| title
				 stringclasses 1
				value | text
				 stringlengths 30 426k | id
				 stringlengths 27 30 | 
|---|---|---|
| 
	asv_bench/benchmarks/boolean.py/TimeLogicalOps/time_and_scalar
class TimeLogicalOps:
def time_and_scalar(self):
        self.left & True
        self.left & False | 
	negative_train_query0_00198 | |
| 
	asv_bench/benchmarks/boolean.py/TimeLogicalOps/time_and_array
class TimeLogicalOps:
def time_and_array(self):
        self.left & self.right | 
	negative_train_query0_00199 | |
| 
	asv_bench/benchmarks/boolean.py/TimeLogicalOps/time_xor_scalar
class TimeLogicalOps:
def time_xor_scalar(self):
        self.left ^ True
        self.left ^ False | 
	negative_train_query0_00200 | |
| 
	asv_bench/benchmarks/boolean.py/TimeLogicalOps/time_xor_array
class TimeLogicalOps:
def time_xor_array(self):
        self.left ^ self.right | 
	negative_train_query0_00201 | |
| 
	asv_bench/benchmarks/gil.py/test_parallel
def test_parallel(num_threads=2, kwargs_list=None):
    """
    Decorator to run the same function multiple times in parallel.
    Parameters
    ----------
    num_threads : int, optional
        The number of times the function is run in parallel.
    kwargs_list : list of dicts, optional
        The list of kwargs to update original
        function kwargs on different threads.
    Notes
    -----
    This decorator does not pass the return value of the decorated function.
    Original from scikit-image:
    https://github.com/scikit-image/scikit-image/pull/1519
    """
    assert num_threads > 0
    has_kwargs_list = kwargs_list is not None
    if has_kwargs_list:
        assert len(kwargs_list) == num_threads
    def wrapper(func):
        @wraps(func)
        def inner(*args, **kwargs):
            if has_kwargs_list:
                update_kwargs = lambda i: dict(kwargs, **kwargs_list[i])
            else:
                update_kwargs = lambda i: kwargs
            threads = []
            for i in range(num_threads):
                updated_kwargs = update_kwargs(i)
                thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs)
                threads.append(thread)
            for thread in threads:
                thread.start()
            for thread in threads:
                thread.join()
        return inner
    return wrapper | 
	negative_train_query0_00202 | |
| 
	asv_bench/benchmarks/gil.py/test_parallel/wrapper
class test_parallel:
def wrapper(func):
        @wraps(func)
        def inner(*args, **kwargs):
            if has_kwargs_list:
                update_kwargs = lambda i: dict(kwargs, **kwargs_list[i])
            else:
                update_kwargs = lambda i: kwargs
            threads = []
            for i in range(num_threads):
                updated_kwargs = update_kwargs(i)
                thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs)
                threads.append(thread)
            for thread in threads:
                thread.start()
            for thread in threads:
                thread.join()
        return inner | 
	negative_train_query0_00203 | |
| 
	asv_bench/benchmarks/gil.py/test_parallel/wrapper/inner
class test_parallel:
def inner(*args, **kwargs):
            if has_kwargs_list:
                update_kwargs = lambda i: dict(kwargs, **kwargs_list[i])
            else:
                update_kwargs = lambda i: kwargs
            threads = []
            for i in range(num_threads):
                updated_kwargs = update_kwargs(i)
                thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs)
                threads.append(thread)
            for thread in threads:
                thread.start()
            for thread in threads:
                thread.join() | 
	negative_train_query0_00204 | |
| 
	asv_bench/benchmarks/gil.py/ParallelGroupbyMethods/setup
class ParallelGroupbyMethods:
def setup(self, threads, method):
        N = 10**6
        ngroups = 10**3
        df = DataFrame(
            {"key": np.random.randint(0, ngroups, size=N), "data": np.random.randn(N)}
        )
        @test_parallel(num_threads=threads)
        def parallel():
            getattr(df.groupby("key")["data"], method)()
        self.parallel = parallel
        def loop():
            getattr(df.groupby("key")["data"], method)()
        self.loop = loop | 
	negative_train_query0_00205 | |
