x1x1] %onnx::Conv_815[FLOAT, 128x128x3x3] %onnx::Conv_818[FLOAT, 128x128x1x1] %onnx::Conv_821[FLOAT, 128x128x1x1] %onnx::Conv_824[FLOAT, 128x256x1x1] %onnx::Conv_827[FLOAT, 128x128x1x1] %onnx::Conv_830[FLOAT, 128x128x3x3] %onnx::Conv_833[FLOAT, 128x256x1x1] %onnx::Conv_836[FLOAT, 128x128x1x1] %onnx::Conv_839[FLOAT, 128x256x1x1] %onnx::Conv_842[FLOAT, 128x128x1x1] %onnx::Conv_845[FLOAT, 128x128x3x3] %onnx::Conv_848[FLOAT, 128x256x1x1] %onnx::Conv_851[FLOAT, 128x128x1x1] %onnx::Conv_854[FLOAT, 256x256x1x1] %onnx::Conv_855[FLOAT, 256] %onnx::Conv_857[FLOAT, 256x256x1x1] %onnx::Conv_860[FLOAT, 256x256x3x3] %onnx::Conv_863[FLOAT, 256x256x1x1] %onnx::Conv_866[FLOAT, 256x256x1x1] %onnx::Conv_869[FLOAT, 256x512x1x1] %onnx::Conv_872[FLOAT, 256x256x1x1] %onnx::Conv_875[FLOAT, 256x256x3x3] %onnx::Conv_878[FLOAT, 256x512x1x1] %onnx::Conv_881[FLOAT, 256x256x1x1] %onnx::Conv_884[FLOAT, 256x512x1x1] %onnx::Conv_887[FLOAT, 256x256x1x1] %onnx::Conv_890[FLOAT, 256x256x3x3] %onnx::Conv_893[FLOAT, 256x512x1x1] %onnx::Conv_896[FLOAT, 256x256x1x1] ) { %onnx::Conv_897 = Identity(%onnx::Conv_855) %onnx::Conv_894 = Identity(%onnx::Conv_855) %onnx::Conv_891 = Identity(%onnx::Conv_855) %onnx::Conv_888 = Identity(%onnx::Conv_855) %onnx::Conv_885 = Identity(%onnx::Conv_855) %onnx::Conv_882 = Identity(%onnx::Conv_855) %onnx::Conv_879 = Identity(%onnx::Conv_855) %onnx::Conv_876 = Identity(%onnx::Conv_855) %onnx::Conv_873 = Identity(%onnx::Conv_855) %onnx::Conv_870 = Identity(%onnx::Conv_855) %onnx::Conv_867 = Identity(%onnx::Conv_855) %onnx::Conv_864 = Identity(%onnx::Conv_855) %onnx::Conv_861 = Identity(%onnx::Conv_855) %onnx::Conv_858 = Identity(%onnx::Conv_855) %onnx::Conv_852 = Identity(%onnx::Conv_762) %onnx::Conv_849 = Identity(%onnx::Conv_762) %onnx::Conv_846 = Identity(%onnx::Conv_762) %onnx::Conv_843 = Identity(%onnx::Conv_762) %onnx::Conv_840 = Identity(%onnx::Conv_762) %onnx::Conv_837 = Identity(%onnx::Conv_762) %onnx::Conv_834 = Identity(%onnx::Conv_762) %onnx::Conv_831 = Identity(%onnx::Conv_762) %onnx::Conv_828 = Identity(%onnx::Conv_762) %onnx::Conv_825 = Identity(%onnx::Conv_762) %onnx::Conv_822 = Identity(%onnx::Conv_762) %onnx::Conv_819 = Identity(%onnx::Conv_762) %onnx::Conv_816 = Identity(%onnx::Conv_762) %onnx::Conv_813 = Identity(%onnx::Conv_762) %onnx::Conv_810 = Identity(%onnx::Conv_762) %onnx::Conv_807 = Identity(%onnx::Conv_765) %onnx::Conv_804 = Identity(%onnx::Conv_765) %onnx::Conv_801 = Identity(%onnx::Conv_765) %onnx::Conv_798 = Identity(%onnx::Conv_765) %onnx::Conv_795 = Identity(%onnx::Conv_765) %onnx::Conv_792 = Identity(%onnx::Conv_765) %onnx::Conv_789 = Identity(%onnx::Conv_765) %onnx::Conv_786 = Identity(%onnx::Conv_765) %onnx::Conv_783 = Identity(%onnx::Conv_765) %onnx::Conv_780 = Identity(%onnx::Conv_765) %onnx::Conv_777 = Identity(%onnx::Conv_765) %onnx::Conv_774 = Identity(%onnx::Conv_765) %onnx::Conv_771 = Identity(%onnx::Conv_765) %onnx::Conv_768 = Identity(%onnx::Conv_765) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_761, %onnx::Conv_762) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_764, %onnx::Conv_765) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_767, %onnx::Conv_768) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_770, %onnx::Conv_771) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_773, %onnx::Conv_774) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_776, %onnx::Conv_777) %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_779, %onnx::Conv_780) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_782, %onnx::Conv_783) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_785, %onnx::Conv_786) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_788, %onnx::Conv_789) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_791, %onnx::Conv_792) %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_794, %onnx::Conv_795) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_797, %onnx::Conv_798) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_800, %onnx::Conv_801) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_803, %onnx::Conv_804) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_806, %onnx::Conv_807) %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_809, %onnx::Conv_810) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_812, %onnx::Conv_813) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_815, %onnx::Conv_816) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_818, %onnx::Conv_819) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_821, %onnx::Conv_822) %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_824, %onnx::Conv_825) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_827, %onnx::Conv_828) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %759 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %759 }
val_accuracy
91.516429
1,120,806,912
3,729,162
{'zcp_epe_nas': 84.41246792668177, 'zcp_fisher': 22.68213653564453, 'zcp_flops': 17932910592.0, 'zcp_grad_norm': 105.37663269042969, 'zcp_grasp': 21.400146484375, 'zcp_jacov': -16.054553191253035, 'zcp_l2_norm': 843.4700317382812, 'zcp_nwot': 221.7586727041486, 'zcp_params': 3729162.0, 'zcp_plain': 0.031082211062312, 'zcp_snip': 563.41015625, 'zcp_synflow': 87.01284117509911, 'zcp_zen': 79.04448699951172, 'zcp_val_accuracy': 0.910857379436492}
NASBench101_175584
NASBench101
175584
6a4ed973ffaa2716cd7786d4e02641f4
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_878[FLOAT, 128x3x3x3] %onnx::Conv_879[FLOAT, 128] %onnx::Conv_881[FLOAT, 64x128x1x1] %onnx::Conv_882[FLOAT, 64] %onnx::Conv_884[FLOAT, 64x64x3x3] %onnx::Conv_887[FLOAT, 64x64x1x1] %onnx::Conv_890[FLOAT, 64x64x1x1] %onnx::Conv_893[FLOAT, 64x64x3x3] %onnx::Conv_896[FLOAT, 64x64x3x3] %onnx::Conv_899[FLOAT, 64x128x1x1] %onnx::Conv_902[FLOAT, 64x64x3x3] %onnx::Conv_905[FLOAT, 64x64x1x1] %onnx::Conv_908[FLOAT, 64x64x1x1] %onnx::Conv_911[FLOAT, 64x64x3x3] %onnx::Conv_914[FLOAT, 64x64x3x3] %onnx::Conv_917[FLOAT, 64x128x1x1] %onnx::Conv_920[FLOAT, 64x64x3x3] %onnx::Conv_923[FLOAT, 64x64x1x1] %onnx::Conv_926[FLOAT, 64x64x1x1] %onnx::Conv_929[FLOAT, 64x64x3x3] %onnx::Conv_932[FLOAT, 64x64x3x3] %onnx::Conv_935[FLOAT, 128x128x1x1] %onnx::Conv_938[FLOAT, 128x128x3x3] %onnx::Conv_941[FLOAT, 128x128x1x1] %onnx::Conv_944[FLOAT, 128x128x1x1] %onnx::Conv_947[FLOAT, 128x128x3x3] %onnx::Conv_950[FLOAT, 128x128x3x3] %onnx::Conv_953[FLOAT, 128x256x1x1] %onnx::Conv_956[FLOAT, 128x128x3x3] %onnx::Conv_959[FLOAT, 128x128x1x1] %onnx::Conv_962[FLOAT, 128x128x1x1] %onnx::Conv_965[FLOAT, 128x128x3x3] %onnx::Conv_968[FLOAT, 128x128x3x3] %onnx::Conv_971[FLOAT, 128x256x1x1] %onnx::Conv_974[FLOAT, 128x128x3x3] %onnx::Conv_977[FLOAT, 128x128x1x1] %onnx::Conv_980[FLOAT, 128x128x1x1] %onnx::Conv_983[FLOAT, 128x128x3x3] %onnx::Conv_986[FLOAT, 128x128x3x3] %onnx::Conv_989[FLOAT, 256x256x1x1] %onnx::Conv_990[FLOAT, 256] %onnx::Conv_992[FLOAT, 256x256x3x3] %onnx::Conv_995[FLOAT, 256x256x1x1] %onnx::Conv_998[FLOAT, 256x256x1x1] %onnx::Conv_1001[FLOAT, 256x256x3x3] %onnx::Conv_1004[FLOAT, 256x256x3x3] %onnx::Conv_1007[FLOAT, 256x512x1x1] %onnx::Conv_1010[FLOAT, 256x256x3x3] %onnx::Conv_1013[FLOAT, 256x256x1x1] %onnx::Conv_1016[FLOAT, 256x256x1x1] %onnx::Conv_1019[FLOAT, 256x256x3x3] %onnx::Conv_1022[FLOAT, 256x256x3x3] %onnx::Conv_1025[FLOAT, 256x512x1x1] %onnx::Conv_1028[FLOAT, 256x256x3x3] %onnx::Conv_1031[FLOAT, 256x256x1x1] %onnx::Conv_1034[FLOAT, 256x256x1x1] %onnx::Conv_1037[FLOAT, 256x256x3x3] %onnx::Conv_1040[FLOAT, 256x256x3x3] ) { %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %onnx::Conv_987 = Identity(%onnx::Conv_879) %onnx::Conv_984 = Identity(%onnx::Conv_879) %onnx::Conv_981 = Identity(%onnx::Conv_879) %onnx::Conv_978 = Identity(%onnx::Conv_879) %onnx::Conv_975 = Identity(%onnx::Conv_879) %onnx::Conv_972 = Identity(%onnx::Conv_879) %onnx::Conv_969 = Identity(%onnx::Conv_879) %onnx::Conv_966 = Identity(%onnx::Conv_879) %onnx::Conv_963 = Identity(%onnx::Conv_879) %onnx::Conv_960 = Identity(%onnx::Conv_879) %onnx::Conv_957 = Identity(%onnx::Conv_879) %onnx::Conv_954 = Identity(%onnx::Conv_879) %onnx::Conv_951 = Identity(%onnx::Conv_879) %onnx::Conv_948 = Identity(%onnx::Conv_879) %onnx::Conv_945 = Identity(%onnx::Conv_879) %onnx::Conv_942 = Identity(%onnx::Conv_879) %onnx::Conv_939 = Identity(%onnx::Conv_879) %onnx::Conv_936 = Identity(%onnx::Conv_879) %onnx::Conv_933 = Identity(%onnx::Conv_882) %onnx::Conv_930 = Identity(%onnx::Conv_882) %onnx::Conv_927 = Identity(%onnx::Conv_882) %onnx::Conv_924 = Identity(%onnx::Conv_882) %onnx::Conv_921 = Identity(%onnx::Conv_882) %onnx::Conv_918 = Identity(%onnx::Conv_882) %onnx::Conv_915 = Identity(%onnx::Conv_882) %onnx::Conv_912 = Identity(%onnx::Conv_882) %onnx::Conv_909 = Identity(%onnx::Conv_882) %onnx::Conv_906 = Identity(%onnx::Conv_882) %onnx::Conv_903 = Identity(%onnx::Conv_882) %onnx::Conv_900 = Identity(%onnx::Conv_882) %onnx::Conv_897 = Identity(%onnx::Conv_882) %onnx::Conv_894 = Identity(%onnx::Conv_882) %onnx::Conv_891 = Identity(%onnx::Conv_882) %onnx::Conv_888 = Identity(%onnx::Conv_882) %onnx::Conv_885 = Identity(%onnx::Conv_882) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_878, %onnx::Conv_879) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_3_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_4_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_5_output_0 = Add(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_3_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_4_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_5_output_0 = Add(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_3_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_4_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_5_output_0 = Add(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_3_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_4_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_5_output_0 = Add(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_3_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_4_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_5_output_0 = Add(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_3_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_4_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_5_output_0 = Add(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_3_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_4_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_5_output_0 = Add(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_3_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_4_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_5_output_0 = Add(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_3_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_4_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_5_output_0 = Add(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %876 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %876 }
val_accuracy
92.928684
2,348,296,192
7,942,538
{'zcp_epe_nas': 151.4941582938355, 'zcp_fisher': 44.34150695800781, 'zcp_flops': 37572739072.0, 'zcp_grad_norm': 128.02981567382812, 'zcp_grasp': -9.483154296875, 'zcp_jacov': -16.062135482476343, 'zcp_l2_norm': 948.0104370117188, 'zcp_nwot': 224.37085131119144, 'zcp_params': 7942538.0, 'zcp_plain': 0.027350788936018004, 'zcp_snip': 714.4560546875, 'zcp_synflow': 142.0346690990501, 'zcp_zen': 103.39850616455078, 'zcp_val_accuracy': 0.883313298225402}
NASBench101_151400
NASBench101
151400
5b9bfc16b752b4531629dad6420c8992
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_608[FLOAT, 128x3x3x3] %onnx::Conv_609[FLOAT, 128] %onnx::Conv_611[FLOAT, 64x128x1x1] %onnx::Conv_612[FLOAT, 64] %onnx::Conv_614[FLOAT, 64x64x3x3] %onnx::Conv_617[FLOAT, 64x64x1x1] %onnx::Conv_620[FLOAT, 64x64x3x3] %onnx::Conv_623[FLOAT, 64x128x1x1] %onnx::Conv_626[FLOAT, 64x64x3x3] %onnx::Conv_629[FLOAT, 64x64x1x1] %onnx::Conv_632[FLOAT, 64x64x3x3] %onnx::Conv_635[FLOAT, 64x128x1x1] %onnx::Conv_638[FLOAT, 64x64x3x3] %onnx::Conv_641[FLOAT, 64x64x1x1] %onnx::Conv_644[FLOAT, 64x64x3x3] %onnx::Conv_647[FLOAT, 128x128x1x1] %onnx::Conv_650[FLOAT, 128x128x3x3] %onnx::Conv_653[FLOAT, 128x128x1x1] %onnx::Conv_656[FLOAT, 128x128x3x3] %onnx::Conv_659[FLOAT, 128x256x1x1] %onnx::Conv_662[FLOAT, 128x128x3x3] %onnx::Conv_665[FLOAT, 128x128x1x1] %onnx::Conv_668[FLOAT, 128x128x3x3] %onnx::Conv_671[FLOAT, 128x256x1x1] %onnx::Conv_674[FLOAT, 128x128x3x3] %onnx::Conv_677[FLOAT, 128x128x1x1] %onnx::Conv_680[FLOAT, 128x128x3x3] %onnx::Conv_683[FLOAT, 256x256x1x1] %onnx::Conv_684[FLOAT, 256] %onnx::Conv_686[FLOAT, 256x256x3x3] %onnx::Conv_689[FLOAT, 256x256x1x1] %onnx::Conv_692[FLOAT, 256x256x3x3] %onnx::Conv_695[FLOAT, 256x512x1x1] %onnx::Conv_698[FLOAT, 256x256x3x3] %onnx::Conv_701[FLOAT, 256x256x1x1] %onnx::Conv_704[FLOAT, 256x256x3x3] %onnx::Conv_707[FLOAT, 256x512x1x1] %onnx::Conv_710[FLOAT, 256x256x3x3] %onnx::Conv_713[FLOAT, 256x256x1x1] %onnx::Conv_716[FLOAT, 256x256x3x3] ) { %onnx::Conv_717 = Identity(%onnx::Conv_684) %onnx::Conv_714 = Identity(%onnx::Conv_684) %onnx::Conv_711 = Identity(%onnx::Conv_684) %onnx::Conv_708 = Identity(%onnx::Conv_684) %onnx::Conv_705 = Identity(%onnx::Conv_684) %onnx::Conv_702 = Identity(%onnx::Conv_684) %onnx::Conv_699 = Identity(%onnx::Conv_684) %onnx::Conv_696 = Identity(%onnx::Conv_684) %onnx::Conv_693 = Identity(%onnx::Conv_684) %onnx::Conv_690 = Identity(%onnx::Conv_684) %onnx::Conv_687 = Identity(%onnx::Conv_684) %onnx::Conv_681 = Identity(%onnx::Conv_609) %onnx::Conv_678 = Identity(%onnx::Conv_609) %onnx::Conv_675 = Identity(%onnx::Conv_609) %onnx::Conv_672 = Identity(%onnx::Conv_609) %onnx::Conv_669 = Identity(%onnx::Conv_609) %onnx::Conv_666 = Identity(%onnx::Conv_609) %onnx::Conv_663 = Identity(%onnx::Conv_609) %onnx::Conv_660 = Identity(%onnx::Conv_609) %onnx::Conv_657 = Identity(%onnx::Conv_609) %onnx::Conv_654 = Identity(%onnx::Conv_609) %onnx::Conv_651 = Identity(%onnx::Conv_609) %onnx::Conv_648 = Identity(%onnx::Conv_609) %onnx::Conv_645 = Identity(%onnx::Conv_612) %onnx::Conv_642 = Identity(%onnx::Conv_612) %onnx::Conv_639 = Identity(%onnx::Conv_612) %onnx::Conv_636 = Identity(%onnx::Conv_612) %onnx::Conv_633 = Identity(%onnx::Conv_612) %onnx::Conv_630 = Identity(%onnx::Conv_612) %onnx::Conv_627 = Identity(%onnx::Conv_612) %onnx::Conv_624 = Identity(%onnx::Conv_612) %onnx::Conv_621 = Identity(%onnx::Conv_612) %onnx::Conv_618 = Identity(%onnx::Conv_612) %onnx::Conv_615 = Identity(%onnx::Conv_612) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_608, %onnx::Conv_609) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_611, %onnx::Conv_612) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_614, %onnx::Conv_615) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_617, %onnx::Conv_618) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_620, %onnx::Conv_621) %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_623, %onnx::Conv_624) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_626, %onnx::Conv_627) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_629, %onnx::Conv_630) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_632, %onnx::Conv_633) %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_635, %onnx::Conv_636) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_638, %onnx::Conv_639) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_641, %onnx::Conv_642) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_644, %onnx::Conv_645) %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_647, %onnx::Conv_648) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_650, %onnx::Conv_651) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_653, %onnx::Conv_654) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_656, %onnx::Conv_657) %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_659, %onnx::Conv_660) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_662, %onnx::Conv_663) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