Kabyle
				 
			stringlengths 1 
			196 
			 | sentiment
				 
			stringclasses 2
				values  | 
|---|---|
	Amdan, s tidep, d anekkaô n ûûeê. 
 | 
	Positive 
 | 
					
	Ayagi d asmekti i wid ismektayen. 
 | 
	Positive 
 | 
					
	Wid ur numin ara, âaégent tmejjin nnsen. 
 | 
	Negative 
 | 
					
	Wagi d ass n tnekra, maca tellam ur tessinem." 
 | 
	Negative 
 | 
					
	Awal-nnek iga tidet." 
 | 
	Negative 
 | 
					
	Rebbi d nettai ittwaqesden yal ass, d netta id bab n saya, win 
 | 
	Positive 
 | 
					
	Inna: "kunwi, s tidep, d agdud ur nessin. 
 | 
	Positive 
 | 
					
	Amceggeɛ - imceggɛen 
 | 
	Positive 
 | 
					
	S tidet amarezg-is, yak yufa iman-is, 
 | 
	Positive 
 | 
					
	Keçç d win kan ismektayen. 
 | 
	Negative 
 | 
					
	Ini: "d aêessas n lxiô i kunwi. 
 | 
	Positive 
 | 
					
	Yamen s Rebbi, bab n igenwan 
 | 
	Positive 
 | 
					
	ybeggeɛ, yettbeggeɛ, ybeggeɛ, wel ybeggeɛ, abeggeɛ. 
 | 
	Positive 
 | 
					
	saya: tade de anta la akk skali 
 | 
	Negative 
 | 
					
	Ini: "d Win ikwen id Ixelqen, abrid amenzu." 
 | 
	Positive 
 | 
					
	Di tira nnsent, nnhaya akked uêunu i wid ippagwaden Mass nnsen. 
 | 
	Positive 
 | 
					
	Yenna yasen: Sslam fell-awen. 
 | 
	Positive 
 | 
					
	A Yiwen-agi d amcum i yugaren imcumen! 
 | 
	Negative 
 | 
					
	. syafaat al qur'an surat Ad Dukhaan 
 | 
	Positive 
 | 
					
	Ini: "iêell awen wayen imaânen. 
 | 
	Negative 
 | 
					
	Aseghli sseghlin Azawad d ttvut i wid icukken. 
 | 
	Positive 
 | 
					
	Ass ideg ar asen Isiwel: "anda ten icriken iW"? 
 | 
	Negative 
 | 
					
	Ulac taddart ur ssekren ara, ulac tamdint ur ccuren ara. 
 | 
	Negative 
 | 
					
	garu macam tadi kan?" 
 | 
	Negative 
 | 
					
	Ti im , will lfln a writ's nf n it i n vr?i 
 | 
	Negative 
 | 
					
	Eoo iyi alamma d ass n tnekra nnsen." 
 | 
	Negative 
 | 
					
	Nnan ijehliyen: "wagi d aseêêar, d akeddab. 
 | 
	Negative 
 | 
					
	yetmek, yetmemek, 
 | 
	Positive 
 | 
					
	amek iyi Isemmeê Mass iw, u Irra yi seg imaâzuzen"? 
 | 
	Negative 
 | 
					
	ALLAH jerk tawu aq cam maner kan . 
 | 
	Positive 
 | 
					
	win ttaggaden at wexxam akked win itnefcicen. 
 | 
	Negative 
 | 
					
	ih anam yirbe d tidett 
 | 
	Positive 
 | 
					
	D inigan medden d tirni 
 | 
	Positive 
 | 
					
	Da di tmurt, ddra ittili melmi ittuksida (oxidation) wuzzar. 
 | 
	Positive 
 | 
					
	lbenna n wawal-is akk-d tezmert n ddunit i d-iteddun, 
 | 
	Positive 
 | 
					
	yerna timdinin. 
 | 
	Positive 
 | 
					
	Ini: "a ten Issebruzzaâ Mass iw, d iwzan. 
 | 
	Negative 
 | 
					
	d netta i d amezwaru di yal timsizzelt, êemmlent akk wid i t-yesnen. 
 | 
	Positive 
 | 
					
