File size: 18,774 Bytes
a274260 f3e81ef a274260 f3e81ef a274260 f3e81ef a274260 f3e81ef a274260 f3e81ef a274260 f3e81ef a274260 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "sieves[engines]>=0.17.4",
# "typer>=0.12,<1",
# "datasets",
# "huggingface-hub[hf_transfer]",
# ]
# ///
"""Create a zero-shot classification dataset from any Hugging Face dataset using Sieves + Outlines.
It supports both single-label (default) and multi-label classification via a flag.
Examples
--------
Single-label classification:
uv run classify-dataset.py classify \
--input-dataset stanfordnlp/imdb \
--column text \
--labels "positive,negative" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset your-username/imdb-classified
With label descriptions:
uv run classify-dataset.py classify \
--input-dataset user/support-tickets \
--column content \
--labels "bug,feature,question" \
--label-descriptions "bug:something is broken,feature:request for new functionality,question:asking for help" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset your-username/tickets-classified
Multi-label classification (adds a multi-hot labels column):
uv run classify-dataset.py classify \
--input-dataset ag_news \
--column text \
--labels "world,sports,business,science" \
--multi-label \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset your-username/agnews-multilabel
"""
import os
import huggingface_hub
import outlines
import torch
import transformers
import typer
from datasets import Dataset, load_dataset
from huggingface_hub import HfApi, get_token
from loguru import logger
from transformers import AutoModelForCausalLM, AutoTokenizer
import sieves
app = typer.Typer(add_completion=False, help=__doc__)
# Text constraints (simple sanity checks)
MIN_TEXT_LENGTH = 3
MAX_TEXT_LENGTH = 4000
MULTILABEL_THRESHOLD = 0.5
def _parse_label_descriptions(desc_string: str | None) -> dict[str, str]:
"""Parse a CLI description string into a mapping.
Parses strings of the form ``"label1:desc1,label2:desc2"`` into a
dictionary mapping labels to their descriptions. Commas inside
descriptions are preserved by continuing the current description until
the next ``":"`` separator is encountered.
Args:
desc_string: The raw CLI string to parse. If ``None`` or empty,
returns an empty mapping.
Returns:
A dictionary mapping each label to its description.
"""
if not desc_string:
return {}
descriptions: dict[str, str] = {}
for label_desc in desc_string.split(","):
label_desc_parts = label_desc.split(":")
assert len(label_desc_parts) == 2, \
f"Invalid label description: must be 'label1:desc1,label2:desc2', got: {label_desc}"
descriptions[label_desc_parts[0].strip("'").strip()] = label_desc_parts[1].strip("'").strip()
return descriptions
def _preprocess_text(text: str) -> str:
"""Normalize and truncate input text for classification.
This function trims surrounding whitespace and truncates overly long
inputs to ``MAX_TEXT_LENGTH`` characters, appending an ellipsis to
signal truncation. Non-string or falsy inputs yield an empty string.
Args:
text: The raw input text to normalize.
Returns:
A cleaned string suitable for downstream classification. May be an
empty string if the input was not a valid string.
"""
if not text or not isinstance(text, str):
return ""
text = text.strip()
if len(text) > MAX_TEXT_LENGTH:
text = f"{text[:MAX_TEXT_LENGTH]}..."
return text
def _is_valid_text(text: str) -> bool:
"""Validate the minimal length constraints for a text sample.
Args:
text: Candidate text after preprocessing.
Returns:
True if the text meets minimal length requirements (``MIN_TEXT_LENGTH``),
False otherwise.
"""
return bool(text and len(text) >= MIN_TEXT_LENGTH)
def _load_and_prepare_data(
input_dataset: str,
split: str,
shuffle: bool,
shuffle_seed: int | None,
max_samples: int | None,
column: str,
labels: str,
label_descriptions: str | None,
hf_token: str | None,
) -> tuple[
Dataset,
list[str],
list[str],
list[int],
list[str],
dict[str, str],
str | None,
]:
"""Load the dataset and prepare inputs for classification.
This function encapsulates the data-loading and preprocessing path of the
script: parsing labels/descriptions, detecting tokens, loading/shuffling
the dataset, validating the target column, preprocessing texts, and
computing valid indices.