_665, %onnx::Conv_666) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_668, %onnx::Conv_669) %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_671, %onnx::Conv_672) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_674, %onnx::Conv_675) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_677, %onnx::Conv_678) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_680, %onnx::Conv_681) %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_683, %onnx::Conv_684) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_686, %onnx::Conv_687) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_689, %onnx::Conv_690) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_692, %onnx::Conv_693) %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_695, %onnx::Conv_696) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_698, %onnx::Conv_699) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_701, %onnx::Conv_702) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_704, %onnx::Conv_705) %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_707, %onnx::Conv_708) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_710, %onnx::Conv_711) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_713, %onnx::Conv_714) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_716, %onnx::Conv_717) %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.4/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %606 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %606 }
val_accuracy
91.967148
1,587,816,448
5,356,682
{'zcp_epe_nas': 89.13792132147977, 'zcp_fisher': 10.375255584716797, 'zcp_flops': 25405063168.0, 'zcp_grad_norm': 55.57075119018555, 'zcp_grasp': -0.8627014160156251, 'zcp_jacov': -16.06345319705335, 'zcp_l2_norm': 648.362548828125, 'zcp_nwot': 217.85412039526014, 'zcp_params': 5356682.0, 'zcp_plain': 0.0043115159496660005, 'zcp_snip': 345.8138732910156, 'zcp_synflow': 117.00685842766839, 'zcp_zen': 75.07115173339844, 'zcp_val_accuracy': 0.9057492017745971}
NASBench101_345285
NASBench101
345285
d0b42224ea2ca1fa1b1baac911dd81ba
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_878[FLOAT, 128x3x3x3] %onnx::Conv_879[FLOAT, 128] %onnx::Conv_881[FLOAT, 128x128x1x1] %onnx::Conv_884[FLOAT, 128x128x3x3] %onnx::Conv_887[FLOAT, 128x128x3x3] %onnx::Conv_890[FLOAT, 128x128x1x1] %onnx::Conv_893[FLOAT, 128x128x1x1] %onnx::Conv_896[FLOAT, 128x128x3x3] %onnx::Conv_899[FLOAT, 128x128x1x1] %onnx::Conv_902[FLOAT, 128x128x3x3] %onnx::Conv_905[FLOAT, 128x128x3x3] %onnx::Conv_908[FLOAT, 128x128x1x1] %onnx::Conv_911[FLOAT, 128x128x1x1] %onnx::Conv_914[FLOAT, 128x128x3x3] %onnx::Conv_917[FLOAT, 128x128x1x1] %onnx::Conv_920[FLOAT, 128x128x3x3] %onnx::Conv_923[FLOAT, 128x128x3x3] %onnx::Conv_926[FLOAT, 128x128x1x1] %onnx::Conv_929[FLOAT, 128x128x1x1] %onnx::Conv_932[FLOAT, 128x128x3x3] %onnx::Conv_935[FLOAT, 256x128x1x1] %onnx::Conv_936[FLOAT, 256] %onnx::Conv_938[FLOAT, 256x256x3x3] %onnx::Conv_941[FLOAT, 256x256x3x3] %onnx::Conv_944[FLOAT, 256x128x1x1] %onnx::Conv_947[FLOAT, 256x128x1x1] %onnx::Conv_950[FLOAT, 256x256x3x3] %onnx::Conv_953[FLOAT, 256x256x1x1] %onnx::Conv_956[FLOAT, 256x256x3x3] %onnx::Conv_959[FLOAT, 256x256x3x3] %onnx::Conv_962[FLOAT, 256x256x1x1] %onnx::Conv_965[FLOAT, 256x256x1x1] %onnx::Conv_968[FLOAT, 256x256x3x3] %onnx::Conv_971[FLOAT, 256x256x1x1] %onnx::Conv_974[FLOAT, 256x256x3x3] %onnx::Conv_977[FLOAT, 256x256x3x3] %onnx::Conv_980[FLOAT, 256x256x1x1] %onnx::Conv_983[FLOAT, 256x256x1x1] %onnx::Conv_986[FLOAT, 256x256x3x3] %onnx::Conv_989[FLOAT, 512x256x1x1] %onnx::Conv_990[FLOAT, 512] %onnx::Conv_992[FLOAT, 512x512x3x3] %onnx::Conv_995[FLOAT, 512x512x3x3] %onnx::Conv_998[FLOAT, 512x256x1x1] %onnx::Conv_1001[FLOAT, 512x256x1x1] %onnx::Conv_1004[FLOAT, 512x512x3x3] %onnx::Conv_1007[FLOAT, 512x512x1x1] %onnx::Conv_1010[FLOAT, 512x512x3x3] %onnx::Conv_1013[FLOAT, 512x512x3x3] %onnx::Conv_1016[FLOAT, 512x512x1x1] %onnx::Conv_1019[FLOAT, 512x512x1x1] %onnx::Conv_1022[FLOAT, 512x512x3x3] %onnx::Conv_1025[FLOAT, 512x512x1x1] %onnx::Conv_1028[FLOAT, 512x512x3x3] %onnx::Conv_1031[FLOAT, 512x512x3x3] %onnx::Conv_1034[FLOAT, 512x512x1x1] %onnx::Conv_1037[FLOAT, 512x512x1x1] %onnx::Conv_1040[FLOAT, 512x512x3x3] ) { %onnx::Conv_1041 = Identity(%onnx::Conv_990) %onnx::Conv_1038 = Identity(%onnx::Conv_990) %onnx::Conv_1035 = Identity(%onnx::Conv_990) %onnx::Conv_1032 = Identity(%onnx::Conv_990) %onnx::Conv_1029 = Identity(%onnx::Conv_990) %onnx::Conv_1026 = Identity(%onnx::Conv_990) %onnx::Conv_1023 = Identity(%onnx::Conv_990) %onnx::Conv_1020 = Identity(%onnx::Conv_990) %onnx::Conv_1017 = Identity(%onnx::Conv_990) %onnx::Conv_1014 = Identity(%onnx::Conv_990) %onnx::Conv_1011 = Identity(%onnx::Conv_990) %onnx::Conv_1008 = Identity(%onnx::Conv_990) %onnx::Conv_1005 = Identity(%onnx::Conv_990) %onnx::Conv_1002 = Identity(%onnx::Conv_990) %onnx::Conv_999 = Identity(%onnx::Conv_990) %onnx::Conv_996 = Identity(%onnx::Conv_990) %onnx::Conv_993 = Identity(%onnx::Conv_990) %onnx::Conv_987 = Identity(%onnx::Conv_936) %onnx::Conv_984 = Identity(%onnx::Conv_936) %onnx::Conv_981 = Identity(%onnx::Conv_936) %onnx::Conv_978 = Identity(%onnx::Conv_936) %onnx::Conv_975 = Identity(%onnx::Conv_936) %onnx::Conv_972 = Identity(%onnx::Conv_936) %onnx::Conv_969 = Identity(%onnx::Conv_936) %onnx::Conv_966 = Identity(%onnx::Conv_936) %onnx::Conv_963 = Identity(%onnx::Conv_936) %onnx::Conv_960 = Identity(%onnx::Conv_936) %onnx::Conv_957 = Identity(%onnx::Conv_936) %onnx::Conv_954 = Identity(%onnx::Conv_936) %onnx::Conv_951 = Identity(%onnx::Conv_936) %onnx::Conv_948 = Identity(%onnx::Conv_936) %onnx::Conv_945 = Identity(%onnx::Conv_936) %onnx::Conv_942 = Identity(%onnx::Conv_936) %onnx::Conv_939 = Identity(%onnx::Conv_936) %onnx::Conv_933 = Identity(%onnx::Conv_879) %onnx::Conv_930 = Identity(%onnx::Conv_879) %onnx::Conv_927 = Identity(%onnx::Conv_879) %onnx::Conv_924 = Identity(%onnx::Conv_879) %onnx::Conv_921 = Identity(%onnx::Conv_879) %onnx::Conv_918 = Identity(%onnx::Conv_879) %onnx::Conv_915 = Identity(%onnx::Conv_879) %onnx::Conv_912 = Identity(%onnx::Conv_879) %onnx::Conv_909 = Identity(%onnx::Conv_879) %onnx::Conv_906 = Identity(%onnx::Conv_879) %onnx::Conv_903 = Identity(%onnx::Conv_879) %onnx::Conv_900 = Identity(%onnx::Conv_879) %onnx::Conv_897 = Identity(%onnx::Conv_879) %onnx::Conv_894 = Identity(%onnx::Conv_879) %onnx::Conv_891 = Identity(%onnx::Conv_879) %onnx::Conv_888 = Identity(%onnx::Conv_879) %onnx::Conv_885 = Identity(%onnx::Conv_879) %onnx::Conv_882 = Identity(%onnx::Conv_879) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_878, %onnx::Conv_879) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Add_2_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_4_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/vertex_op.4/maxpool/MaxPool_output_0) %/layers.1/Add_6_output_0 = Add(%/layers.1/Add_5_output_0, %/layers.1/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Add_2_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_4_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/vertex_op.4/maxpool/MaxPool_output_0) %/layers.2/Add_6_output_0 = Add(%/layers.2/Add_5_output_0, %/layers.2/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Add_2_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_4_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/vertex_op.4/maxpool/MaxPool_output_0) %/layers.3/Add_6_output_0 = Add(%/layers.3/Add_5_output_0, %/layers.3/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Add_2_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_4_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/vertex_op.4/maxpool/MaxPool_output_0) %/layers.5/Add_6_output_0 = Add(%/layers.5/Add_5_output_0, %/layers.5/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Add_2_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_965, %onnx::Conv_966) %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_4_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/vertex_op.4/maxpool/MaxPool_output_0) %/layers.6/Add_6_output_0 = Add(%/layers.6/Add_5_output_0, %/layers.6/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_968, %onnx::Conv_969) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Add_2_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_4_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/vertex_op.4/maxpool/MaxPool_output_0) %/layers.7/Add_6_output_0 = Add(%/layers.7/Add_5_output_0, %/layers.7/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Add_2_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_4_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/vertex_op.4/maxpool/MaxPool_output_0) %/layers.9/Add_6_output_0 = Add(%/layers.9/Add_5_output_0, %/layers.9/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Add_2_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_4_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/vertex_op.4/maxpool/MaxPool_output_0) %/layers.10/Add_6_output_0 = Add(%/layers.10/Add_5_output_0, %/layers.10/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Add_2_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_4_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/vertex_op.4/maxpool/MaxPool_output_0) %/layers.11/Add_6_output_0 = Add(%/layers.11/Add_5_output_0, %/layers.11/input_op.5/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %876 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %876 }
val_accuracy
92.457932
9,000,200,192
30,515,338
{'zcp_epe_nas': 165.01558471576325, 'zcp_fisher': 40.3407096862793, 'zcp_flops': 144003203072.0, 'zcp_grad_norm': 103.7608871459961, 'zcp_grasp': -1.8648681640625, 'zcp_jacov': -16.05637901814414, 'zcp_l2_norm': 1226.9710693359375, 'zcp_nwot': 233.907556664277, 'zcp_params': 30515338.0, 'zcp_plain': 0.036279592663049004, 'zcp_snip': 940.7048950195312, 'zcp_synflow': 139.6794774023882, 'zcp_zen': 122.32101440429688, 'zcp_val_accuracy': 0.8774038553237911}
NASBench101_398242
NASBench101
398242
f0bd911c338e8ab55d851401d9bf7f1d
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_827[FLOAT, 128x3x3x3] %onnx::Conv_828[FLOAT, 128] %onnx::Conv_830[FLOAT, 43x128x1x1] %onnx::Conv_831[FLOAT, 43] %onnx::Conv_833[FLOAT, 43x128x1x1] %onnx::Conv_836[FLOAT, 43x43x1x1] %onnx::Conv_839[FLOAT, 43x43x3x3] %onnx::Conv_842[FLOAT, 42x42x3x3] %onnx::Conv_843[FLOAT, 42] %onnx::Conv_845[FLOAT, 43x128x1x1] %onnx::Conv_848[FLOAT, 43x128x1x1] %onnx::Conv_851[FLOAT, 43x43x1x1] %onnx::Conv_854[FLOAT, 43x43x3x3] %onnx::Conv_857[FLOAT, 42x42x3x3] %onnx::Conv_860[FLOAT, 43x128x1x1] %onnx::Conv_863[FLOAT, 43x128x1x1] %onnx::Conv_866[FLOAT, 43x43x1x1] %onnx::Conv_869[FLOAT, 43x43x3x3] %onnx::Conv_872[FLOAT, 42x42x3x3] %onnx::Conv_875[FLOAT, 86x128x1x1] %onnx::Conv_876[FLOAT, 86] %onnx::Conv_878[FLOAT, 85x128x1x1] %onnx::Conv_879[FLOAT, 85] %onnx::Conv_881[FLOAT, 85x85x1x1] %onnx::Conv_884[FLOAT, 85x85x3x3] %onnx::Conv_887[FLOAT, 85x85x3x3] %onnx::Conv_890[FLOAT, 86x256x1x1] %onnx::Conv_893[FLOAT, 85x256x1x1] %onnx::Conv_896[FLOAT, 85x85x1x1] %onnx::Conv_899[FLOAT, 85x85x3x3] %onnx::Conv_902[FLOAT, 85x85x3x3] %onnx::Conv_905[FLOAT, 86x256x1x1] %onnx::Conv_908[FLOAT, 85x256x1x1] %onnx::Conv_911[FLOAT, 85x85x1x1] %onnx::Conv_914[FLOAT, 85x85x3x3] %onnx::Conv_917[FLOAT, 85x85x3x3] %onnx::Conv_920[FLOAT, 171x256x1x1] %onnx::Conv_921[FLOAT, 171] %onnx::Conv_923[FLOAT, 171x256x1x1] %onnx::Conv_926[FLOAT, 171x171x1x1] %onnx::Conv_929[FLOAT, 171x171x3x3] %onnx::Conv_932[FLOAT, 170x170x3x3] %onnx::Conv_933[FLOAT, 170] %onnx::Conv_935[FLOAT, 171x512x1x1] %onnx::Conv_938[FLOAT, 171x512x1x1] %onnx::Conv_941[FLOAT, 171x171x1x1] %onnx::Conv_944[FLOAT, 171x171x3x3] %onnx::Conv_947[FLOAT, 170x170x3x3] %onnx::Conv_950[FLOAT, 171x512x1x1] %onnx::Conv_953[FLOAT, 171x512x1x1] %onnx::Conv_956[FLOAT, 171x171x1x1] %onnx::Conv_959[FLOAT, 171x171x3x3] %onnx::Conv_962[FLOAT, 170x170x3x3] ) { %onnx::Conv_963 = Identity(%onnx::Conv_933) %onnx::Conv_960 = Identity(%onnx::Conv_921) %onnx::Conv_957 = Identity(%onnx::Conv_921) %onnx::Conv_954 = Identity(%onnx::Conv_921) %onnx::Conv_951 = Identity(%onnx::Conv_921) %onnx::Conv_948 = Identity(%onnx::Conv_933) %onnx::Conv_945 = Identity(%onnx::Conv_921) %onnx::Conv_942 = Identity(%onnx::Conv_921) %onnx::Conv_939 = Identity(%onnx::Conv_921) %onnx::Conv_936 = Identity(%onnx::Conv_921) %onnx::Conv_930 = Identity(%onnx::Conv_921) %onnx::Conv_927 = Identity(%onnx::Conv_921) %onnx::Conv_924 = Identity(%onnx::Conv_921) %onnx::Conv_918 = Identity(%onnx::Conv_879) %onnx::Conv_915 = Identity(%onnx::Conv_879) %onnx::Conv_912 = Identity(%onnx::Conv_879) %onnx::Conv_909 = Identity(%onnx::Conv_879) %onnx::Conv_906 = Identity(%onnx::Conv_876) %onnx::Conv_903 = Identity(%onnx::Conv_879) %onnx::Conv_900 = Identity(%onnx::Conv_879) %onnx::Conv_897 = Identity(%onnx::Conv_879) %onnx::Conv_894 = Identity(%onnx::Conv_879) %onnx::Conv_891 = Identity(%onnx::Conv_876) %onnx::Conv_888 = Identity(%onnx::Conv_879) %onnx::Conv_885 = Identity(%onnx::Conv_879) %onnx::Conv_882 = Identity(%onnx::Conv_879) %onnx::Conv_873 = Identity(%onnx::Conv_843) %onnx::Conv_870 = Identity(%onnx::Conv_831) %onnx::Conv_867 = Identity(%onnx::Conv_831) %onnx::Conv_864 = Identity(%onnx::Conv_831) %onnx::Conv_861 = Identity(%onnx::Conv_831) %onnx::Conv_858 = Identity(%onnx::Conv_843) %onnx::Conv_855 = Identity(%onnx::Conv_831) %onnx::Conv_852 = Identity(%onnx::Conv_831) %onnx::Conv_849 = Identity(%onnx::Conv_831) %onnx::Conv_846 = Identity(%onnx::Conv_831) %onnx::Conv_840 = Identity(%onnx::Conv_831) %onnx::Conv_837 = Identity(%onnx::Conv_831) %onnx::Conv_834 = Identity(%onnx::Conv_831) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_827, %onnx::Conv_828) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_830, %onnx::Conv_831) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_833, %onnx::Conv_834) %/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_836, %onnx::Conv_837) %/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_839, %onnx::Conv_840) %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_output_0 = Slice(%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/Constant_4_output_0, %/layers.1/Constant_5_output_0, %/layers.1/Constant_3_output_0, %/layers.1/Constant_6_output_0) %/layers.1/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.1/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.1/Slice_1_output_0 = Slice(%/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_8_output_0, %/layers.1/Constant_9_output_0, %/layers.1/Constant_7_output_0, %/layers.1/Constant_10_output_0) %/layers.1/Add_3_output_0 = Add(%/layers.1/Slice_output_0, %/layers.1/Slice_1_output_0) %/layers.1/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_3_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_842, %onnx::Conv_843) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Concat_output_0 = Concat[axis = 1](%/layers.1/vertex_op.1/maxpool/MaxPool_output_0, %/layers.1/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_845, %onnx::Conv_846) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Concat_output_0, %onnx::Conv_848, %onnx::Conv_849) %/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_851, %onnx::Conv_852) %/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_854, %onnx::Conv_855) %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_output_0 = Slice(%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/Constant_4_output_0, %/layers.2/Constant_5_output_0, %/layers.2/Constant_3_output_0, %/layers.2/Constant_6_output_0) %/layers.2/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.2/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.2/Slice_1_output_0 = Slice(%/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_8_output_0, %/layers.2/Constant_9_output_0, %/layers.2/Constant_7_output_0, %/layers.2/Constant_10_output_0) %/layers.2/Add_3_output_0 = Add(%/layers.2/Slice_output_0, %/layers.2/Slice_1_output_0) %/layers.2/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_3_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_857, %onnx::Conv_858) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Concat_output_0 = Concat[axis = 1](%/layers.2/vertex_op.1/maxpool/MaxPool_output_0, %/layers.2/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_860, %onnx::Conv_861) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Concat_output_0, %onnx::Conv_863, %onnx::Conv_864) %/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_866, %onnx::Conv_867) %/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_869, %onnx::Conv_870) %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_output_0 = Slice(%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/Constant_4_output_0, %/layers.3/Constant_5_output_0, %/layers.3/Constant_3_output_0, %/layers.3/Constant_6_output_0) %/layers.3/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.3/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.3/Slice_1_output_0 = Slice(%/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_8_output_0, %/layers.3/Constant_9_output_0, %/layers.3/Constant_7_output_0, %/layers.3/Constant_10_output_0) %/layers.3/Add_3_output_0 = Add(%/layers.3/Slice_output_0, %/layers.3/Slice_1_output_0) %/layers.3/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_3_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_872, %onnx::Conv_873) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Concat_output_0 = Concat[axis = 1](%/layers.3/vertex_op.1/maxpool/MaxPool_output_0, %/layers.3/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/Concat_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_875, %onnx::Conv_876) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_878, %onnx::Conv_879) %/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_881, %onnx::Conv_882) %/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_884, %onnx::Conv_885) %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.5/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.5/Slice_output_0 = Slice(%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/Constant_4_output_0, %/layers.5/Constant_5_output_0, %/layers.5/Constant_3_output_0, %/layers.5/Constant_6_output_0) %/layers.5/Add_3_output_0 = Add(%/layers.5/Slice_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_3_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_887, %onnx::Conv_888) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Concat_output_0 = Concat[axis = 1](%/layers.5/vertex_op.1/maxpool/MaxPool_output_0, %/layers.5/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_890, %onnx::Conv_891) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Concat_output_0, %onnx::Conv_893, %onnx::Conv_894) %/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_896, %onnx::Conv_897) %/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_899, %onnx::Conv_900) %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.6/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.6/Slice_output_0 = Slice(%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/Constant_4_output_0, %/layers.6/Constant_5_output_0, %/layers.6/Constant_3_output_0, %/layers.6/Constant_6_output_0) %/layers.6/Add_3_output_0 = Add(%/layers.6/Slice_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_3_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_902, %onnx::Conv_903) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Concat_output_0 = Concat[axis = 1](%/layers.6/vertex_op.1/maxpool/MaxPool_output_0, %/layers.6/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_905, %onnx::Conv_906) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Concat_output_0, %onnx::Conv_908, %onnx::Conv_909) %/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_911, %onnx::Conv_912) %/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_914, %onnx::Conv_915) %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.7/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.7/Slice_output_0 = Slice(%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/Constant_4_output_0, %/layers.7/Constant_5_output_0, %/layers.7/Constant_3_output_0, %/layers.7/Constant_6_output_0) %/layers.7/Add_3_output_0 = Add(%/layers.7/Slice_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_3_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_917, %onnx::Conv_918) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Concat_output_0 = Concat[axis = 1](%/layers.7/vertex_op.1/maxpool/MaxPool_output_0, %/layers.7/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/Concat_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_920, %onnx::Conv_921) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_923, %onnx::Conv_924) %/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_926, %onnx::Conv_927) %/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_929, %onnx::Conv_930) %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_output_0 = Slice(%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/Constant_4_output_0, %/layers.9/Constant_5_output_0, %/layers.9/Constant_3_output_0, %/layers.9/Constant_6_output_0) %/layers.9/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.9/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.9/Slice_1_output_0 = Slice(%/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_8_output_0, %/layers.9/Constant_9_output_0, %/layers.9/Constant_7_output_0, %/layers.9/Constant_10_output_0) %/layers.9/Add_3_output_0 = Add(%/layers.9/Slice_output_0, %/layers.9/Slice_1_output_0) %/layers.9/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_3_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_932, %onnx::Conv_933) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Concat_output_0 = Concat[axis = 1](%/layers.9/vertex_op.1/maxpool/MaxPool_output_0, %/layers.9/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_935, %onnx::Conv_936) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Concat_output_0, %onnx::Conv_938, %onnx::Conv_939) %/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_941, %onnx::Conv_942) %/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_944, %onnx::Conv_945) %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_output_0 = Slice(%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/Constant_4_output_0, %/layers.10/Constant_5_output_0, %/layers.10/Constant_3_output_0, %/layers.10/Constant_6_output_0) %/layers.10/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.10/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.10/Slice_1_output_0 = Slice(%/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_8_output_0, %/layers.10/Constant_9_output_0, %/layers.10/Constant_7_output_0, %/layers.10/Constant_10_output_0) %/layers.10/Add_3_output_0 = Add(%/layers.10/Slice_output_0, %/layers.10/Slice_1_output_0) %/layers.10/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_3_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_947, %onnx::Conv_948) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Concat_output_0 = Concat[axis = 1](%/layers.10/vertex_op.1/maxpool/MaxPool_output_0, %/layers.10/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_950, %onnx::Conv_951) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Concat_output_0, %onnx::Conv_953, %onnx::Conv_954) %/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/input_op.2/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_956, %onnx::Conv_957) %/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.2/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_959, %onnx::Conv_960) %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_4_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_5_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_6_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_output_0 = Slice(%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/Constant_4_output_0, %/layers.11/Constant_5_output_0, %/layers.11/Constant_3_output_0, %/layers.11/Constant_6_output_0) %/layers.11/Constant_7_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_8_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_9_output_0 = Constant[value = <Tensor>]() %/layers.11/Constant_10_output_0 = Constant[value = <Tensor>]() %/layers.11/Slice_1_output_0 = Slice(%/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_8_output_0, %/layers.11/Constant_9_output_0, %/layers.11/Constant_7_output_0, %/layers.11/Constant_10_output_0) %/layers.11/Add_3_output_0 = Add(%/layers.11/Slice_output_0, %/layers.11/Slice_1_output_0) %/layers.11/vertex_op.4/maxpool/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_3_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/vertex_op.4/maxpool/MaxPool_output_0, %onnx::Conv_962, %onnx::Conv_963) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Concat_output_0 = Concat[axis = 1](%/layers.11/vertex_op.1/maxpool/MaxPool_output_0, %/layers.11/vertex_op.3/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/Concat_output_0) %825 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %825 }
