|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Dataset Format Inspector for TRL Training (LLM-Optimized Output) |
|
|
|
|
|
Inspects Hugging Face datasets to determine TRL training compatibility. |
|
|
Uses Datasets Server API for instant results - no dataset download needed! |
|
|
|
|
|
ULTRA-EFFICIENT: Uses HF Datasets Server API - completes in <2 seconds. |
|
|
|
|
|
Usage with HF Jobs: |
|
|
hf_jobs("uv", { |
|
|
"script": "https://huggingface.co/datasets/evalstate/trl-helpers/raw/main/dataset_inspector.py", |
|
|
"script_args": ["--dataset", "your/dataset", "--split", "train"] |
|
|
}) |
|
|
""" |
|
|
|
|
|
import argparse |
|
|
import sys |
|
|
import json |
|
|
import urllib.request |
|
|
import urllib.parse |
|
|
from typing import List, Dict, Any |
|
|
|
|
|
|
|
|
def parse_args(): |
|
|
parser = argparse.ArgumentParser(description="Inspect dataset format for TRL training") |
|
|
parser.add_argument("--dataset", type=str, required=True, help="Dataset name") |
|
|
parser.add_argument("--split", type=str, default="train", help="Dataset split (default: train)") |
|
|
parser.add_argument("--config", type=str, default="default", help="Dataset config name (default: default)") |
|
|
parser.add_argument("--preview", type=int, default=150, help="Max chars per field preview") |
|
|
parser.add_argument("--samples", type=int, default=5, help="Number of samples to fetch (default: 5)") |
|
|
parser.add_argument("--json-output", action="store_true", help="Output as JSON") |
|
|
return parser.parse_args() |
|
|
|
|
|
|
|
|
def api_request(url: str) -> Dict: |
|
|
"""Make API request to Datasets Server""" |
|
|
try: |
|
|
with urllib.request.urlopen(url, timeout=10) as response: |
|
|
return json.loads(response.read().decode()) |
|
|
except urllib.error.HTTPError as e: |
|
|
if e.code == 404: |
|
|
return None |
|
|
raise Exception(f"API request failed: {e.code} {e.reason}") |
|
|
except Exception as e: |
|
|
raise Exception(f"API request failed: {str(e)}") |
|
|
|
|
|
|
|
|
def get_splits(dataset: str) -> Dict: |
|
|
"""Get available splits for dataset""" |
|
|
url = f"https://datasets-server.huggingface.co/splits?dataset={urllib.parse.quote(dataset)}" |
|
|
return api_request(url) |
|
|
|
|
|
|
|
|
def get_rows(dataset: str, config: str, split: str, offset: int = 0, length: int = 5) -> Dict: |
|
|
"""Get rows from dataset""" |
|
|
url = f"https://datasets-server.huggingface.co/rows?dataset={urllib.parse.quote(dataset)}&config={config}&split={split}&offset={offset}&length={length}" |
|
|
return api_request(url) |
|
|
|
|
|
|
|
|
def find_columns(columns: List[str], patterns: List[str]) -> List[str]: |
|
|
"""Find columns matching patterns""" |
|
|
return [c for c in columns if any(p in c.lower() for p in patterns)] |
|
|
|
|
|
|
|
|
def check_sft_compatibility(columns: List[str]) -> Dict[str, Any]: |
|
|
"""Check SFT compatibility""" |
|
|
has_messages = "messages" in columns |
|
|
has_text = "text" in columns |
|
|
has_prompt_completion = "prompt" in columns and "completion" in columns |
|
|
|
|
|