| 
	asv_bench/benchmarks/gil.py/ParallelGroupbyMethods/setup/parallel
class ParallelGroupbyMethods:
def parallel():
            getattr(df.groupby("key")["data"], method)() | 
	negative_train_query0_00206 | |
| 
	asv_bench/benchmarks/gil.py/ParallelGroupbyMethods/setup/loop
class ParallelGroupbyMethods:
def loop():
            getattr(df.groupby("key")["data"], method)() | 
	negative_train_query0_00207 | |
| 
	asv_bench/benchmarks/gil.py/ParallelGroupbyMethods/time_parallel
class ParallelGroupbyMethods:
def time_parallel(self, threads, method):
        self.parallel() | 
	negative_train_query0_00208 | |
| 
	asv_bench/benchmarks/gil.py/ParallelGroupbyMethods/time_loop
class ParallelGroupbyMethods:
def time_loop(self, threads, method):
        for i in range(threads):
            self.loop() | 
	negative_train_query0_00209 | |
| 
	asv_bench/benchmarks/gil.py/ParallelGroups/setup
class ParallelGroups:
def setup(self, threads):
        size = 2**22
        ngroups = 10**3
        data = Series(np.random.randint(0, ngroups, size=size))
        @test_parallel(num_threads=threads)
        def get_groups():
            data.groupby(data).groups
        self.get_groups = get_groups | 
	negative_train_query0_00210 | |
| 
	asv_bench/benchmarks/gil.py/ParallelGroups/setup/get_groups
class ParallelGroups:
def get_groups():
            data.groupby(data).groups | 
	negative_train_query0_00211 | |
| 
	asv_bench/benchmarks/gil.py/ParallelGroups/time_get_groups
class ParallelGroups:
def time_get_groups(self, threads):
        self.get_groups() | 
	negative_train_query0_00212 | |
| 
	asv_bench/benchmarks/gil.py/ParallelTake1D/setup
class ParallelTake1D:
def setup(self, dtype):
        N = 10**6
        df = DataFrame({"col": np.arange(N, dtype=dtype)})
        indexer = np.arange(100, len(df) - 100)
        @test_parallel(num_threads=2)
        def parallel_take1d():
            take_nd(df["col"].values, indexer)
        self.parallel_take1d = parallel_take1d | 
	negative_train_query0_00213 | |
| 
	asv_bench/benchmarks/gil.py/ParallelTake1D/setup/parallel_take1d
class ParallelTake1D:
def parallel_take1d():
            take_nd(df["col"].values, indexer) | 
	negative_train_query0_00214 | |
| 
	asv_bench/benchmarks/gil.py/ParallelTake1D/time_take1d
class ParallelTake1D:
def time_take1d(self, dtype):
        self.parallel_take1d() | 
	negative_train_query0_00215 | |
| 
	asv_bench/benchmarks/gil.py/ParallelKth/setup
class ParallelKth:
def setup(self):
        N = 10**7
        k = 5 * 10**5
        kwargs_list = [{"arr": np.random.randn(N)}, {"arr": np.random.randn(N)}]
        @test_parallel(num_threads=2, kwargs_list=kwargs_list)
        def parallel_kth_smallest(arr):
            algos.kth_smallest(arr, k)
        self.parallel_kth_smallest = parallel_kth_smallest | 
	negative_train_query0_00216 | |
| 
	asv_bench/benchmarks/gil.py/ParallelKth/setup/parallel_kth_smallest
class ParallelKth:
def parallel_kth_smallest(arr):
            algos.kth_smallest(arr, k) | 
	negative_train_query0_00217 | |
| 
	asv_bench/benchmarks/gil.py/ParallelKth/time_kth_smallest
class ParallelKth:
def time_kth_smallest(self):
        self.parallel_kth_smallest() | 
	negative_train_query0_00218 | |
| 
	asv_bench/benchmarks/gil.py/ParallelDatetimeFields/setup
class ParallelDatetimeFields:
def setup(self):
        N = 10**6
        self.dti = date_range("1900-01-01", periods=N, freq="min")
        self.period = self.dti.to_period("D") | 
	negative_train_query0_00219 | |
| 
	asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_year
class ParallelDatetimeFields:
def time_datetime_field_year(self):
        @test_parallel(num_threads=2)
        def run(dti):
            dti.year
        run(self.dti) | 
	negative_train_query0_00220 | |
| 
	asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_year/run
class ParallelDatetimeFields:
def run(dti):
            dti.year | 
	negative_train_query0_00221 | |
| 
	asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_day
class ParallelDatetimeFields:
def time_datetime_field_day(self):
        @test_parallel(num_threads=2)
        def run(dti):
            dti.day
        run(self.dti) | 
	negative_train_query0_00222 | |
| 
	asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_day/run
class ParallelDatetimeFields:
def run(dti):
            dti.day | 