Args:
input_dataset: Dataset repo ID on the Hugging Face Hub.
split: Dataset split to load (e.g., "train").
shuffle: Whether to shuffle the dataset.
shuffle_seed: Seed used when shuffling is enabled.
max_samples: Optional maximum number of samples to retain.
column: Name of the text column to classify.
labels: Comma-separated list of labels.
label_descriptions: Optional mapping string of the form
"label:desc,label2:desc2".
hf_token: Optional Hugging Face token.
Returns:
A tuple containing: (dataset, raw_texts, processed_texts, valid_indices,
labels_list, desc_map, token)
Raises:
typer.Exit: If labels are missing, dataset loading fails, the column is
absent, or no valid texts remain after preprocessing.
"""
# Parse labels and optional descriptions. Strip surrounding quotes if present.
labels = labels.strip().strip("'\"")
labels_list: list[str] = [label.strip().strip("'\"") for label in labels.split(",") if label.strip().strip("'\"")]
if not labels_list:
logger.error("No labels provided. Use --labels 'label1,label2,...'")
raise typer.Exit(code=2)
desc_map = _parse_label_descriptions(label_descriptions)
# Token detection and validation (mirror legacy script behavior)
token = hf_token or (os.environ.get("HF_TOKEN") or get_token())
if not token:
logger.error("No authentication token found. Please either:")
logger.error("1. Run 'huggingface-cli login'")
logger.error("2. Set HF_TOKEN environment variable")
logger.error("3. Pass --hf-token argument")
raise typer.Exit(code=1)
try:
api = HfApi(token=token)
user_info = api.whoami()
name = user_info.get("name") or user_info.get("email") or "<unknown>"
logger.info(f"Authenticated as: {name}")
except Exception as e:
logger.error(f"Authentication failed: {e}")
logger.error("Please check your token is valid")
raise typer.Exit(code=1)
# Load dataset
try:
ds: Dataset = load_dataset(input_dataset, split=split)
except Exception as e:
logger.error(f"Failed to load dataset '{input_dataset}': {e}")
raise typer.Exit(code=1)
# Shuffle/select.
if shuffle:
ds = ds.shuffle(seed=shuffle_seed)
if max_samples is not None:
ds = ds.select(range(min(max_samples, len(ds))))
# Validate columns.
if column not in ds.column_names:
logger.error(f"Column '{column}' not in dataset columns: {ds.column_names}")
raise typer.Exit(code=1)
# Extract and preprocess texts
raw_texts: list[str] = list(ds[column])
processed_texts: list[str] = []
valid_indices: list[int] = []
for i, t in enumerate(raw_texts):
pt = _preprocess_text(t)
if _is_valid_text(pt):
processed_texts.append(pt)
valid_indices.append(i)
if not processed_texts:
logger.error("No valid texts found for classification (after preprocessing).")
raise typer.Exit(code=1)
logger.info(f"Prepared {len(processed_texts)} valid texts out of {len(raw_texts)}")
return ds, raw_texts, processed_texts, valid_indices, labels_list, desc_map, token
def _log_stats(
docs: list[sieves.Doc],
task: sieves.tasks.Classification,
labels_list: list[str],
multi_label: bool,
raw_texts: list[str],
processed_texts: list[str],
valid_indices: list[int],
) -> None:
"""Compute and log distributions.
Logs per-label distributions and success/skip metrics.
Args:
docs: Classified documents corresponding to processed_texts.
task: The configured ``Classification`` task instance.
labels_list: List of label names in canonical order.
multi_label: Whether classification is multi-label.
raw_texts: Original text column values.
processed_texts: Preprocessed, valid texts used for inference.
valid_indices: Indices mapping processed_texts back to raw_texts rows.
Returns:
None. Pushes datasets to the Hub and logs summary statistics.
