Hugging Face Dataset Classification With Sieves
GPU-accelerated text classification for Hugging Face datasets with guaranteed valid outputs through structured generation with Sieves, Outlines and Hugging Face zero-shot pipelines.
This is a modified version of https://huggingface.co/datasets/uv-scripts/classification.
π Quick Start
# Classify IMDB reviews
uv run classify-dataset.py classify \
--input-dataset stanfordnlp/imdb \
--column text \
--labels "positive,negative" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset user/imdb-classified
That's it! No installation, no setup - just uv run.
π Requirements
- GPU Recommended: Uses GPU-accelerated inference (CPU fallback available but slow)
- Python 3.12+
- UV (will handle all dependencies automatically)
Python Package Dependencies (automatically installed via UV):
sieveswith engines support (>= 0.17.4)typer(>= 0.12)datasetshuggingface-hub
π― Features
- Guaranteed valid outputs using structured generation with Outlines guided decoding
- Zero-shot classification without training data required
- GPU-optimized for maximum throughput and efficiency
- Multi-label support for documents with multiple applicable labels
- Flexible model selection - works with any instruction-tuned transformer model
- Robust text handling with preprocessing and validation
- Automatic progress tracking and detailed statistics
- Direct Hub integration - read and write datasets seamlessly
- Label descriptions support for providing context to improve accuracy
- Optimized batching with Sieves' automatic batch processing
- Multiple guided backends - supports
outlinesto handle any general language model on Hugging Face, and fast Hugging Face zero-shot classification pipelines
π» Usage
Basic Classification
uv run classify-dataset.py classify \
--input-dataset <dataset-id> \
--column <text-column> \
--labels <comma-separated-labels> \
--model <model-id> \
--output-dataset <output-id>
Arguments
Required:
--input-dataset: Hugging Face dataset ID (e.g.,stanfordnlp/imdb,user/my-dataset)--column: Name of the text column to classify--labels: Comma-separated classification labels (e.g.,"spam,ham")--model: Model to use (e.g.,HuggingFaceTB/SmolLM-360M-Instruct)--output-dataset: Where to save the classified dataset
Optional:
--label-descriptions: Provide descriptions for each label to improve classification accuracy--multi-label: Enable multi-label classification mode (creates multi-hot encoded labels)--split: Dataset split to process (default:train)--max-samples: Limit samples for testing--shuffle: Shuffle dataset before selecting samples (useful for random sampling)--shuffle-seed: Random seed for shuffling--batch-size: Batch size for inference (default: 64)--max-tokens: Maximum tokens to generate per sample (default: 200)--hf-token: Hugging Face token (or useHF_TOKENenv var)
Label Descriptions
Provide context for your labels to improve classification accuracy:
uv run classify-dataset.py classify \
--input-dataset user/support-tickets \
--column content \
--labels "bug,feature,question,other" \
--label-descriptions "bug:something is broken,feature:request for new functionality,question:asking for help,other:anything else" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset user/tickets-classified
The model uses these descriptions to better understand what each label represents, leading to more accurate classifications.
Multi-Label Classification
Enable multi-label mode for documents that can have multiple applicable labels:
uv run classify-dataset.py classify \
--input-dataset ag_news \
--column text \
--labels "world,sports,business,science" \
--multi-label \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset user/ag-news-multilabel
π Examples
Sentiment Analysis
uv run classify-dataset.py classify \
--input-dataset stanfordnlp/imdb \
--column text \
--labels "positive,ambivalent,negative" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset user/imdb-sentiment
Support Ticket Classification
uv run classify-dataset.py classify \
--input-dataset user/support-tickets \
--column content \
--labels "bug,feature_request,question,other" \
--label-descriptions "bug:code or product not working as expected,feature_request:asking for new functionality,question:seeking help or clarification,other:general comments or feedback" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset user/tickets-classified
News Categorization
uv run classify-dataset.py classify \
--input-dataset ag_news \
--column text \
--labels "world,sports,business,tech" \
--model HuggingFaceTB/SmolLM-1.7B-Instruct \
--output-dataset user/ag-news-categorized
Multi-Label News Classification
uv run classify-dataset.py classify \
--input-dataset ag_news \
--column text \
--labels "world,sports,business,tech" \
--multi-label \
--label-descriptions "world:global and international events,sports:sports and athletics,business:business and finance,tech:technology and innovation" \
--model HuggingFaceTB/SmolLM-1.7B-Instruct \
--output-dataset user/ag-news-multilabel
This combines label descriptions with multi-label mode for comprehensive categorization of news articles.