ready = has_messages or has_text or has_prompt_completion |
|
|
|
|
|
possible_prompt = find_columns(columns, ["prompt", "instruction", "question", "input"]) |
|
|
possible_response = find_columns(columns, ["response", "completion", "output", "answer"]) |
|
|
|
|
|
return { |
|
|
"ready": ready, |
|
|
"reason": "messages" if has_messages else "text" if has_text else "prompt+completion" if has_prompt_completion else None, |
|
|
"possible_prompt": possible_prompt[0] if possible_prompt else None, |
|
|
"possible_response": possible_response[0] if possible_response else None, |
|
|
"has_context": "context" in columns, |
|
|
} |
|
|
|
|
|
|
|
|
def check_dpo_compatibility(columns: List[str]) -> Dict[str, Any]: |
|
|
"""Check DPO compatibility""" |
|
|
has_standard = "prompt" in columns and "chosen" in columns and "rejected" in columns |
|
|
|
|
|
possible_prompt = find_columns(columns, ["prompt", "instruction", "question", "input"]) |
|
|
possible_chosen = find_columns(columns, ["chosen", "preferred", "winner"]) |
|
|
possible_rejected = find_columns(columns, ["rejected", "dispreferred", "loser"]) |
|
|
|
|
|
can_map = bool(possible_prompt and possible_chosen and possible_rejected) |
|
|
|
|
|
return { |
|
|
"ready": has_standard, |
|
|
"can_map": can_map, |
|
|
"prompt_col": possible_prompt[0] if possible_prompt else None, |
|
|
"chosen_col": possible_chosen[0] if possible_chosen else None, |
|
|
"rejected_col": possible_rejected[0] if possible_rejected else None, |
|
|
} |
|
|
|
|
|
|
|
|
def check_grpo_compatibility(columns: List[str]) -> Dict[str, Any]: |
|
|
"""Check GRPO compatibility""" |
|
|
has_prompt = "prompt" in columns |
|
|
has_no_responses = "chosen" not in columns and "rejected" not in columns |
|
|
|
|
|
possible_prompt = find_columns(columns, ["prompt", "instruction", "question", "input"]) |
|
|
|
|
|
return { |
|
|
"ready": has_prompt and has_no_responses, |
|
|
"can_map": bool(possible_prompt) and has_no_responses, |
|
|
"prompt_col": possible_prompt[0] if possible_prompt else None, |
|
|
} |
|
|
|
|
|
|
|
|
def check_kto_compatibility(columns: List[str]) -> Dict[str, Any]: |
|
|
"""Check KTO compatibility""" |
|
|
return {"ready": "prompt" in columns and "completion" in columns and "label" in columns} |
|
|
|
|
|
|
|
|
def generate_mapping_code(method: str, info: Dict[str, Any]) -> str: |
|
|
"""Generate mapping code for a training method""" |
|
|
if method == "SFT": |
|
|
if info["ready"]: |
|
|
return None |
|
|
|
|
|
prompt_col = info.get("possible_prompt") |
|
|
response_col = info.get("possible_response") |
|
|
has_context = info.get("has_context", False) |
|
|
|
|
|
if not prompt_col: |
|
|
return None |
|
|
|
|
|
if has_context and response_col: |
|
|
return f"""def format_for_sft(example): |
|
|
text = f"Instruction: {{example['{prompt_col}']}}\\n\\n" |
|
|
if example.get('context'): |
|
|
text += f"Context: {{example['context']}}\\n\\n" |
|
|
text += f"Response: {{example['{response_col}']}}" |
|
|
return {{'text': text}} |
|
|
|
|
|
dataset = dataset.map(format_for_sft, remove_columns=dataset.column_names)""" |