	negative_train_query0_00223 | |
| 
	asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_daysinmonth
class ParallelDatetimeFields:
def time_datetime_field_daysinmonth(self):
        @test_parallel(num_threads=2)
        def run(dti):
            dti.days_in_month
        run(self.dti) | 
	negative_train_query0_00224 | |
| 
	asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_daysinmonth/run
class ParallelDatetimeFields:
def run(dti):
            dti.days_in_month | 
	negative_train_query0_00225 | |
| 
	asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_normalize
class ParallelDatetimeFields:
def time_datetime_field_normalize(self):
        @test_parallel(num_threads=2)
        def run(dti):
            dti.normalize()
        run(self.dti) | 
	negative_train_query0_00226 | |
| 
	asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_field_normalize/run
class ParallelDatetimeFields:
def run(dti):
            dti.normalize() | 
	negative_train_query0_00227 | |
| 
	asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_to_period
class ParallelDatetimeFields:
def time_datetime_to_period(self):
        @test_parallel(num_threads=2)
        def run(dti):
            dti.to_period("s")
        run(self.dti) | 
	negative_train_query0_00228 | |
| 
	asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_datetime_to_period/run
class ParallelDatetimeFields:
def run(dti):
            dti.to_period("s") | 
	negative_train_query0_00229 | |
| 
	asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_period_to_datetime
class ParallelDatetimeFields:
def time_period_to_datetime(self):
        @test_parallel(num_threads=2)
        def run(period):
            period.to_timestamp()
        run(self.period) | 
	negative_train_query0_00230 | |
| 
	asv_bench/benchmarks/gil.py/ParallelDatetimeFields/time_period_to_datetime/run
class ParallelDatetimeFields:
def run(period):
            period.to_timestamp() | 
	negative_train_query0_00231 | |
| 
	asv_bench/benchmarks/gil.py/ParallelRolling/setup
class ParallelRolling:
def setup(self, method):
        win = 100
        arr = np.random.rand(100000)
        if hasattr(DataFrame, "rolling"):
            df = DataFrame(arr).rolling(win)
            @test_parallel(num_threads=2)
            def parallel_rolling():
                getattr(df, method)()
            self.parallel_rolling = parallel_rolling
        elif have_rolling_methods:
            rolling = {
                "median": rolling_median,
                "mean": rolling_mean,
                "min": rolling_min,
                "max": rolling_max,
                "var": rolling_var,
                "skew": rolling_skew,
                "kurt": rolling_kurt,
                "std": rolling_std,
            }
            @test_parallel(num_threads=2)
            def parallel_rolling():
                rolling[method](arr, win)
            self.parallel_rolling = parallel_rolling
        else:
            raise NotImplementedError | 
	negative_train_query0_00232 | |
| 
	asv_bench/benchmarks/gil.py/ParallelRolling/setup/parallel_rolling
class ParallelRolling:
def parallel_rolling():
                rolling[method](arr, win) | 
	negative_train_query0_00233 | |
| 
	asv_bench/benchmarks/gil.py/ParallelRolling/time_rolling
class ParallelRolling:
def time_rolling(self, method):
        self.parallel_rolling() | 
	negative_train_query0_00234 | |
| 
	asv_bench/benchmarks/gil.py/ParallelReadCSV/setup
class ParallelReadCSV:
def setup(self, dtype):
        rows = 10000
        cols = 50
        if dtype == "float":
            df = DataFrame(np.random.randn(rows, cols))
        elif dtype == "datetime":
            df = DataFrame(
                np.random.randn(rows, cols), index=date_range("1/1/2000", periods=rows)
            )
        elif dtype == "object":
            df = DataFrame(
                "foo", index=range(rows), columns=["object%03d" for _ in range(5)]
            )
        else:
            raise NotImplementedError
        self.fname = f"__test_{dtype}__.csv"
        df.to_csv(self.fname)
        @test_parallel(num_threads=2)
        def parallel_read_csv():
            read_csv(self.fname)
        self.parallel_read_csv = parallel_read_csv | 
	negative_train_query0_00235 | |
| 
	asv_bench/benchmarks/gil.py/ParallelReadCSV/setup/parallel_read_csv
class ParallelReadCSV:
