|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """BSD100 dataset: An evaluation dataset for the image super resolution task""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  | from pathlib import Path | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """ | 
					
						
						|  | @inproceedings{martin2001database, | 
					
						
						|  | title={A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics}, | 
					
						
						|  | author={Martin, David and Fowlkes, Charless and Tal, Doron and Malik, Jitendra}, | 
					
						
						|  | booktitle={Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001}, | 
					
						
						|  | volume={2}, | 
					
						
						|  | pages={416--423}, | 
					
						
						|  | year={2001}, | 
					
						
						|  | organization={IEEE} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """ | 
					
						
						|  | BSD is a dataset used frequently for image denoising and super-resolution. | 
					
						
						|  | BSD100 is the testing set of the Berkeley segmentation dataset BSD300. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/" | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = "UNK" | 
					
						
						|  |  | 
					
						
						|  | _DL_URL = "https://huggingface.co/datasets/eugenesiow/BSD100/resolve/main/data/" | 
					
						
						|  |  | 
					
						
						|  | _DEFAULT_CONFIG = "bicubic_x2" | 
					
						
						|  |  | 
					
						
						|  | _DATA_OPTIONS = { | 
					
						
						|  | "bicubic_x2": { | 
					
						
						|  | "hr": _DL_URL + "BSD100_HR.tar.gz", | 
					
						
						|  | "lr": _DL_URL + "BSD100_LR_x2.tar.gz", | 
					
						
						|  | }, | 
					
						
						|  | "bicubic_x3": { | 
					
						
						|  | "hr": _DL_URL + "BSD100_HR.tar.gz", | 
					
						
						|  | "lr": _DL_URL + "BSD100_LR_x3.tar.gz", | 
					
						
						|  | }, | 
					
						
						|  | "bicubic_x4": { | 
					
						
						|  | "hr": _DL_URL + "BSD100_HR.tar.gz", | 
					
						
						|  | "lr": _DL_URL + "BSD100_LR_x4.tar.gz", | 
					
						
						|  | } | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Bsd100Config(datasets.BuilderConfig): | 
					
						
						|  | """BuilderConfig for BSD100.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | name, | 
					
						
						|  | hr_url, | 
					
						
						|  | lr_url, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | if name not in _DATA_OPTIONS: | 
					
						
						|  | raise ValueError("data must be one of %s" % _DATA_OPTIONS) | 
					
						
						|  | super(Bsd100Config, self).__init__(name=name, version=datasets.Version("1.0.0"), **kwargs) | 
					
						
						|  | self.hr_url = hr_url | 
					
						
						|  | self.lr_url = lr_url | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Bsd100(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """BSD100 dataset for single image super resolution evaluation.""" | 
					
						
						|  |  | 
					
						
						|  | BUILDER_CONFIGS = [ | 
					
						
						|  | Bsd100Config( | 
					
						
						|  | name=key, | 
					
						
						|  | hr_url=values['hr'], | 
					
						
						|  | lr_url=values['lr'] | 
					
						
						|  | ) for key, values in _DATA_OPTIONS.items() | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | DEFAULT_CONFIG_NAME = _DEFAULT_CONFIG | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "hr": datasets.Value("string"), | 
					
						
						|  | "lr": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=features, | 
					
						
						|  | supervised_keys=None, | 
					
						
						|  | homepage=_HOMEPAGE, | 
					
						
						|  | license=_LICENSE, | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | """Returns SplitGenerators.""" | 
					
						
						|  | hr_data_dir = dl_manager.download_and_extract(self.config.hr_url) | 
					
						
						|  | lr_data_dir = dl_manager.download_and_extract(self.config.lr_url) | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.VALIDATION, | 
					
						
						|  |  | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "lr_path": lr_data_dir, | 
					
						
						|  | "hr_path": str(Path(hr_data_dir) / 'BSD100_HR') | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples( | 
					
						
						|  | self, hr_path, lr_path | 
					
						
						|  | ): | 
					
						
						|  | """ Yields examples as (key, example) tuples. """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extensions = {'.png'} | 
					
						
						|  | for file_path in sorted(Path(lr_path).glob("**/*")): | 
					
						
						|  | if file_path.suffix in extensions: | 
					
						
						|  | file_path_str = str(file_path.as_posix()) | 
					
						
						|  | yield file_path_str, { | 
					
						
						|  | 'lr': file_path_str, | 
					
						
						|  | 'hr': str((Path(hr_path) / file_path.name).as_posix()) | 
					
						
						|  | } | 
					
						
						|  |  |