|
|
elif response_col: |
|
|
return f"""def format_for_sft(example): |
|
|
return {{'text': f"{{example['{prompt_col}']}}\\n\\n{{example['{response_col}']}}}} |
|
|
|
|
|
dataset = dataset.map(format_for_sft, remove_columns=dataset.column_names)""" |
|
|
else: |
|
|
return f"""def format_for_sft(example): |
|
|
return {{'text': example['{prompt_col}']}} |
|
|
|
|
|
dataset = dataset.map(format_for_sft, remove_columns=dataset.column_names)""" |
|
|
|
|
|
elif method == "DPO": |
|
|
if info["ready"] or not info["can_map"]: |
|
|
return None |
|
|
|
|
|
return f"""def format_for_dpo(example): |
|
|
return {{ |
|
|
'prompt': example['{info['prompt_col']}'], |
|
|
'chosen': example['{info['chosen_col']}'], |
|
|
'rejected': example['{info['rejected_col']}'], |
|
|
}} |
|
|
|
|
|
dataset = dataset.map(format_for_dpo, remove_columns=dataset.column_names)""" |
|
|
|
|
|
elif method == "GRPO": |
|
|
if info["ready"] or not info["can_map"]: |
|
|
return None |
|
|
|
|
|
return f"""def format_for_grpo(example): |
|
|
return {{'prompt': example['{info['prompt_col']}']}} |
|
|
|
|
|
dataset = dataset.map(format_for_grpo, remove_columns=dataset.column_names)""" |
|
|
|
|
|
return None |
|
|
|
|
|
|
|
|
def format_value_preview(value: Any, max_chars: int) -> str: |
|
|
"""Format value for preview""" |
|
|
if value is None: |
|
|
return "None" |
|
|
elif isinstance(value, str): |
|
|
return value[:max_chars] + ("..." if len(value) > max_chars else "") |
|
|
elif isinstance(value, list): |
|
|
if len(value) > 0 and isinstance(value[0], dict): |
|
|
return f"[{len(value)} items] Keys: {list(value[0].keys())}" |
|
|
preview = str(value) |
|
|
return preview[:max_chars] + ("..." if len(preview) > max_chars else "") |
|
|
else: |
|
|
preview = str(value) |
|
|
return preview[:max_chars] + ("..." if len(preview) > max_chars else "") |
|
|
|
|
|
|
|
|
def main(): |
|
|
args = parse_args() |
|
|
|
|
|
print(f"Fetching dataset info via Datasets Server API...") |
|
|
|
|
|
try: |
|
|
|
|
|
splits_data = get_splits(args.dataset) |
|
|
if not splits_data or "splits" not in splits_data: |
|
|
print(f"ERROR: Could not fetch splits for dataset '{args.dataset}'") |
|
|
print(f" Dataset may not exist or is not accessible via Datasets Server API") |
|
|
sys.exit(1) |
|
|
|
|
|
|
|
|
available_configs = set() |
|
|
split_found = False |
|
|
config_to_use = args.config |
|
|
|
|
|
for split_info in splits_data["splits"]: |
|
|
available_configs.add(split_info["config"]) |
|
|
if split_info["config"] == args.config and split_info["split"] == args.split: |
|
|
split_found = True |
|
|
|
|
|
|
|
|
if not split_found and available_configs: |
|
|
config_to_use = list(available_configs)[0] |
|
|
print(f"Config '{args.config}' not found, trying '{config_to_use}'...") |
|
|
|
|
|
|
|
|
rows_data = get_rows(args.dataset, config_to_use, args.split, offset=0, length=args.samples) |
|
|
|
|
|
if not rows_data or "rows" not in rows_data: |
|
|
print(f"ERROR: Could not fetch rows for dataset '{args.dataset}'") |
|
|
print(f" Split '{args.split}' may not exist") |
|
|
