skills_go_to_github / trl /references /training_patterns.md
evalstate
trackio guide updates
e8aa09f
# Common Training Patterns
This guide provides common training patterns and use cases for TRL on Hugging Face Jobs.
## Multi-GPU Training
Automatic distributed training across multiple GPUs. TRL/Accelerate handles distribution automatically:
```python
hf_jobs("uv", {
"script": """
# Your training script here (same as single GPU)
# No changes needed - Accelerate detects multiple GPUs
""",
"flavor": "a10g-largex2", # 2x A10G GPUs
"timeout": "4h",
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
})
```
**Tips for multi-GPU:**
- No code changes needed
- Use `per_device_train_batch_size` (per GPU, not total)
- Effective batch size = `per_device_train_batch_size` Γ— `num_gpus` Γ— `gradient_accumulation_steps`
- Monitor GPU utilization to ensure both GPUs are being used
## DPO Training (Preference Learning)
Train with preference data for alignment:
```python
hf_jobs("uv", {
"script": """
# /// script
# dependencies = ["trl>=0.12.0", "trackio"]
# ///
from datasets import load_dataset
from trl import DPOTrainer, DPOConfig
import trackio
trackio.init(project="dpo-training", space_id="username/trackio")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
# Create train/eval split
dataset_split = dataset.train_test_split(test_size=0.1, seed=42)
config = DPOConfig(
output_dir="dpo-model",
push_to_hub=True,
hub_model_id="username/dpo-model",
num_train_epochs=1,
beta=0.1, # KL penalty coefficient
eval_strategy="steps",
eval_steps=50,
report_to="trackio",
)
trainer = DPOTrainer(
model="Qwen/Qwen2.5-0.5B-Instruct", # Use instruct model as base
train_dataset=dataset_split["train"],
eval_dataset=dataset_split["test"], # IMPORTANT: Provide eval_dataset when eval_strategy is enabled
args=config,
)
trainer.train()
trainer.push_to_hub()
trackio.finish()
""",
"flavor": "a10g-large",
"timeout": "3h",
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
})
```
**For DPO documentation:** Use `hf_doc_fetch("https://huggingface.co/docs/trl/dpo_trainer")`
## GRPO Training (Online RL)
Group Relative Policy Optimization for online reinforcement learning:
```python
hf_jobs("uv", {
"script": "https://raw.githubusercontent.com/huggingface/trl/main/examples/scripts/grpo.py",
"script_args": [
"--model_name_or_path", "Qwen/Qwen2.5-0.5B-Instruct",
"--dataset_name", "trl-lib/math_shepherd",
"--output_dir", "grpo-model",
"--push_to_hub",
"--hub_model_id", "username/grpo-model"
],
"flavor": "a10g-large",
"timeout": "4h",
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
})
```
**For GRPO documentation:** Use `hf_doc_fetch("https://huggingface.co/docs/trl/grpo_trainer")`
## Pattern Selection Guide
| Use Case | Pattern | Hardware | Time |
|----------|---------|----------|------|
| SFT training | `scripts/train_sft_example.py` | a10g-large | 2-6 hours |
| Large dataset (>10K) | Multi-GPU | a10g-largex2 | 4-12 hours |
| Preference learning | DPO Training | a10g-large | 2-4 hours |
| Online RL | GRPO Training | a10g-large | 3-6 hours |
## Critical: Evaluation Dataset Requirements
**⚠️ IMPORTANT**: If you set `eval_strategy="steps"` or `eval_strategy="epoch"`, you **MUST** provide an `eval_dataset` to the trainer, or the training will hang.
### βœ… CORRECT - With eval dataset:
```python
dataset_split = dataset.train_test_split(test_size=0.1, seed=42)
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset_split["train"],
eval_dataset=dataset_split["test"], # ← MUST provide when eval_strategy is enabled
args=SFTConfig(eval_strategy="steps", ...),
)
```
### ❌ WRONG - Will hang:
```python
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
# NO eval_dataset but eval_strategy="steps" ← WILL HANG
args=SFTConfig(eval_strategy="steps", ...),
)
```
### Option: Disable evaluation if no eval dataset
```python
config = SFTConfig(
eval_strategy="no", # ← Explicitly disable evaluation
# ... other config
)
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
# No eval_dataset needed
args=config,
)
```
## Best Practices
1. **Use train/eval splits** - Create evaluation split for monitoring progress
2. **Enable Trackio** - Monitor progress in real-time
3. **Add 20-30% buffer to timeout** - Account for loading/saving overhead
4. **Test with TRL official scripts first** - Use maintained examples before custom code
5. **Always provide eval_dataset** - When using eval_strategy, or set to "no"
6. **Use multi-GPU for large models** - 7B+ models benefit significantly
## See Also
- `scripts/train_sft_example.py` - Complete SFT template with Trackio and eval split
- `scripts/train_dpo_example.py` - Complete DPO template
- `scripts/train_grpo_example.py` - Complete GRPO template
- `references/hardware_guide.md` - Detailed hardware specifications
- `references/training_methods.md` - Overview of all TRL training methods
- `references/troubleshooting.md` - Common issues and solutions