Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 18,264 Bytes
00418b5
 
 
 
 
 
 
edc5aa9
 
00418b5
 
edc5aa9
 
 
00418b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75a4ed8
00418b5
 
 
75a4ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00418b5
 
75a4ed8
00418b5
 
75a4ed8
00418b5
75a4ed8
 
00418b5
 
 
 
 
 
 
25646dd
 
 
 
 
 
 
 
 
 
 
 
 
00418b5
25646dd
 
e1cbe1f
 
 
 
 
25646dd
 
 
 
 
 
7fb6cce
25646dd
 
 
 
7fb6cce
 
 
 
25646dd
e1cbe1f
25646dd
 
 
 
bbb3261
25646dd
 
 
 
 
 
 
 
 
 
 
e1cbe1f
 
 
 
 
 
 
25646dd
e1cbe1f
25646dd
e1cbe1f
 
 
 
 
 
a83cdfb
e1cbe1f
 
55a603f
e1cbe1f
 
 
 
 
 
25646dd
e1cbe1f
98b1234
25646dd
 
 
 
 
 
 
018d5eb
25646dd
6f353e1
018d5eb
25646dd
627bc14
25646dd
 
 
 
 
99b2b49
627bc14
 
25646dd
 
 
627bc14
 
 
25646dd
 
 
c9ba189
 
 
 
 
 
1d8e09d
c9ba189
 
 
 
25646dd
 
 
 
 
 
 
 
018d5eb
 
 
 
 
a83cdfb
 
 
 
 
 
 
018d5eb
25646dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
dataset_info:
  features:
  - name: sample_id
    dtype: string
  - name: task
    dtype: string
  - name: embodiments
    list: string
  - name: image
    dtype: image
  - name: segmentation_mask
    list:
      list: int64
  - name: ground_truth
    struct:
    - name: Bicycle
      list:
        list:
          list: float64
    - name: Human
      list:
        list:
          list: float64
    - name: Legged Robot
      list:
        list:
          list: float64
    - name: Wheeled Robot
      list:
        list:
          list: float64
  - name: category
    list: string
  - name: context
    dtype: string
  - name: metadata
    struct:
    - name: city
      dtype: string
    - name: country
      dtype: string
    - name: lighting_conditions
      dtype: string
    - name: natural_structured
      dtype: string
    - name: task_type
      dtype: string
    - name: urban_rural
      dtype: string
    - name: weather_conditions
      dtype: string
  splits:
  - name: validation
    num_bytes: 6117774314.0
    num_examples: 502
  - name: test
    num_bytes: 6123246091.0
    num_examples: 500
  download_size: 344928365
  dataset_size: 12241020405.0
configs:
- config_name: default
  data_files:
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
tags:
- image
- text
- navigation
pretty_name: NaviTrace
license: cc-by-4.0
task_categories:
- visual-question-answering
- robotics
language:
- en
size_categories:
- 1K<n<10K
---

<style>
    .header-container {
        display: flex;
        flex-direction: column;
        align-items: center;
    }
    /* Headings */
    h1 {
        text-align: center;
        font-size: 4.5rem !important;
        font-weight: 500;
        margin-top: 1rem;
        margin-bottom: 1rem;
    }
    
    /* Links container */
    .links-container {
        display: flex;
        flex-wrap: wrap;
        row-gap: 1rem;
        justify-content: center;
        text-align: center;
        margin-bottom: 1.5rem;
        font-size: 1.1rem;
    }
    
    .links-container a {
        white-space: nowrap;
        margin: 0 1rem;
        text-decoration: none;
        color: #3b82f6;
        font-weight: 600;
        transition: color 0.3s;
    }
    
    .links-container a:hover {
        color: #1e3a8a;
    }

    /* Media Query for mobile devices */
    @media (max-width: 600px) {
        h1 {
            font-size: 3.5rem !important; /* Adjust font size for small screens */
        }
    }
</style>

<div class="header-container">

  <h1><b>NaviTrace</b></h1>
  
  <div class="links-container">
      <a href="https://leggedrobotics.github.io/navitrace_webpage/">
          🏠 Project
      </a>
      <a href="https://arxiv.org/abs/2510.26909">
          📄 Paper
      </a>
      <a href="https://github.com/leggedrobotics/navitrace_evaluation">
          💻 Code
      </a>
      <a href="https://huggingface.co/spaces/leggedrobotics/navitrace_leaderboard">
          🏆 Leaderboard
      </a>
  </div>

  <img src="https://leggedrobotics.github.io/navitrace_webpage/static/images/Figure_1.png" alt="NaviTrace Overview" width="800px">
  <div style="text-align: center;"><i><b>NaviTrace</b> is a novel VQA benchmark for VLMs that evaluates models on their embodiment-specific understanding of navigation across challenging real-world scenarios.</i></div>

