| id
				 int64 -30,985 55.9k | text
				 stringlengths 5 437k | 
|---|---|
| -20,377 | 
	\frac{20 + l\cdot 4}{25 + l\cdot 5} = \frac{l + 5}{l + 5}\cdot \frac45 | 
| 4,308 | 
	\binom{k}{2} = \dfrac{1}{2! \cdot (k + 2 \cdot (-1))!} \cdot k! = \frac{k}{2} \cdot (k + \left(-1\right)) | 
| 34,798 | 
	\binom{m + 1}{b + 1} = \binom{m}{b + 1} + \binom{m}{b} | 
| -10,651 | 
	\frac{36}{12\cdot \epsilon^2} = \dfrac{4}{4}\cdot \frac{9}{\epsilon \cdot  \epsilon\cdot 3} | 
| -11,557 | 
	i \cdot 18 - 5 + 8 \cdot (-1) = -13 + 18 \cdot i | 
| 27,550 | 
	V_{x \cdot l} \cdot \beta_l \cdot V_{q \cdot x} = V_{q \cdot x} \cdot V_{l \cdot x} \cdot \beta_l | 
| 31,819 | 
	e^q = 1 + q + \frac{1}{2!} \cdot q^2 + \dotsm \gt q^2/2 | 
| 5,145 | 
	3^{f + (-1)} = \dfrac133^f = 3^f/3 = \frac{1}{3}3^f | 
| 18,669 | 
	(y + 3 \cdot (-1)) \cdot (y + 5) - (y + 4) \cdot (y + 5 \cdot (-1)) = y^2 + 2 \cdot y + 15 \cdot \left(-1\right) - y^2 - y + 20 \cdot (-1) = 3 \cdot y + 5 | 
| 37,118 | 
	{3 \choose 1} = \dfrac{3!}{1! \cdot 2!} = 3 | 
| 15,665 | 
	\cos^2(w)\cdot 2 + (-1) = \cos(2w) | 
| 9,476 | 
	2^{\frac{1}{8}\cdot (m + 1)} = 2^{\dfrac18}\cdot 2^{\frac{m}{8}} > 2^{1/8}\cdot m | 
| 13,760 | 
	3^3 + 2 (-1) = 25 = 5   5 | 
| -15,721 | 
	\frac{x}{\left(k^3\cdot x^5\right)^2} = \frac{x}{k^6\cdot x^{10}} | 
| 31,938 | 
	2*B = B + B | 
| -13,919 | 
	\frac{2}{4 + 3 \cdot (-1)} = \frac{1}{1} \cdot 2 = \dfrac{2}{1} = 2 | 
| 14,093 | 
	7 + 1/8 = \frac{57}{8} | 
| 8,272 | 
	\frac{1}{1 + y^2 \times n  \times  n} \times n = \frac{\partial}{\partial y} \tan^{-1}(y \times n) | 
| 25,848 | 
	\mathbb{E}(Y)\cdot \mathbb{E}(X) = \mathbb{E}(Y\cdot \mathbb{E}(X)) | 
| -25,830 | 
	\frac{1}{x + 3\cdot (-1)}\cdot (x \cdot  x^2 - x\cdot 4 + 15\cdot (-1)) = x^2 + 3\cdot x + 5 | 
| -24,466 | 
	6 + \frac14 \cdot 36 = 6 + 9 = 6 + 9 = 15 | 
| 8,617 | 
	2 \cdot (f^2 + b^2 + x^2 + (-1)) = 2 \cdot (f  \cdot  f + b^2 + x^2 - f \cdot b - b \cdot x - f \cdot x) = (f - b)^2 + (b - x)^2 + (x - f)^2 | 
| 155 | 
	\frac{1}{b}\left((-1) a\right) = -a/b = a/((-1) b) | 
| 13,404 | 
	z^3 - 2z + (-1) = ((-1) + z^2 - z) \left(z + 1\right) | 
| 6,364 | 
	-1 \times  1 + 2^2 = 3 | 
| 2,564 | 
	(k\cdot 2)^2 + (2\cdot h) \cdot  (2\cdot h) = 10 \cdot  10 rightarrow 5^2 = k^2 + h^2 | 
| 29,983 | 
	11=0\times25+11 | 
| -9,317 | 
	5a * a - a*35 = -5*7 a + 5a a | 
| 4,802 | 
	4/100\cdot z = 0.04\cdot z | 
| 31,348 | 
	\dfrac{1}{10000}\cdot 9360 = 0.936 = 117/125 | 
| 6,870 | 
	\frac{1}{((-1) + M)!}(U - M + M + (-1))! = \frac{((-1) + U)!}{\left((-1) + M\right)!} | 
| 24,258 | 