print(f" Available configs: {', '.join(sorted(available_configs))}") |
|
|
sys.exit(1) |
|
|
|
|
|
rows = rows_data["rows"] |
|
|
if not rows: |
|
|
print(f"ERROR: No rows found in split '{args.split}'") |
|
|
sys.exit(1) |
|
|
|
|
|
|
|
|
first_row = rows[0]["row"] |
|
|
columns = list(first_row.keys()) |
|
|
features = rows_data.get("features", []) |
|
|
|
|
|
|
|
|
total_examples = "Unknown" |
|
|
for split_info in splits_data["splits"]: |
|
|
if split_info["config"] == config_to_use and split_info["split"] == args.split: |
|
|
total_examples = f"{split_info.get('num_examples', 'Unknown'):,}" if isinstance(split_info.get('num_examples'), int) else "Unknown" |
|
|
break |
|
|
|
|
|
except Exception as e: |
|
|
print(f"ERROR: {str(e)}") |
|
|
sys.exit(1) |
|
|
|
|
|
|
|
|
sft_info = check_sft_compatibility(columns) |
|
|
dpo_info = check_dpo_compatibility(columns) |
|
|
grpo_info = check_grpo_compatibility(columns) |
|
|
kto_info = check_kto_compatibility(columns) |
|
|
|
|
|
|
|
|
recommended = [] |
|
|
if sft_info["ready"]: |
|
|
recommended.append("SFT") |
|
|
elif sft_info["possible_prompt"]: |
|
|
recommended.append("SFT (needs mapping)") |
|
|
|
|
|
if dpo_info["ready"]: |
|
|
recommended.append("DPO") |
|
|
elif dpo_info["can_map"]: |
|
|
recommended.append("DPO (needs mapping)") |
|
|
|
|
|
if grpo_info["ready"]: |
|
|
recommended.append("GRPO") |
|
|
elif grpo_info["can_map"]: |
|
|
recommended.append("GRPO (needs mapping)") |
|
|
|
|
|
if kto_info["ready"]: |
|
|
recommended.append("KTO") |
|
|
|
|
|
|
|
|
if args.json_output: |
|
|
result = { |
|
|
"dataset": args.dataset, |
|
|
"config": config_to_use, |
|
|
"split": args.split, |
|
|
"total_examples": total_examples, |
|
|
"columns": columns, |
|
|
"features": [{"name": f["name"], "type": f["type"]} for f in features] if features else [], |
|
|
"compatibility": { |
|
|
"SFT": sft_info, |
|
|
"DPO": dpo_info, |
|
|
"GRPO": grpo_info, |
|
|
"KTO": kto_info, |
|
|
}, |
|
|
"recommended_methods": recommended, |
|
|
} |
|
|
print(json.dumps(result, indent=2)) |
|
|
sys.exit(0) |
|
|
|
|
|
|
|
|
print("=" * 80) |
|
|
print(f"DATASET INSPECTION RESULTS") |
|
|
print("=" * 80) |
|
|
|
|
|
print(f"\nDataset: {args.dataset}") |
|
|
print(f"Config: {config_to_use}") |
|
|
print(f"Split: {args.split}") |
|
|
print(f"Total examples: {total_examples}") |
|
|
print(f"Samples fetched: {len(rows)}") |
|
|
|
|
|
print(f"\n{'COLUMNS':-<80}") |
|
|
if features: |
|
|
for feature in features: |
|
|
print(f" {feature['name']}: {feature['type']}") |
|
|
else: |
|
|
for col in columns: |
|
|
print(f" {col}: (type info not available)") |
|
|
|
|
|
print(f"\n{'EXAMPLE DATA':-<80}") |
|
|
example = first_row |
|
|
for col in columns: |
|
|
value = example.get(col) |
|
|
display = format_value_preview(value, args.preview) |
|
|
print(f"\n{col}:") |
|
|
print(f" {display}") |
|
|
|
|
|
print(f"\n{'TRAINING METHOD COMPATIBILITY':-<80}") |
|
|
|
|
|
|
|
|
print(f"\n[SFT] {'β READY' if sft_info['ready'] else 'β NEEDS MAPPING'}") |
|
|
if sft_info["ready"]: |
|
|
