Datasets:
audio
audioduration (s) 0.16
1.57
|
|---|
π How to Cite
If RIR-Mega helps your research, please cite both the paper and the dataset:
Paper Goswami, M. (2025). RIR-Mega: A Large-Scale Room Impulse Response Corpus with Benchmarks for Industrial and Building Acoustics. arXiv:2510.18917. https://arxiv.org/abs/2510.18917
Dataset Goswami, M. (2025). RIR-Mega Dataset (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.17387402
@misc{goswami2025rirmega,
title = {RIR-Mega: A Large-Scale Room Impulse Response Corpus with Benchmarks for Industrial and Building Acoustics},
author = {Goswami, Mandip},
year = {2025},
eprint = {2510.18917},
archivePrefix= {arXiv},
primaryClass = {cs.SD},
url = {https://arxiv.org/abs/2510.18917}
}
@dataset{goswami_2025_rirmega_zenodo,
author = {Goswami, Mandip},
title = {RIR-Mega Dataset},
year = {2025},
publisher = {Zenodo},
version = {v1.0.0},
doi = {10.5281/zenodo.17387402},
url = {https://doi.org/10.5281/zenodo.17387402}
}
Goswami, M. (2025). RIR-Mega: A Large-Scale Room Impulse Response Corpus with Benchmarks for Industrial and Building Acoustics. arXiv:2510.18917. https://arxiv.org/abs/2510.18917
Goswami, M. (2025). RIR-Mega Dataset (v1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.17387402
RIR-Mega
Paper | Code | Project page (Zenodo)
RIR-Mega provides thousands of simulated room impulse responses for research in dereverberation, robust speech recognition, and acoustic scene analysis. This Hugging Face release hosts a lightweight, representative subset β 1 000 linear-array and 3 000 circular-array RIRs β for quick exploration, tutorials, and reproducible baselines.
The complete 50 000-RIR archive is permanently preserved on Zenodo and described in the accompanying paper:
π€ Subset for streaming: (https://huggingface.co/datasets/mandipgoswami/rirmega) π¦ Technical Paper: (arxiv.org/abs/2510.18917)
β¨ Whatβs inside
data/β RIR audio andmetadata/metadata.csv(compact schema)rirmega/dataset.pyβ Hugging Face Datasets loaderbenchmarks/rt60_regression/β a lightweight RT60 regression baselinescripts/β utilities (validation, checksums, mini subset)- (optional)
data-mini/β tiny subset for quick demos and Spaces
Contents
| Folder | Description |
|---|---|
data/audio/linear |
1 000 RIRs simulated for linear microphone arrays |
data/audio/circular |
3 000 RIRs simulated for circular arrays |
data/metadata/metadata.csv / .parquet |
Compact schema linking each file to acoustic metrics and simulation parameters |
rirmega/dataset.py |
Hugging Face Datasets loader (supports streaming) |
benchmarks/rt60_regression/ |
Baseline RT60 regression example |
scripts/ |
Validation + checksum utilities |
figs/ |
Overview and validation plots for reference |
π¦ Schema (compact)
| Column | Meaning |
|---|---|
id |
unique identifier |
family |
βlinearβ or βcircularβ |
split |
train / valid / test |
fs |
sampling rate (Hz) |
wav |
relative path to audio file |
room_size, absorption, max_order |
simulation parameters |
metrics |
JSON string with rt60, drr_db, c50_db, c80_db, and band-limited RT60s |
rng_seed |
random seed for reproducibility |
π Getting started
from datasets import load_dataset
ds = load_dataset("mandipgoswami/rirmega", trust_remote_code=True)
print(ds["train"][0]["audio"]) # lazy-loads waveform
print(ds["train"][0]["rt60"]) # scalar metadata
For streaming or partial download:
ds = load_dataset("mandipgoswami/rirmega", streaming=True)
π§ͺ Baseline: RT60 regression
Lightweight features + RandomForest to predict RT60-like targets from RIR signals.
python benchmarks/rt60_regression/train_rt60.py
pip install soundfile numpy pandas scikit-learn
python benchmarks/rt60_regression/train_rt60.py
# or choose a specific target key present in `metrics`
python benchmarks/rt60_regression/train_rt60.py --target rt60
Default target search order:
Technical Validation
A random subset of 1 000 samples was analyzed for internal consistency. The RT60 values derived from Schroeder energy decay curves correlated strongly with the metadata values:
| Metric | Correlation | MAE (s) | RMSE (s) |
|---|---|---|---|
| RT60 (metadata vs EDC) | 0.96 | 0.013 | 0.022 |
Reference numbers (example)
- Train/Valid used: 36,000 / 4,000 (auto 10% valid)
- Metric: MAE = 0.013 s, RMSE = 0.022 s (auto target)
π Leaderboard (RT60 regression)
| Date | Team / Author | Method | Target | Train/Valid | MAE (s) | RMSE (s) | Seed | Code |
|---|---|---|---|---|---|---|---|---|
| 2025-10-19 | Baseline (RIR-Mega) | RF on light feats | auto | 36k / 4k | 0.013 | 0.022 | 0 | benchmarks/rt60_regression |
π« Submit a result: Open a PR adding a row (see Submitting).
π€ Submitting
See SUBMITTING.md for rules and a PR template. Minimum info:
- Command (incl.
--targetif used), seed, dataset tag (e.g.,v1.0.0) - Train/Valid sizes used
- MAE (s) and RMSE (s)
- Link to code (repo, gist, or HF Space)
- Downloads last month
- 1,689