ArXiv ML Research Classification
Classify academic papers into machine learning research areas:
# Fast classification with random sampling
uv run classify-dataset.py classify \
--input-dataset librarian-bots/arxiv-metadata-snapshot \
--column abstract \
--labels "llm,computer_vision,reinforcement_learning,optimization,theory,other" \
--label-descriptions "llm:language models and NLP,computer_vision:image and video processing,reinforcement_learning:RL and decision making,optimization:training and efficiency,theory:theoretical ML foundations,other:other ML topics" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset user/arxiv-ml-classified \
--split "train" \
--max-samples 100 \
--shuffle
# Multi-label for nuanced classification
uv run classify-dataset.py classify \
--input-dataset librarian-bots/arxiv-metadata-snapshot \
--column abstract \
--labels "multimodal,agents,reasoning,safety,efficiency" \
--label-descriptions "multimodal:vision-language and cross-modal models,agents:autonomous agents and tool use,reasoning:reasoning and planning systems,safety:alignment and safety research,efficiency:model optimization and deployment" \
--multi-label \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset user/arxiv-frontier-research \
--split "train[:1000]" \
--max-samples 50
Multi-label mode is particularly valuable for academic abstracts where papers often span multiple topics and require careful analysis to determine all relevant research areas.
π Running Locally vs Cloud
This script is optimized to run locally on GPU-equipped machines:
# Local execution with your GPU
uv run classify-dataset.py classify \
--input-dataset stanfordnlp/imdb \
--column text \
--labels "positive,negative" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset user/imdb-classified
For cloud deployment, you can use Hugging Face Spaces or other GPU services by adapting the command to your environment.
π§ Advanced Usage
Random Sampling
When working with ordered datasets, use --shuffle with --max-samples to get a representative sample:
# Get 50 random reviews instead of the first 50
uv run classify-dataset.py classify \
--input-dataset stanfordnlp/imdb \
--column text \
--labels "positive,negative" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset user/imdb-sample \
--max-samples 50 \
--shuffle \
--shuffle-seed 123 # For reproducibility
Using Different Models
By default, this script works with any instruction-tuned model. Here are some recommended options:
# Lightweight model for fast classification
uv run classify-dataset.py classify \
--input-dataset user/my-dataset \
--column text \
--labels "A,B,C" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset user/classified
# Larger model for complex classification
uv run classify-dataset.py classify \
--input-dataset user/legal-docs \
--column text \
--labels "contract,patent,brief,memo,other" \
--model HuggingFaceTB/SmolLM3-3B-Instruct \
--output-dataset user/legal-classified
# Specialized zero-shot classifier
uv run classify-dataset.py classify \
--input-dataset user/my-dataset \
--column text \
--labels "A,B,C" \
--model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \
--output-dataset user/classified
Large Datasets
Configure --batch-size for more effective batch processing with large datasets:
uv run classify-dataset.py classify \
--input-dataset user/huge-dataset \
--column text \
--labels "A,B,C" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset user/huge-classified \
--batch-size 128
π€ How It Works
- Sieves: Provides a zero-shot task pipeline system for structured NLP workflows
- Outlines: Provides guided decoding to guarantee valid label outputs
- UV: Handles all dependencies automatically
The script loads your dataset, preprocesses texts, classifies each one with guaranteed valid outputs using Sieves'
Classification task, then saves the results as a new column in the output dataset.
π Troubleshooting
GPU Not Available
This script works best with a GPU but can run on CPU (much slower). To use GPU:
- Run on a machine with NVIDIA GPU
- Use cloud GPU instances (AWS, GCP, Azure, etc.)
- Use Hugging Face Spaces with GPU
Out of Memory
- Use a smaller model (e.g., SmolLM-360M instead of 3B)
- Reduce
--batch-size(try 32, 16, or 8) - Reduce
--max-tokensfor shorter generations
Invalid/Skipped Texts
- Texts shorter than 3 characters are skipped
- Empty or None values are marked as invalid
- Very long texts are truncated to 4000 characters
Classification Quality
- With Outlines guided decoding, outputs are guaranteed to be valid labels
- For better results, use clear and distinct label names
- Try
--label-descriptionsto provide context - Use a larger model for nuanced tasks
- In multi-label mode, adjust the confidence threshold (defaults to 0.5)
Authentication Issues
If you see authentication errors:
- Run
huggingface-cli loginto cache your token - Or set
export HF_TOKEN=your_token_here - Verify your token has read/write permissions on the Hub
π¬ Advanced Workflows
Full Pipeline Workflow
Start with small tests, then run on the full dataset:
# Step 1: Test with small sample
uv run classify-dataset.py classify \
--input-dataset your-dataset \
--column text \
--labels "label1,label2,label3" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset user/test-classification \
--max-samples 100
# Step 2: If results look good, run on full dataset
uv run classify-dataset.py classify \
--input-dataset your-dataset \
--column text \
--labels "label1,label2,label3" \
--label-descriptions "label1:description,label2:description,label3:description" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset user/final-classification \
--batch-size 64
π License
This example is provided as part of the Sieves project.
- Downloads last month
- 26