"""
if multi_label:
# Log distribution across labels at threshold and skipped count
label_counts = {label: 0 for label in labels_list}
for doc in docs:
result = doc.results[task.id]
logger.info(result)
if isinstance(result, list):
for label, score in result:
if label in label_counts and score >= MULTILABEL_THRESHOLD:
label_counts[label] += 1
total_processed = len(docs)
skipped = len(raw_texts) - len(processed_texts)
logger.info(f"Classification distribution (multi-label, threshold={MULTILABEL_THRESHOLD}):")
for label in labels_list:
count = label_counts.get(label, 0)
pct = (count / total_processed * 100.0) if total_processed else 0.0
logger.info(f" {label}: {count} ({pct})")
if skipped > 0:
skipped_pct = (skipped / len(raw_texts) * 100.0) if raw_texts else 0.0
logger.info(f" Skipped/invalid: {skipped} ({skipped_pct})")
else:
# Map results back to original indices; invalid texts receive None
classifications: list[str | None] = [None] * len(raw_texts)
for idx, doc in zip(valid_indices, docs):
result = doc.results[task.id]
classifications[idx] = result if isinstance(result, str) else result[0]
# Log distribution and success rate.
total_texts = len(raw_texts)
label_counts = {label: 0 for label in labels_list}
for label in labels_list:
label_counts[label] = sum(1 for c in classifications if c == label)
none_count = sum(1 for c in classifications if c is None)
logger.info("Classification distribution (single-label):")
for label in labels_list:
count = label_counts[label]
pct = (count / total_texts * 100.0) if total_texts else 0.0
logger.info(f" {label}: {count} ({pct})")
if none_count > 0:
none_pct = (none_count / total_texts * 100.0) if total_texts else 0.0
logger.info(f" Invalid/Skipped: {none_count} ({none_pct})")
success_rate = (len(valid_indices) / total_texts * 100.0) if total_texts else 0.0
logger.info(f"Classification success rate: {success_rate}")
@app.command() # type: ignore[misc]
def classify(
input_dataset: str = typer.Option(..., help="Input dataset ID on Hugging Face Hub"),
column: str = typer.Option(..., help="Name of the text column to classify"),
labels: str = typer.Option(..., help="Comma-separated list of labels, e.g. 'positive,negative'"),
output_dataset: str = typer.Option(..., help="Output dataset ID on Hugging Face Hub"),
model: str = typer.Option(..., help="HF model ID to use"),
label_descriptions: str | None = typer.Option(
None, help="Optional descriptions per label: 'label:desc,label2:desc2'"
),
max_samples: int | None = typer.Option(None, help="Max number of samples to process (for testing)"),
hf_token: str | None = typer.Option(None, help="HF token; if omitted, uses env or cached token"),
split: str = typer.Option("train", help="Dataset split (default: train)"),
batch_size: int = typer.Option(64, help="Batch size"),
max_tokens: int = typer.Option(200, help="Max tokens to generate"),
shuffle: bool = typer.Option(False, help="Shuffle dataset before sampling"),
shuffle_seed: int | None = typer.Option(None, help="Shuffle seed"),
multi_label: bool = typer.Option(False, help="Enable multi-label classification (adds multi-hot 'labels')"),
) -> None:
"""Classify a Hugging Face dataset using Sieves + Outlines and push results.
Runs zero-shot classification over a specified text column using the Sieves
``Classification`` task and the Outlines engine. Supports both single-label
(default) and multi-label modes. In single-label mode, a "classification"
column is added to the original dataset. In multi-label mode, a new dataset
with ``text`` and multi-hot ``labels`` columns is created via
``Classification.to_hf_dataset``.
Args:
input_dataset: Dataset repo ID on the Hugging Face Hub.
column: Name of the text column to classify.
labels: Comma-separated list of allowed labels.
output_dataset: Target dataset repo ID to push results to.
model: Transformers model ID. Must be provided and non-empty.
label_descriptions: Optional per-label descriptions in the form
``label:desc,label2:desc2``.
max_samples: Optional maximum number of samples to process.
hf_token: Optional token; if omitted, uses environment or cached login.
split: Dataset split to load (default: ``"train"``).
batch_size: Batch size for inference.
max_tokens: Maximum tokens for generation per prompt.
shuffle: Whether to shuffle the dataset before selecting samples.
shuffle_seed: Seed used for shuffling.
multi_label: If True, enable multi-label classification and output a
multi-hot labels column; otherwise outputs single-label strings.
