id
int64 2
155k
| CLAP-log-likelihood
float64 -16.12
-0.01
|
|---|---|
142,090
| -0.012294
|
98,597
| -0.015572
|
124,735
| -0.015678
|
125,656
| -0.015715
|
98,588
| -0.016477
|
98,599
| -0.017891
|
149,133
| -0.018413
|
131,785
| -0.018823
|
18,087
| -0.019531
|
98,583
| -0.019657
|
18,089
| -0.019767
|
125,107
| -0.019818
|
50,466
| -0.019871
|
139,318
| -0.019993
|
79,616
| -0.020024
|
98,581
| -0.020372
|
98,600
| -0.020399
|
98,589
| -0.020706
|
124,743
| -0.020736
|
74,865
| -0.020793
|
98,573
| -0.02082
|
98,596
| -0.020874
|
141,370
| -0.020897
|
47,170
| -0.021313
|
98,591
| -0.021381
|
131,429
| -0.021614
|
97,037
| -0.021646
|
82,993
| -0.022055
|
83,011
| -0.022055
|
74,851
| -0.022211
|
124,736
| -0.022234
|
149,137
| -0.022236
|
58,209
| -0.022347
|
125,650
| -0.022387
|
98,575
| -0.022394
|
73,424
| -0.022397
|
149,131
| -0.02246
|
15,871
| -0.022796
|
50,388
| -0.023197
|
98,574
| -0.023314
|
125,652
| -0.023367
|
124,738
| -0.023509
|
11,869
| -0.023642
|
50,461
| -0.02365
|
47,167
| -0.023825
|
109,665
| -0.023871
|
125,655
| -0.023926
|
47,173
| -0.024104
|
134,033
| -0.024134
|
135,993
| -0.02423
|
15,867
| -0.024306
|
98,579
| -0.024547
|
18,086
| -0.024637
|
9,998
| -0.024728
|
142,088
| -0.024855
|
111,934
| -0.024973
|
142,092
| -0.025335
|
47,172
| -0.025436
|
38,777
| -0.025495
|
102,182
| -0.025597
|
149,119
| -0.02566
|
11,837
| -0.025673
|
124,744
| -0.025687
|
131,432
| -0.025706
|
153,772
| -0.025747
|
125,649
| -0.025793
|
18,099
| -0.025854
|
47,171
| -0.026029
|
127,493
| -0.026196
|
44,277
| -0.026332
|
151,358
| -0.026401
|
153,909
| -0.026422
|
50,389
| -0.026434
|
150,164
| -0.026559
|
60,352
| -0.026561
|
108,498
| -0.026565
|
137,285
| -0.026597
|
11,831
| -0.026667
|
149,124
| -0.026766
|
97,445
| -0.026783
|
149,121
| -0.02681
|
134,771
| -0.026821
|
151,359
| -0.026829
|
86,511
| -0.026867
|
20,999
| -0.026883
|
95,780
| -0.027158
|
15,869
| -0.027199
|
96,093
| -0.027211
|
52,667
| -0.027301
|
107,104
| -0.027397
|
18,202
| -0.02747
|
98,576
| -0.027506
|
151,690
| -0.027538
|
35,888
| -0.027583
|
91,360
| -0.027664
|
15,864
| -0.027668
|
141,909
| -0.027806
|
142,093
| -0.027806
|
46,594
| -0.02781
|
107,105
| -0.027821
|
What is FMA-rank?
FMA is a music dataset from the Free Music Archive, containing over 8000 hours of Creative Commons-licensed music from 107k tracks across 16k artists and 15k albums. It was created in 2017 by Defferrard et al. in collaboration with Free Music Archive.
FMA contains a lot of good music, and a lot of bad music, so the question is: can we rank the samples in FMA?
FMA-rank is a CLAP-based statistical ranking of each sample in FMA. We calculate the log-likelihood of each sample in FMA belonging to an estimated gaussian in the CLAP latent space, using these values we can rank and filter FMA. In log-likelihood, higher values are better.
Quickstart
Download any FMA split from the official github https://github.com/mdeff/fma. Extract the FMA folder from the downloaded zip and set the path to the folder in fma_root_dir.
Run the following code snippet to load and filter the FMA samples according to the given percentages. The code snippet will return a HF audio dataset.
from datasets import load_dataset, Dataset, Audio
import os
# provide location of fma folder
fma_root_dir = "/path/to/fma/folder"
# provide percentage of fma dataset to use
# for whole dataset, use start_percentage=0 and end_percentage=100
# for worst 20% of dataset, use start_percentage=0 and end_percentage=20
# for best 20% of dataset, use the following values:
start_percentage = 80
end_percentage = 100
# load fma_rank.csv from huggingface and sort from lowest to highest
csv_loaded = load_dataset("disco-eth/FMA-rank")
fma_item_list = csv_loaded["train"]
fma_sorted_list = sorted(fma_item_list, key=lambda d: d['CLAP-log-likelihood'])
def parse_fma_audio_folder(fma_root_dir):
valid_fma_ids = []
subfolders = os.listdir(fma_root_dir)
for subfolder in subfolders:
subfolder_path = os.path.join(fma_root_dir, subfolder)
if os.path.isdir(subfolder_path):
music_files = os.listdir(subfolder_path)
for music_file in music_files:
if ".mp3" not in music_file:
continue
else:
fma_id = music_file.split('.')[0]
valid_fma_ids.append(fma_id)
return valid_fma_ids
# select the existing files according to the provided fma folder
valid_fma_ids = parse_fma_audio_folder(fma_root_dir)
df_dict = {"id":[], "score": [], "audio": []}
for fma_item in fma_sorted_list:
this_id = f"{fma_item['id']:06d}"
if this_id in valid_fma_ids:
df_dict["id"].append(this_id)
df_dict["score"].append(fma_item["CLAP-log-likelihood"])
df_dict["audio"].append(os.path.join(fma_root_dir, this_id[:3] , this_id+".mp3"))
# filter the fma dataset according to the percentage defined above
i_start = int(start_percentage * len(df_dict["id"]) / 100)
i_end = int(end_percentage * len(df_dict["id"]) / 100)
df_dict_filtered = {
"id": df_dict["id"][i_start:i_end],
"score": df_dict["score"][i_start:i_end],
"audio": df_dict["audio"][i_start:i_end],
}
# get final dataset
audio_dataset = Dataset.from_dict(df_dict_filtered).cast_column("audio", Audio())
"""
Dataset({
features: ['id', 'score', 'audio'],
num_rows: 1599
})
"""
- Downloads last month
- 12