val_accuracy
91.035658
831,187,712
2,770,483
{'zcp_epe_nas': 89.39472003480002, 'zcp_fisher': 8.702317237854004, 'zcp_flops': 13299003392.0, 'zcp_grad_norm': 59.76048278808594, 'zcp_grasp': -9.33477783203125, 'zcp_jacov': -16.062074325092766, 'zcp_l2_norm': 761.0316162109375, 'zcp_nwot': 215.6081954314802, 'zcp_params': 2770483.0, 'zcp_plain': 0.06066598743200301, 'zcp_snip': 300.4259948730469, 'zcp_synflow': 109.9728166230079, 'zcp_zen': 82.33478546142578, 'zcp_val_accuracy': 0.8936297893524171}
NASBench101_323495
NASBench101
323495
c3bcdee80fdb64e5463e347284b463f5
graph torch_jit ( %input.1[FLOAT, 1x3x32x32] %classifier.weight[FLOAT, 10x512] %classifier.bias[FLOAT, 10] %onnx::Conv_968[FLOAT, 128x3x3x3] %onnx::Conv_969[FLOAT, 128] %onnx::Conv_971[FLOAT, 128x128x1x1] %onnx::Conv_974[FLOAT, 128x128x3x3] %onnx::Conv_977[FLOAT, 128x128x3x3] %onnx::Conv_980[FLOAT, 128x128x1x1] %onnx::Conv_983[FLOAT, 128x128x1x1] %onnx::Conv_986[FLOAT, 128x128x1x1] %onnx::Conv_989[FLOAT, 128x128x3x3] %onnx::Conv_992[FLOAT, 128x128x1x1] %onnx::Conv_995[FLOAT, 128x128x3x3] %onnx::Conv_998[FLOAT, 128x128x3x3] %onnx::Conv_1001[FLOAT, 128x128x1x1] %onnx::Conv_1004[FLOAT, 128x128x1x1] %onnx::Conv_1007[FLOAT, 128x128x1x1] %onnx::Conv_1010[FLOAT, 128x128x3x3] %onnx::Conv_1013[FLOAT, 128x128x1x1] %onnx::Conv_1016[FLOAT, 128x128x3x3] %onnx::Conv_1019[FLOAT, 128x128x3x3] %onnx::Conv_1022[FLOAT, 128x128x1x1] %onnx::Conv_1025[FLOAT, 128x128x1x1] %onnx::Conv_1028[FLOAT, 128x128x1x1] %onnx::Conv_1031[FLOAT, 128x128x3x3] %onnx::Conv_1034[FLOAT, 256x128x1x1] %onnx::Conv_1035[FLOAT, 256] %onnx::Conv_1037[FLOAT, 256x256x3x3] %onnx::Conv_1040[FLOAT, 256x256x3x3] %onnx::Conv_1043[FLOAT, 256x256x1x1] %onnx::Conv_1046[FLOAT, 256x128x1x1] %onnx::Conv_1049[FLOAT, 256x256x1x1] %onnx::Conv_1052[FLOAT, 256x256x3x3] %onnx::Conv_1055[FLOAT, 256x256x1x1] %onnx::Conv_1058[FLOAT, 256x256x3x3] %onnx::Conv_1061[FLOAT, 256x256x3x3] %onnx::Conv_1064[FLOAT, 256x256x1x1] %onnx::Conv_1067[FLOAT, 256x256x1x1] %onnx::Conv_1070[FLOAT, 256x256x1x1] %onnx::Conv_1073[FLOAT, 256x256x3x3] %onnx::Conv_1076[FLOAT, 256x256x1x1] %onnx::Conv_1079[FLOAT, 256x256x3x3] %onnx::Conv_1082[FLOAT, 256x256x3x3] %onnx::Conv_1085[FLOAT, 256x256x1x1] %onnx::Conv_1088[FLOAT, 256x256x1x1] %onnx::Conv_1091[FLOAT, 256x256x1x1] %onnx::Conv_1094[FLOAT, 256x256x3x3] %onnx::Conv_1097[FLOAT, 512x256x1x1] %onnx::Conv_1098[FLOAT, 512] %onnx::Conv_1100[FLOAT, 512x512x3x3] %onnx::Conv_1103[FLOAT, 512x512x3x3] %onnx::Conv_1106[FLOAT, 512x512x1x1] %onnx::Conv_1109[FLOAT, 512x256x1x1] %onnx::Conv_1112[FLOAT, 512x512x1x1] %onnx::Conv_1115[FLOAT, 512x512x3x3] %onnx::Conv_1118[FLOAT, 512x512x1x1] %onnx::Conv_1121[FLOAT, 512x512x3x3] %onnx::Conv_1124[FLOAT, 512x512x3x3] %onnx::Conv_1127[FLOAT, 512x512x1x1] %onnx::Conv_1130[FLOAT, 512x512x1x1] %onnx::Conv_1133[FLOAT, 512x512x1x1] %onnx::Conv_1136[FLOAT, 512x512x3x3] %onnx::Conv_1139[FLOAT, 512x512x1x1] %onnx::Conv_1142[FLOAT, 512x512x3x3] %onnx::Conv_1145[FLOAT, 512x512x3x3] %onnx::Conv_1148[FLOAT, 512x512x1x1] %onnx::Conv_1151[FLOAT, 512x512x1x1] %onnx::Conv_1154[FLOAT, 512x512x1x1] %onnx::Conv_1157[FLOAT, 512x512x3x3] ) { %onnx::Conv_1158 = Identity(%onnx::Conv_1098) %onnx::Conv_1155 = Identity(%onnx::Conv_1098) %onnx::Conv_1152 = Identity(%onnx::Conv_1098) %onnx::Conv_1149 = Identity(%onnx::Conv_1098) %onnx::Conv_1146 = Identity(%onnx::Conv_1098) %onnx::Conv_1143 = Identity(%onnx::Conv_1098) %onnx::Conv_1140 = Identity(%onnx::Conv_1098) %onnx::Conv_1137 = Identity(%onnx::Conv_1098) %onnx::Conv_1134 = Identity(%onnx::Conv_1098) %onnx::Conv_1131 = Identity(%onnx::Conv_1098) %onnx::Conv_1128 = Identity(%onnx::Conv_1098) %onnx::Conv_1125 = Identity(%onnx::Conv_1098) %onnx::Conv_1122 = Identity(%onnx::Conv_1098) %onnx::Conv_1119 = Identity(%onnx::Conv_1098) %onnx::Conv_1116 = Identity(%onnx::Conv_1098) %onnx::Conv_1113 = Identity(%onnx::Conv_1098) %onnx::Conv_1110 = Identity(%onnx::Conv_1098) %onnx::Conv_1107 = Identity(%onnx::Conv_1098) %onnx::Conv_1104 = Identity(%onnx::Conv_1098) %onnx::Conv_1101 = Identity(%onnx::Conv_1098) %onnx::Conv_1095 = Identity(%onnx::Conv_1035) %onnx::Conv_1092 = Identity(%onnx::Conv_1035) %onnx::Conv_1089 = Identity(%onnx::Conv_1035) %onnx::Conv_1086 = Identity(%onnx::Conv_1035) %onnx::Conv_1083 = Identity(%onnx::Conv_1035) %onnx::Conv_1080 = Identity(%onnx::Conv_1035) %onnx::Conv_1077 = Identity(%onnx::Conv_1035) %onnx::Conv_1074 = Identity(%onnx::Conv_1035) %onnx::Conv_1071 = Identity(%onnx::Conv_1035) %onnx::Conv_1068 = Identity(%onnx::Conv_1035) %onnx::Conv_1065 = Identity(%onnx::Conv_1035) %onnx::Conv_1062 = Identity(%onnx::Conv_1035) %onnx::Conv_1059 = Identity(%onnx::Conv_1035) %onnx::Conv_1056 = Identity(%onnx::Conv_1035) %onnx::Conv_1053 = Identity(%onnx::Conv_1035) %onnx::Conv_1050 = Identity(%onnx::Conv_1035) %onnx::Conv_1047 = Identity(%onnx::Conv_1035) %onnx::Conv_1044 = Identity(%onnx::Conv_1035) %onnx::Conv_1041 = Identity(%onnx::Conv_1035) %onnx::Conv_1038 = Identity(%onnx::Conv_1035) %onnx::Conv_1032 = Identity(%onnx::Conv_969) %onnx::Conv_1029 = Identity(%onnx::Conv_969) %onnx::Conv_1026 = Identity(%onnx::Conv_969) %onnx::Conv_1023 = Identity(%onnx::Conv_969) %onnx::Conv_1020 = Identity(%onnx::Conv_969) %onnx::Conv_1017 = Identity(%onnx::Conv_969) %onnx::Conv_1014 = Identity(%onnx::Conv_969) %onnx::Conv_1011 = Identity(%onnx::Conv_969) %onnx::Conv_1008 = Identity(%onnx::Conv_969) %onnx::Conv_1005 = Identity(%onnx::Conv_969) %onnx::Conv_1002 = Identity(%onnx::Conv_969) %onnx::Conv_999 = Identity(%onnx::Conv_969) %onnx::Conv_996 = Identity(%onnx::Conv_969) %onnx::Conv_993 = Identity(%onnx::Conv_969) %onnx::Conv_990 = Identity(%onnx::Conv_969) %onnx::Conv_987 = Identity(%onnx::Conv_969) %onnx::Conv_984 = Identity(%onnx::Conv_969) %onnx::Conv_981 = Identity(%onnx::Conv_969) %onnx::Conv_978 = Identity(%onnx::Conv_969) %onnx::Conv_975 = Identity(%onnx::Conv_969) %onnx::Conv_972 = Identity(%onnx::Conv_969) %/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_968, %onnx::Conv_969) %/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.0/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_971, %onnx::Conv_972) %/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_output_0 = Add(%/layers.1/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_output_0) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_output_0, %onnx::Conv_974, %onnx::Conv_975) %/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_1_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_1_output_0) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_1_output_0, %onnx::Conv_977, %onnx::Conv_978) %/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_2_output_0 = Add(%/layers.1/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_2_output_0) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_2_output_0, %onnx::Conv_980, %onnx::Conv_981) %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.0/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_983, %onnx::Conv_984) %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_3_output_0 = Add(%/layers.1/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_3_output_0) %/layers.1/Add_4_output_0 = Add(%/layers.1/Add_3_output_0, %/layers.1/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/Add_5_output_0 = Add(%/layers.1/Add_4_output_0, %/layers.1/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/Add_5_output_0, %onnx::Conv_986, %onnx::Conv_987) %/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.1/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.1/Add_6_output_0 = Add(%/layers.1/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.1/Constant_4_output_0) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.1/Add_6_output_0, %onnx::Conv_989, %onnx::Conv_990) %/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_992, %onnx::Conv_993) %/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_output_0 = Add(%/layers.2/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_output_0) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_output_0, %onnx::Conv_995, %onnx::Conv_996) %/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_1_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_1_output_0) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_1_output_0, %onnx::Conv_998, %onnx::Conv_999) %/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_2_output_0 = Add(%/layers.2/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_2_output_0) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_2_output_0, %onnx::Conv_1001, %onnx::Conv_1002) %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.1/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1004, %onnx::Conv_1005) %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_3_output_0 = Add(%/layers.2/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_3_output_0) %/layers.2/Add_4_output_0 = Add(%/layers.2/Add_3_output_0, %/layers.2/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/Add_5_output_0 = Add(%/layers.2/Add_4_output_0, %/layers.2/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/Add_5_output_0, %onnx::Conv_1007, %onnx::Conv_1008) %/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.2/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.2/Add_6_output_0 = Add(%/layers.2/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.2/Constant_4_output_0) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.2/Add_6_output_0, %onnx::Conv_1010, %onnx::Conv_1011) %/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1013, %onnx::Conv_1014) %/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_output_0 = Add(%/layers.3/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_output_0) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_output_0, %onnx::Conv_1016, %onnx::Conv_1017) %/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_1_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_1_output_0) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_1_output_0, %onnx::Conv_1019, %onnx::Conv_1020) %/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_2_output_0 = Add(%/layers.3/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_2_output_0) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_2_output_0, %onnx::Conv_1022, %onnx::Conv_1023) %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.2/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1025, %onnx::Conv_1026) %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_3_output_0 = Add(%/layers.3/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_3_output_0) %/layers.3/Add_4_output_0 = Add(%/layers.3/Add_3_output_0, %/layers.3/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/Add_5_output_0 = Add(%/layers.3/Add_4_output_0, %/layers.3/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.3/Add_5_output_0, %onnx::Conv_1028, %onnx::Conv_1029) %/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.3/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.3/Add_6_output_0 = Add(%/layers.3/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.3/Constant_4_output_0) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.3/Add_6_output_0, %onnx::Conv_1031, %onnx::Conv_1032) %/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.4/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.3/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1034, %onnx::Conv_1035) %/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_output_0 = Add(%/layers.5/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_output_0) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_output_0, %onnx::Conv_1037, %onnx::Conv_1038) %/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_1_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_1_output_0) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_1_output_0, %onnx::Conv_1040, %onnx::Conv_1041) %/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_2_output_0 = Add(%/layers.5/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_2_output_0) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_2_output_0, %onnx::Conv_1043, %onnx::Conv_1044) %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.4/MaxPool_output_0, %onnx::Conv_1046, %onnx::Conv_1047) %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_3_output_0 = Add(%/layers.5/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_3_output_0) %/layers.5/Add_4_output_0 = Add(%/layers.5/Add_3_output_0, %/layers.5/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/Add_5_output_0 = Add(%/layers.5/Add_4_output_0, %/layers.5/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/Add_5_output_0, %onnx::Conv_1049, %onnx::Conv_1050) %/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.5/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.5/Add_6_output_0 = Add(%/layers.5/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.5/Constant_4_output_0) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.5/Add_6_output_0, %onnx::Conv_1052, %onnx::Conv_1053) %/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1055, %onnx::Conv_1056) %/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_output_0 = Add(%/layers.6/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_output_0) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_output_0, %onnx::Conv_1058, %onnx::Conv_1059) %/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_1_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_1_output_0) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_1_output_0, %onnx::Conv_1061, %onnx::Conv_1062) %/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_2_output_0 = Add(%/layers.6/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_2_output_0) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_2_output_0, %onnx::Conv_1064, %onnx::Conv_1065) %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.5/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1067, %onnx::Conv_1068) %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_3_output_0 = Add(%/layers.6/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_3_output_0) %/layers.6/Add_4_output_0 = Add(%/layers.6/Add_3_output_0, %/layers.6/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/Add_5_output_0 = Add(%/layers.6/Add_4_output_0, %/layers.6/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/Add_5_output_0, %onnx::Conv_1070, %onnx::Conv_1071) %/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.6/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.6/Add_6_output_0 = Add(%/layers.6/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.6/Constant_4_output_0) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.6/Add_6_output_0, %onnx::Conv_1073, %onnx::Conv_1074) %/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1076, %onnx::Conv_1077) %/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_output_0 = Add(%/layers.7/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_output_0) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_output_0, %onnx::Conv_1079, %onnx::Conv_1080) %/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_1_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_1_output_0) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_1_output_0, %onnx::Conv_1082, %onnx::Conv_1083) %/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_2_output_0 = Add(%/layers.7/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_2_output_0) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_2_output_0, %onnx::Conv_1085, %onnx::Conv_1086) %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.6/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1088, %onnx::Conv_1089) %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_3_output_0 = Add(%/layers.7/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_3_output_0) %/layers.7/Add_4_output_0 = Add(%/layers.7/Add_3_output_0, %/layers.7/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/Add_5_output_0 = Add(%/layers.7/Add_4_output_0, %/layers.7/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.7/Add_5_output_0, %onnx::Conv_1091, %onnx::Conv_1092) %/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.7/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.7/Add_6_output_0 = Add(%/layers.7/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.7/Constant_4_output_0) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.7/Add_6_output_0, %onnx::Conv_1094, %onnx::Conv_1095) %/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.8/MaxPool_output_0 = MaxPool[ceil_mode = 0, kernel_shape = [2, 2], pads = [0, 0, 0, 0], strides = [2, 2]](%/layers.7/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1097, %onnx::Conv_1098) %/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_output_0 = Add(%/layers.9/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_output_0) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_output_0, %onnx::Conv_1100, %onnx::Conv_1101) %/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_1_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_1_output_0) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_1_output_0, %onnx::Conv_1103, %onnx::Conv_1104) %/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_2_output_0 = Add(%/layers.9/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_2_output_0) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_2_output_0, %onnx::Conv_1106, %onnx::Conv_1107) %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.8/MaxPool_output_0, %onnx::Conv_1109, %onnx::Conv_1110) %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_3_output_0 = Add(%/layers.9/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_3_output_0) %/layers.9/Add_4_output_0 = Add(%/layers.9/Add_3_output_0, %/layers.9/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/Add_5_output_0 = Add(%/layers.9/Add_4_output_0, %/layers.9/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/Add_5_output_0, %onnx::Conv_1112, %onnx::Conv_1113) %/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.9/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.9/Add_6_output_0 = Add(%/layers.9/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.9/Constant_4_output_0) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.9/Add_6_output_0, %onnx::Conv_1115, %onnx::Conv_1116) %/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1118, %onnx::Conv_1119) %/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_output_0 = Add(%/layers.10/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_output_0) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_output_0, %onnx::Conv_1121, %onnx::Conv_1122) %/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_1_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_1_output_0) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_1_output_0, %onnx::Conv_1124, %onnx::Conv_1125) %/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_2_output_0 = Add(%/layers.10/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_2_output_0) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_2_output_0, %onnx::Conv_1127, %onnx::Conv_1128) %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.9/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1130, %onnx::Conv_1131) %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_3_output_0 = Add(%/layers.10/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_3_output_0) %/layers.10/Add_4_output_0 = Add(%/layers.10/Add_3_output_0, %/layers.10/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/Add_5_output_0 = Add(%/layers.10/Add_4_output_0, %/layers.10/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/Add_5_output_0, %onnx::Conv_1133, %onnx::Conv_1134) %/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.10/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.10/Add_6_output_0 = Add(%/layers.10/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.10/Constant_4_output_0) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.10/Add_6_output_0, %onnx::Conv_1136, %onnx::Conv_1137) %/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1139, %onnx::Conv_1140) %/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_output_0 = Add(%/layers.11/input_op.1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_output_0) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_output_0, %onnx::Conv_1142, %onnx::Conv_1143) %/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_1_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_1_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_1_output_0) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_1_output_0, %onnx::Conv_1145, %onnx::Conv_1146) %/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_2_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_2_output_0 = Add(%/layers.11/vertex_op.1/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_2_output_0) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_2_output_0, %onnx::Conv_1148, %onnx::Conv_1149) %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.10/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %onnx::Conv_1151, %onnx::Conv_1152) %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_3_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_3_output_0 = Add(%/layers.11/vertex_op.2/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_3_output_0) %/layers.11/Add_4_output_0 = Add(%/layers.11/Add_3_output_0, %/layers.11/vertex_op.3/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/Add_5_output_0 = Add(%/layers.11/Add_4_output_0, %/layers.11/input_op.4/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/layers.11/Add_5_output_0, %onnx::Conv_1154, %onnx::Conv_1155) %/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/layers.11/Constant_4_output_0 = Constant[value = <Scalar Tensor []>]() %/layers.11/Add_6_output_0 = Add(%/layers.11/vertex_op.4/conv1x1/conv_bn_relu/conv_bn_relu.2/Relu_output_0, %/layers.11/Constant_4_output_0) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/layers.11/Add_6_output_0, %onnx::Conv_1157, %onnx::Conv_1158) %/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0 = Relu(%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.0/Conv_output_0) %/ReduceMean_output_0 = ReduceMean[axes = [2, 3], keepdims = 0](%/layers.11/vertex_op.5/conv3x3/conv_bn_relu/conv_bn_relu.2/Relu_output_0) %966 = Gemm[alpha = 1, beta = 1, transB = 1](%/ReduceMean_output_0, %classifier.weight, %classifier.bias) return %966 }
val_accuracy
91.30609
9,341,249,536
31,716,746
{'zcp_epe_nas': 144.84373918599005, 'zcp_fisher': 670.370361328125, 'zcp_flops': 149459992576.0, 'zcp_grad_norm': 527.6669311523438, 'zcp_grasp': -41.4375, 'zcp_jacov': -16.067368031713954, 'zcp_l2_norm': 1454.0732421875, 'zcp_nwot': 237.486610935463, 'zcp_params': 31716746.0, 'zcp_plain': 0.008535984903573001, 'zcp_snip': 3954.962158203125, 'zcp_synflow': 167.41734181777434, 'zcp_zen': 129.83419799804688, 'zcp_val_accuracy': 0.9232772588729851}