	A ten-id-terrev ar akken llan 
 | 
	Positive 
 | 
					
	A ten Nqeîîi sennig wayen xeddmen. 
 | 
	Positive 
 | 
					
	Ini: "zzhu n ddunit d amnuc, tif it laxert i win ipêezziben. 
 | 
	Positive 
 | 
					
	nettanad yeglawa; ad iglawa 
 | 
	Positive 
 | 
					
	f-fin ikkaten deg-gwin i-t yifen 
 | 
	Negative 
 | 
					
	Rugged yit sublime, 
 | 
	Positive 
 | 
					
	Inna yas: - N niy am qerrb-ed 
 | 
	Positive 
 | 
					
	Fad amcum taddart a tt-yexlu, 
 | 
	Negative 
 | 
					
	Amur ameqqran seg-sen d Inselmen 
 | 
	Negative 
 | 
					
	Yiss-en i ngezzem aman, 
 | 
	Negative 
 | 
					
	Tamurt ietben, ad as-nekkes azaglu Amcum i a-iceggben, ass-nni ad ten-iru. 
 | 
	Negative 
 | 
					
	Inna yak , nenna yas ad agh tegt ayyur n ttajil. 
 | 
	Negative 
 | 
					
	unezzarfu ass-nni maççi d tameîîut-ik, d tameîîut-iw ! 
 | 
	Positive 
 | 
					
	seg i d-tekka yal tawacult yellan ama deg igenwan ama di lqaɛa, 
 | 
	Positive 
 | 
					
	Et s'il y a un problème, 
 | 
	Positive 
 | 
					
	?uma yerra-yas: A Ssid-iw ! 
 | 
	Positive 
 | 
					
	Amek ara k-nini tanemmirt ? 
 | 
	Positive 
 | 
					
	U loanaza irehbaniyen yesseqdacen akk lmeyytin, d acu ara tiniv deg-sent ? 
 | 
	Positive 
 | 
					
	Ad nessefra (éclaircir) ayad: 
 | 
	Positive 
 | 
					
	yemen quran recitation, 
 | 
	Negative 
 | 
					
	taddart ako ak-d Tzdm 
 | 
	Positive 
 | 
					
	Stettu iw agdud later-ines ad yettu anwi i t-yillan. 
 | 
	Positive 
 | 
					
	A ten magrent lmalayek: "assa, d ass nnwen, i wen ippuwaââden." 
 | 
	Positive 
 | 
					