</div>

## Key Features

- ✏️ **Core Task:** Given a real-world image in first-person perspective, a language instruction, and an embodiment type, models should predict a 2D navigation path in image space that solves the instruction.
- 🤖 **Embodiments:** Four embodiment types capturing distinct physical and spatial constraints (human, legged robot, wheeled robot, or bicycle).
- 📏 **Scale:** 1,002 diverse real-world scenarios and over 3,000 expert-annotated traces.
- ⚖️ **Splits:**
  - Validation split (~50%) for experimentation and model fine-tuning.
  - Test split (~50%) with hidden ground-truths for public leaderboard evaluation.
- 🔎 **Annotation Quality:** All images and traces manually collected and labeled by human experts.
- 🏅 **Evaluation Metric:** Semantic-aware Trace Score, combining Dynamic Time Warping distance, goal endpoint error, and embodiment-conditioned semantic penalties.

## Uses

### Run Benchmark

We provide a [notebook](https://github.com/leggedrobotics/navitrace_evaluation/blob/main/src/run_evaluation.ipynb) with example code on how to run this benchmark with an API model.
You can use this as a template to adapt to your own model.
Additionally, we host a public [leaderboard](https://huggingface.co/spaces/leggedrobotics/navitrace_leaderboard) where you can submit your model's results.

### Model Training

You can use the validation split to fine-tune models for this task.
Load the dataset with `dataset = load_dataset("leggedrobotics/NaviTrace")` and use `dataset["validation"]` for training your model.
See the next section for details on the dataset columns.

## Structure

| Column            | Type                                                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sample_id         | `str`                                                            | Unique identifier of a scenario.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| task              | `str`                                                            | Language instruction (English) solvable purely from the visual information, emphasizing cases where different embodiments behave differently, while still reflecting everyday scenarios.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| embodiments       | `List[str]`                                                      | All embodiments ("Human", "Legged Robot", "Wheeled Robot", "Bicycle") suitable for the task.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| image             | `PIL.Image`                                                      | First-person image of a real-world environment with blured faces and license plates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| segmentation_mask | `List[List[int]]`                                                | Semantic segmentation mask of the image generated with the [Mask2Former model](https://huggingface.co/facebook/mask2former-swin-large-mapillary-vistas-semantic).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ground_truth      | `dict[str, `<br>`Optional[List[`<br>`List[List[float]]`<br>`]]]` | A dict mapping an embodiment name to a sequence of 2D points in image coordinates that describes a navigation path solution. One path per suitable embodiment, and multiple paths if equally valid alternatives exist (e.g., avoiding an obstacle from the left or right). If an embodiment is not suitable for the task, the value is `None`.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| category          | `List[str]`                                                      | List with one or more categories ("Semantic Terrain", "Geometric Terrain", "Stationary Obstacle", "Dynamic Obstacle", "Accessibility", "Visibility", "Social Norms") that describe the main challenges of the navigation task.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| context           | `str`                                                            | Short description of the scene as bullet points separated with ";", including the location, ongoing activities, and key elements needed to solve the task.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| metadata          | `dict[str, str]`                                                 | Additional information about the scenario:<br>- *"country":* The image's country of origin.<br>- *"city":* The image's city of origin or "GrandTour Dataset" if the image comes from the [Grand Tour dataset](https://grand-tour.leggedrobotics.com/).<br>- *"urban_rural":* "Urban", "Rural", or "Mixed" depending on the image's setting.<br>- *"natural_structured":* "Structured", "Natural", or "Mixed" depending on the image's environment.<br>- *"lighting_conditions":* "Night", "Daylight", "Indoor Lighting", or "Low Light" depending on the image's lighting.<br>- *"weather_conditions":* "Cloudy", "Clear", "Rainy", "Unknown", "Foggy", "Snowy", or "Windy" depending on the image's weather.<br>- *"task_type":* Distinguishes between instruction styles. Goal-Directed tasks ("Goal") specify the target explicitly (e.g., “Go straight to the painting.”), while Directional tasks ("Directions") emphasize the movement leading to it (e.g., “Move forward until you see the painting.”). Since this is ambiguous sometimes, there are also mixed tasks ("Mixed"). |

## Citation

If you find this dataset helpful for your work, please cite us with:

**BibTeX:**

```
@article{Windecker2025NaviTrace,
  author  = {Tim Windecker and Manthan Patel and Moritz Reuss and Richard Schwarzkopf and Cesar Cadena and Rudolf Lioutikov and Marco Hutter and Jonas Frey},
  title   = {NaviTrace: Evaluating Embodied Navigation of Vision-Language Models},
  year    = {2025},
  month   = {October},
  journal = {Preprint submitted to arXiv},
  note    = {Currently a preprint on arXiv (arXiv:2510.26909). Awaiting peer review and journal submission.},
  doi     = {},
  url     = {https://arxiv.org/abs/2510.26909},
  eprint={2510.26909},
  archivePrefix={arXiv},
  primaryClass={cs.RO},
}
```