File size: 3,211 Bytes
227148b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
% initialize the task structure
function [disp_struct, task_struct] = taskInit(disp_struct, task_struct, SCREENS, session, LEFTKEY, RIGHTKEY)
    % structure to hold data pertinant to the task
    task_data = struct();
    % set up the matrix columns
    task_struct.cBlock = 1;
    task_struct.cTrialNum = 2;
    task_struct.cTrialID = 3;
    task_struct.cTrialCond = 4;
    task_struct.cTrialType = 5;
    task_struct.cS1 = 6;
    task_struct.cS1Rew = 7;
    task_struct.cS2 = 8;
    task_struct.cS2Rew = 9;
    task_struct.cIsS1Left = 10;
    task_struct.cRespAct = 11;
    task_struct.cMatch = 12;
    task_struct.cRespRew = 13;
    task_struct.cRT = 14;
    
    
    % maximum trial gap between free-choice and its no-choice pair
    task_struct.maxGap = 7;
    % code for each stimulus
    task_struct.sCodes = struct('Afc', 1, 'Bfc', 2, 'Cfc', 3, 'Dfc', 4, 'Anc', 5, 'Bnc', 6, 'Cnc', 7, 'Dnc', 8);
    % the reward probabilities for each stim
    task_struct.pWin = [0.9 0.1 0.7 0.3 0.9 0.1 0.7 0.3];            % JFC changed to 90/10 and 70/30
    % number of reps for each stimulus pair per training block
    task_struct.numTrainReps = 10;
    task_struct.numTestBiasReps = 10;
    task_struct.numTestABReps = 4;
    task_struct.numTestTrainReps = 4;
    % index to match each free-choice with it's no-choice stim pair
    task_struct.ncAdjust = 4;
    
    % max response time
    task_struct.maxRT = 4;
    % training performance thresholds
    task_struct.minPerf = [0.60 0.60];
    % min/max number of training blocks
    task_struct.minTrain = 3;
    task_struct.maxTrain = 5;
    
    % condition flags for each trial type
    task_struct.NC = 0;
    task_struct.FC = 1;
    task_struct.PRAC = -1;
    task_struct.TRAIN = 0;
    task_struct.TEST = 1;
    task_struct.WIN = 1;
    task_struct.LOSS = 0;
    
    % set up the response keys
    disp_struct.RESP_L = LEFTKEY;
    disp_struct.RESP_R = RIGHTKEY;
    disp_struct.RESP_SLOW = -1;
    
    % first set up the display window
    % screenRect_debug = [0,0,1000,800]; % screen for debugging
    screenRect_task = []; % full screen
    % open the window
    [wPtr,rect] = Screen('OpenWindow', SCREENS, [], screenRect_task);
    % store the display window and it's bounds
    disp_struct.wPtr = wPtr;
    disp_struct.wPtr_rect = rect;
    
    % load the images
    if session==1
        cardNames = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'I', 'J', 'K', 'L'}; % Practice stims repeated here b/c of laziness
    elseif session==2
        cardNames = {'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'I', 'J', 'K', 'L', 'I', 'J', 'K', 'L'}; % Practice stims repeated here b/c of laziness     
    else 
        disp(' '); disp(' '); disp(' '); disp('Enter a 1 or a 2 for session!'); disp(' '); 
    end
    disp_struct.cards = nan(length(cardNames), 1);
    for imgI = 1 : length(cardNames)
        disp_struct.cards(imgI) = Screen('MakeTexture', disp_struct.wPtr, imread(fullfile('..', 'images', [cardNames{imgI},'.bmp'])));
    end % for each card
    % randomize the first 8 (I,J,K,L are for practice)
    disp_struct.cards(1:length(task_struct.pWin)) = disp_struct.cards(randperm(length(task_struct.pWin)));
end % function