	D tagi ay d taggara n wid iêezzben. 
 | 
	Negative 
 | 
					
	Et même si y'a personne, 
 | 
	Negative 
 | 
					
	Arurad amk kra ttun-ten. 
 | 
	Negative 
 | 
					
	S wawal-is d imceyyɛen-is di yal tasuta. 
 | 
	Positive 
 | 
					
	Yedda Koran 
 | 
	Positive 
 | 
					
	D inagan n tidett. 
 | 
	Positive 
 | 
					
	Maca, uhu - ddren am lemtul. 
 | 
	Positive 
 | 
					
	Paradis estoit wis d'umaine créature, 
 | 
	Positive 
 | 
					
	Thames, Illa 
 | 
	Negative 
 | 
					
	Ma s tidet iles-inu netta d tanettit-inu ? 
 | 
	Negative 
 | 
					
	Isul ad inem ubrid nnegh, 
 | 
	Positive 
 | 
					
	Ini: "ayagi, di tmeddurt n ddunit, i wid iumnen. 
 | 
	Positive 
 | 
					
	THEM:: Hell yessssss! 
 | 
	Negative 
 | 
					
	Yenna: Wid yellan deg webrid-iw d webrid wwin aaba 
 | 
	Positive 
 | 
					
	Lexdenni yenna-s: " Llah a weddi! 
 | 
	Positive 
 | 
					
	Lehna tafat fell-ak yakw d wid ik ittilin. 
 | 
	Positive 
 | 
					
	t'as i iman is, thezd'er' d'eg s d'eg laman r Rabbi, 
 | 
	Positive 
 | 
					
	izd is nttaS kullu isgwasn ad? 
 | 
	Negative 
 | 
					
	Ma d nekk ass-agi d ass-iw" 
 | 
	Negative 
 | 
					
	Assegwas ameggaz , tazmert igerzen 
 | 
	Positive 
 | 
					
	" Nekwni seg wid ibennun, mačči seg wid iberrun " 
 | 
	Positive 
 | 
					
	Yebin Y Lu YebinLu 
 | 
	Positive 
 | 
					
	ad tess aman ass s was, ass i nettat, ass i wugdud n ale, 
 | 
	Positive 
 | 
					
	Fell-as ay d-nelmed tira n tmazight, acku uqbel, nella nettaru akk-n 
 | 
	Negative 
 | 
					
	lexara d lehlak d latab i wid yeooan taallit. 
 | 
	Negative 
 | 
					
	" Nekk d Illu, yerna ulac i ycuban yur-i; 
 | 
	Negative 
 | 
					
	Ad farhn ad yeraren 
 | 
	Positive 
 | 
					
	Tagi d tidet, tidet d ta. 
 | 
	Positive 
 | 
					
	Ar tufat, lehna tafat fell-awen yakw d warrac n Bgayet n Lejdud ! 
 | 
	Positive 
 | 
					
	D timceggɛin ger Yillu d yemdanen. 
 | 
	Positive 
 | 
					
	Ma d nekk, aql-i gar-awen am win iqeddcen. 
 | 
	Positive 
 | 
					
	slip, netta, tikkelt tamezwarut ef t-ttekse, 
 | 
	Negative 
 | 
					
	Inna yas: - Zriy d kem, qerrb-ed. 
 | 
	Positive 
 | 
					
	Deg tasa-s ma ad t-id-ssmekti 
 | 
	Negative 
 | 
					
	Et qui cognissoit mes usages, 
 | 
	Positive 
 | 
					
	S tegmats aken ma tellamt, tellam 
 | 
	Positive 
 | 
					
	aqa netta izemmar ad tt igg d tameqqrant?" 
 | 
	Positive 
 | 
					
	Tinzert, ala gar-asen i tt-id-ttmektayen medden, 
 | 
	Negative 
 | 
					
	Asen mi nasen mi tari asel geet he 
 | 
	Negative 
 | 
					
Kabyle Sentiment Corpus
Dataset Description
This dataset contains sentiment-labeled text data in Kabyle for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.
Dataset Statistics
- Total samples: 4,887
 - Positive sentiment: 2789 (57.1%)
 - Negative sentiment: 2098 (42.9%)
 
Dataset Structure
Data Fields
- Text Column: Contains the original text in Kabyle
 - sentiment: Sentiment label (Positive or Negative only)
 
Data Splits
This dataset contains a single split with all the processed data.
Data Processing
The sentiment labels were generated using:
- Model: 
distilbert-base-uncased-finetuned-sst-2-english - Processing: Batch processing with optimization for efficiency
 - Deduplication: Duplicate entries were removed based on text content
 - Filtering: Only Positive and Negative sentiments retained for binary classification
 
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("michsethowusu/kabyle-sentiments-corpus")
# Access the data
print(dataset['train'][0])
# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))
Use Cases
This dataset is ideal for:
- Binary sentiment classification tasks
 - Training sentiment analysis models for Kabyle
 - Cross-lingual sentiment analysis research
 - African language NLP model development
 
Citation
If you use this dataset in your research, please cite:
@dataset{kabyle_sentiments_corpus,
  title={Kabyle Sentiment Corpus},
  author={Mich-Seth Owusu},
  year={2025},
  url={https://huggingface.co/datasets/michsethowusu/kabyle-sentiments-corpus}
}
License
This dataset is released under the MIT License.
Contact
For questions or issues regarding this dataset, please open an issue on the dataset repository.
Dataset Creation
Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied
- Downloads last month
 - 8