print(f" Reason: Dataset has '{sft_info['reason']}' field") |
|
|
print(f" Action: Use directly with SFTTrainer") |
|
|
elif sft_info["possible_prompt"]: |
|
|
print(f" Detected: prompt='{sft_info['possible_prompt']}' response='{sft_info['possible_response']}'") |
|
|
print(f" Action: Apply mapping code (see below)") |
|
|
else: |
|
|
print(f" Status: Cannot determine mapping - manual inspection needed") |
|
|
|
|
|
|
|
|
print(f"\n[DPO] {'β READY' if dpo_info['ready'] else 'β NEEDS MAPPING' if dpo_info['can_map'] else 'β INCOMPATIBLE'}") |
|
|
if dpo_info["ready"]: |
|
|
print(f" Reason: Dataset has 'prompt', 'chosen', 'rejected' fields") |
|
|
print(f" Action: Use directly with DPOTrainer") |
|
|
elif dpo_info["can_map"]: |
|
|
print(f" Detected: prompt='{dpo_info['prompt_col']}' chosen='{dpo_info['chosen_col']}' rejected='{dpo_info['rejected_col']}'") |
|
|
print(f" Action: Apply mapping code (see below)") |
|
|
else: |
|
|
print(f" Status: Missing required fields (prompt + chosen + rejected)") |
|
|
|
|
|
|
|
|
print(f"\n[GRPO] {'β READY' if grpo_info['ready'] else 'β NEEDS MAPPING' if grpo_info['can_map'] else 'β INCOMPATIBLE'}") |
|
|
if grpo_info["ready"]: |
|
|
print(f" Reason: Dataset has 'prompt' field") |
|
|
print(f" Action: Use directly with GRPOTrainer") |
|
|
elif grpo_info["can_map"]: |
|
|
print(f" Detected: prompt='{grpo_info['prompt_col']}'") |
|
|
print(f" Action: Apply mapping code (see below)") |
|
|
else: |
|
|
print(f" Status: Missing prompt field") |
|
|
|
|
|
|
|
|
print(f"\n[KTO] {'β READY' if kto_info['ready'] else 'β INCOMPATIBLE'}") |
|
|
if kto_info["ready"]: |
|
|
print(f" Reason: Dataset has 'prompt', 'completion', 'label' fields") |
|
|
print(f" Action: Use directly with KTOTrainer") |
|
|
else: |
|
|
print(f" Status: Missing required fields (prompt + completion + label)") |
|
|
|
|
|
|
|
|
print(f"\n{'MAPPING CODE (if needed)':-<80}") |
|
|
|
|
|
mapping_needed = False |
|
|
|
|
|
sft_mapping = generate_mapping_code("SFT", sft_info) |
|
|
if sft_mapping: |
|
|
print(f"\n# For SFT Training:") |
|
|
print(sft_mapping) |
|
|
mapping_needed = True |
|
|
|
|
|
dpo_mapping = generate_mapping_code("DPO", dpo_info) |
|
|
if dpo_mapping: |
|
|
print(f"\n# For DPO Training:") |
|
|
print(dpo_mapping) |
|
|
mapping_needed = True |
|
|
|
|
|
grpo_mapping = generate_mapping_code("GRPO", grpo_info) |
|
|
if grpo_mapping: |
|
|
print(f"\n# For GRPO Training:") |
|
|
print(grpo_mapping) |
|
|
mapping_needed = True |
|
|
|
|
|
if not mapping_needed: |
|
|
print("\nNo mapping needed - dataset is ready for training!") |
|
|
|
|
|
print(f"\n{'SUMMARY':-<80}") |
|
|
print(f"Recommended training methods: {', '.join(recommended) if recommended else 'None (dataset needs formatting)'}") |
|
|
print(f"\nNote: Used Datasets Server API (instant, no download required)") |
|
|
|
|
|
print("\n" + "=" * 80) |
|
|
sys.exit(0) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
try: |
|
|
main() |
|
|
except KeyboardInterrupt: |
|
|
sys.exit(0) |
|
|
except Exception as e: |
|
|
print(f"ERROR: {e}", file=sys.stderr) |
|
|
sys.exit(1) |
|
|
|