	\int z \times  z^2\times \sqrt{-z^2 + 4}\,\text{d}z = \int \sqrt{4 - z^2}\times z \times  z\times z\,\text{d}z | 
| 11,792 | 
	\sqrt{7} - \sqrt{6} - \sqrt{6} - \sqrt{5} = -\sqrt{6}\cdot 2 + \sqrt{5} + \sqrt{7} | 
| 34,081 | 
	\cos{2*z} = \cos^2{z} - \sin^2{z} = 2*\cos^2{z} + \left(-1\right) | 
| 3,840 | 
	1 - a \cdot y  \cdot  y = \frac{1}{1/a} \cdot (\frac{1}{a} - y^2) | 
| 5,202 | 
	\cos(\arcsin{x}) = (1 - x^2)^{\frac{1}{2}} | 
| -30,924 | 
	24 = -3\cdot 8 + 48 | 
| 10,186 | 
	(-10 z + 7x) (7x + z*10) = 49 x^2 - z^2*100 | 
| -2,734 | 
	6^{1/2} \cdot (5 + 2 \cdot (-1)) = 6^{1/2} \cdot 3 | 
| 10,399 | 
	f*D^n = D^0*D^n*f | 
| 13,280 | 
	\frac{1}{3} + 1/4 + 1/5 = 47/60 | 
| 28,842 | 
	19 = 26 - (-1) + 2^2   2 | 
| 24,873 | 
	\dfrac{1}{16}(1 - x) + x = 1/16 + x\cdot 15/16 | 
| 18,621 | 
	\frac13 = \dfrac{1}{3}*2/2 | 
| -20,029 | 
	\frac{-q*9 + 2}{5*(-1) + q*10}*\frac{1}{7}*7 = \frac{14 - q*63}{70*q + 35*(-1)} | 
| 16,491 | 
	-\frac{20}{3}\cdot y^2 + 6 + -\frac{1}{3}\cdot y\cdot (3\cdot y^2 - 17\cdot y + 24\cdot (-1)) = -y^3 - y \cdot  y + 8\cdot y + 6 | 
| -19,014 | 
	2/15 = \frac{D_s}{36\cdot π}\cdot 36\cdot π = D_s | 
| -3,567 | 
	r^5/r\cdot \dfrac{96}{64} = 96\cdot r^5/(64\cdot r) | 
| 5,109 | 
	7 = 7 + 0 \cdot 3 | 
| 52,852 | 
	0.35*0.28 = 0.098 = 0.98 | 
| -7,010 | 
	\frac{6}{14}*2/13 = \tfrac{6}{91} | 
| 10,002 | 
	n^{n + (-1)} + (-1) = ((-1) + n) (n^{2(-1) + n} + n^{n + 3(-1)} + ... + n + 1) | 
| 13,918 | 
	8 + y^3 = (y + 2)\cdot (4 + y \cdot  y - y\cdot 2) | 
| 15,344 | 
	x - \sqrt{26} \leq 0 \Rightarrow \sqrt{26} \geq x | 
| 16,590 | 
	((-1) + y)*((-1) + x) + (-1) = y*x - x - y | 
| 17,712 | 
	l^2 - l - l + (-1) = l^2 - 2l + 1 = (l + (-1)) \cdot  (l + (-1)) | 
| 4,410 | 
	0 = l \Rightarrow 0 \gt \left(-1\right) + 4 l | 
| 2,376 | 
	(d + d + d)*\left(b + b + b\right) = 3*d*3*b = 3*3*d*b = 9*d*b | 
| 25,310 | 
	y = \sqrt{y}\cdot \sqrt{y} = \left(\sqrt{y}\right)^2 = y | 
| 26,424 | 
	2 + 8 + 24 + 64 + \cdots + 2^m*m = 2*((m + (-1))*2^m + 1) | 
| -20,004 | 
	8/8 \frac{9z}{-7z + 5\left(-1\right)} = \frac{z\cdot 72}{40 \left(-1\right) - z\cdot 56} | 
| 16,996 | 
	2^{546}+1=(2^{182}+1)(2^{364}-2^{182}+1) | 
| 12,200 | 
	\frac{1}{2(x + 1)} + \tfrac{1}{2 \cdot \left(1 - x\right)} = \dfrac{1}{1 - x^2} | 
| -6,482 | 
	\frac{1}{8}\cdot 8\cdot \frac{2}{(t + 4)\cdot (8 + t)} = \tfrac{16}{8\cdot (t + 4)\cdot (t + 8)} | 
| 641 | 
	a + a*2 + 3*a + 10 = 250 \Rightarrow a = 40 | 
| 18,961 | 
	(f + 11)\cdot (u + 11) - f\cdot u = f\cdot u + 11\cdot f + 11\cdot u + 11\cdot 11 - f\cdot u = 11\cdot f + 11\cdot u + 121 | 