Returns:
None. Results are pushed to the Hugging Face Hub under ``output_dataset``.
Raises:
typer.Exit: If dataset loading fails, a required column is missing, or
no valid texts are available for classification.
"""
token = os.environ.get("HF_TOKEN") or huggingface_hub.get_token()
if token:
huggingface_hub.login(token=token)
logger.info("Loading and preparing data.")
(
ds,
raw_texts,
processed_texts,
valid_indices,
labels_list,
desc_map,
token,
) = _load_and_prepare_data(
input_dataset=input_dataset,
split=split,
shuffle=shuffle,
shuffle_seed=shuffle_seed,
max_samples=max_samples,
column=column,
labels=labels,
label_descriptions=label_descriptions,
hf_token=hf_token,
)
# Build model.
info = HfApi().model_info(model)
device = torch.cuda.get_device_name(0) if torch.cuda.is_available() else None
zeroshot_tag = "zero-shot-classification"
# Explicitly designed for zero-shot classification: build directly as pipeline.
if info.pipeline_tag == zeroshot_tag or zeroshot_tag in set(info.tags or []):
logger.info("Initializing zero-shot classifciation pipeline.")
model = transformers.pipeline(zeroshot_tag, model=model, device=device)
# Otherwise: build Outlines model around it to enforce structured generation.
else:
logger.info("Initializing Outlines model.")
model = outlines.models.from_transformers(
AutoModelForCausalLM.from_pretrained(model, **({"device": device} if device else {})),
AutoTokenizer.from_pretrained(model),
)
# Build task and pipeline.
logger.info("Initializing pipeline.")
task = sieves.tasks.Classification(
labels=labels_list,
model=model,
generation_settings=sieves.GenerationSettings(
inference_kwargs={"max_new_tokens": max_tokens},
strict_mode=False,
),
batch_size=batch_size,
label_descriptions=desc_map or None,
multi_label=multi_label,
)
pipe = sieves.Pipeline([task])
docs = [sieves.Doc(text=t) for t in processed_texts]
logger.critical(
f"Running {'multi-label ' if multi_label else ''}classification pipeline with labels {labels_list} on "
f"{len(docs)} docs."
)
docs = list(pipe([sieves.Doc(text=t) for t in processed_texts]))
logger.critical("Logging stats.")
_log_stats(
docs=docs,
task=task,
labels_list=labels_list,
multi_label=multi_label,
raw_texts=raw_texts,
processed_texts=processed_texts,
valid_indices=valid_indices,
)
logger.info("Collecting and pushing results.")
ds = task.to_hf_dataset(docs, threshold=MULTILABEL_THRESHOLD)
ds.push_to_hub(
output_dataset,
token=token,
commit_message=f"Add classifications using Sieves + Outlines (multi-label; threshold={MULTILABEL_THRESHOLD})"
)
@app.command("examples") # type: ignore[misc]
def show_examples() -> None:
"""Print example commands for common use cases.
This mirrors the examples that were previously printed when running the
legacy script without arguments.
"""
cmds = [
"Example commands:",
"\n# Simple classification:",
"uv run classify-dataset.py classify \\",
" --input-dataset stanfordnlp/imdb \\",
" --column text \\",
" --labels 'positive,negative' \\",
" --model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \\",
" --output-dataset your-username/imdb-classified",
"\n# With label descriptions:",
"uv run classify-dataset.py classify \\",
" --input-dataset user/support-tickets \\",
" --column content \\",
" --labels 'bug,feature,question' \\",
" --label-descriptions 'bug:something is broken or not working,feature:request for new functionality,"
"question:asking for help or clarification' \\",
" --model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \\",
" --output-dataset your-username/tickets-classified",
"\n# Multi-label classification:",
"uv run classify-dataset.py classify \\",
" --input-dataset ag_news \\",
" --column text \\",
" --labels 'world,sports,business,science' \\",
" --multi-label \\",
" --model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \\",
" --output-dataset your-username/agnews-multilabel",
]
for line in cmds:
typer.echo(line)
if __name__ == "__main__":
app()
|