| 25,585 | 
	w + m + x = m + x + w | 
| -5,622 | 
	\tfrac{4}{\left(9\cdot (-1) + q\right)\cdot 3} = \frac{4}{27\cdot (-1) + q\cdot 3} | 
| -3,659 | 
	\dfrac{5}{6\cdot q} = \frac{5}{q}\cdot 1/6 | 
| 4,734 | 
	2/1 \cdot \dfrac{1}{-4} \cdot \frac{2}{1} = \tfrac{4}{-4} = -1 | 
| 7,582 | 
	\sin^2(x) = \sin^2\left(x\right) = \sin(\sin(x)) | 
| 16,934 | 
	1 + z\cdot y = z\cdot y + 1 | 
| 21,474 | 
	\mathbb{E}[-2\cdot Z_2\cdot Z_1 + Z_1^2 + Z_2^2] = \mathbb{E}[(-Z_1 + Z_2)^2] | 
| 19,832 | 
	\frac{h*x}{d} = x*\frac{h}{d} | 
| 24,116 | 
	-e^{x + \left(-1\right)}/2 = \frac{1}{2\cdot (\left(-1\right) + x)}\cdot e^{x + (-1)}\cdot (1 - x) | 
| -20,520 | 
	\tfrac{1}{10} 10 \left(-\dfrac{6}{5}\right) = -\frac{1}{50} 60 | 
| 3,607 | 
	\dfrac{y^n}{7 + y^n} = \frac{1}{1 + \dfrac{1}{y^n}\cdot 7} | 
| -27,398 | 
	4 \left(-1\right) + 154 = 150 | 
| 7,212 | 
	e^{1 + |x - z|} = e^1 e^{|x - z|} | 
| -8,996 | 
	13.3\% = \frac{1}{100}13.3 | 
| 10,293 | 
	1587/12167 = \frac{1}{x\cdot y\cdot z}\cdot \left(x\cdot y + y\cdot z + x\cdot z\right) = \frac1x + 1/y + 1/z | 
| 23,388 | 
	\frac{1}{\frac23\cdot 3} = 1/2\cdot 3/3 | 
| -1,333 | 
	(\left(-2\right)*1/9)/(3*1/2) = \tfrac{2}{3}*\left(-\frac{2}{9}\right) | 
| 27,481 | 
	p^3 - p^2 + p^2 - p + p + \left(-1\right) + 1 = p^3 | 
| 19,829 | 
	y * y + 5*y + 1 = y^2 - 6*y + 9 + 8*(-1) = (y + 3*\left(-1\right))^2 + 8*(-1) | 
| 20,553 | 
	\left(-2\right)\cdot (-1) = 2 \implies (-2)\cdot \left(-2\right) = 4 | 
| 13,554 | 
	12 = -84\cdot 2 + 3\cdot \left(-84 + 144\right) | 
| 16,859 | 
	(3 + 2*l)*l + 1 = 1 + 2*l * l + l*3 | 
| 17,861 | 
	\frac{1}{0\cdot (-1) + 2} = 1/2 | 
| 12,409 | 
	{52 \choose 13} = \dfrac{1}{13} 52 {51 \choose 12} = 4 {51 \choose 12} | 
| 29,176 | 
	\frac{1}{14} = \frac{216}{3024} | 
| 14,186 | 
	2 \times a + c - a = c + a | 
| 32,637 | 
	0 = a^7 + 1 = \left(a + 1\right)*(a^6 - a^5 + a^4 - a^3 + a^2 - a + 1) | 
| 4,544 | 
	X \cdot n \cdot z_2 + X \cdot n \cdot z_1 \cdot a = \left(z_1 \cdot n \cdot a + z_2 \cdot n\right) \cdot X | 
| 16,565 | 
	5/2*\dfrac{2}{3} = \dfrac{1}{3}*5 | 
| -6,111 | 
	\dfrac{5}{3(q + 8)} \times \dfrac{q + 10}{q + 10} = \dfrac{5(q + 10)}{3(q + 8)(q + 10)} | 
| -3,722 | 
	\tfrac{q^3}{q^2} = q\cdot q\cdot q/(q\cdot q) = q | 
| 22,778 | 
	\dfrac13\cdot 2 = \frac{1}{45}\cdot 30 | 
| 17,349 | 
	4^{k + 1} + 4^2\cdot ((-1) + 4^{k + (-1)})/3 = 4 \cdot  4\cdot ((-1) + 4^k)/3 | 
| 25,070 | 
	\left(l + \left(-1\right)\right)\cdot \left(l + \left(-1\right)\right) = l^2 - 2\cdot l + 1 > l | 
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.