def parallel_read_csv():
            read_csv(self.fname) | 
	negative_train_query0_00236 | |
| 
	asv_bench/benchmarks/gil.py/ParallelReadCSV/time_read_csv
class ParallelReadCSV:
def time_read_csv(self, dtype):
        self.parallel_read_csv() | 
	negative_train_query0_00237 | |
| 
	asv_bench/benchmarks/gil.py/ParallelFactorize/setup
class ParallelFactorize:
def setup(self, threads):
        strings = Index([f"i-{i}" for i in range(100000)], dtype=object)
        @test_parallel(num_threads=threads)
        def parallel():
            factorize(strings)
        self.parallel = parallel
        def loop():
            factorize(strings)
        self.loop = loop | 
	negative_train_query0_00238 | |
| 
	asv_bench/benchmarks/gil.py/ParallelFactorize/setup/parallel
class ParallelFactorize:
def parallel():
            factorize(strings) | 
	negative_train_query0_00239 | |
| 
	asv_bench/benchmarks/gil.py/ParallelFactorize/setup/loop
class ParallelFactorize:
def loop():
            factorize(strings) | 
	negative_train_query0_00240 | |
| 
	asv_bench/benchmarks/gil.py/ParallelFactorize/time_parallel
class ParallelFactorize:
def time_parallel(self, threads):
        self.parallel() | 
	negative_train_query0_00241 | |
| 
	asv_bench/benchmarks/gil.py/ParallelFactorize/time_loop
class ParallelFactorize:
def time_loop(self, threads):
        for i in range(threads):
            self.loop() | 
	negative_train_query0_00242 | |
| 
	asv_bench/benchmarks/reindex.py/Reindex/setup
class Reindex:
def setup(self):
        rng = date_range(start="1/1/1970", periods=10000, freq="1min")
        self.df = DataFrame(np.random.rand(10000, 10), index=rng, columns=range(10))
        self.df["foo"] = "bar"
        self.rng_subset = Index(rng[::2])
        self.df2 = DataFrame(
            index=range(10000), data=np.random.rand(10000, 30), columns=range(30)
        )
        N = 5000
        K = 200
        level1 = Index([f"i-{i}" for i in range(N)], dtype=object).values.repeat(K)
        level2 = np.tile(Index([f"i-{i}" for i in range(K)], dtype=object).values, N)
        index = MultiIndex.from_arrays([level1, level2])
        self.s = Series(np.random.randn(N * K), index=index)
        self.s_subset = self.s[::2]
        self.s_subset_no_cache = self.s[::2].copy()
        mi = MultiIndex.from_product([rng, range(100)])
        self.s2 = Series(np.random.randn(len(mi)), index=mi)
        self.s2_subset = self.s2[::2].copy() | 
	negative_train_query0_00243 | |
| 
	asv_bench/benchmarks/reindex.py/Reindex/time_reindex_dates
class Reindex:
def time_reindex_dates(self):
        self.df.reindex(self.rng_subset) | 
	negative_train_query0_00244 | |
| 
	asv_bench/benchmarks/reindex.py/Reindex/time_reindex_columns
class Reindex:
def time_reindex_columns(self):
        self.df2.reindex(columns=self.df.columns[1:5]) | 
	negative_train_query0_00245 | |
| 
	asv_bench/benchmarks/reindex.py/Reindex/time_reindex_multiindex_with_cache
class Reindex:
def time_reindex_multiindex_with_cache(self):
        # MultiIndex._values gets cached
        self.s.reindex(self.s_subset.index) | 
	negative_train_query0_00246 | |
| 
	asv_bench/benchmarks/reindex.py/Reindex/time_reindex_multiindex_no_cache
class Reindex:
def time_reindex_multiindex_no_cache(self):
        # Copy to avoid MultiIndex._values getting cached
        self.s.reindex(self.s_subset_no_cache.index.copy()) | 
	negative_train_query0_00247 | |
| 
	asv_bench/benchmarks/reindex.py/Reindex/time_reindex_multiindex_no_cache_dates
class Reindex:
def time_reindex_multiindex_no_cache_dates(self):
        # Copy to avoid MultiIndex._values getting cached
        self.s2_subset.reindex(self.s2.index.copy()) | 
	negative_train_query0_00248 | |
| 
	asv_bench/benchmarks/reindex.py/ReindexMethod/setup
class ReindexMethod:
def setup(self, method, constructor):
        N = 100000
        self.idx = constructor("1/1/2000", periods=N, freq="1min")
        self.ts = Series(np.random.randn(N), index=self.idx)[::2] | 
	negative_train_query0_00249 | |
| 
	asv_bench/benchmarks/reindex.py/ReindexMethod/time_reindex_method
class ReindexMethod:
def time_reindex_method(self, method, constructor):
        self.ts.reindex(self.idx, method=method) | 
	negative_train_query0_00250 | |
| 
	asv_bench/benchmarks/reindex.py/LevelAlign/setup
class LevelAlign:
def setup(self):
        self.index = MultiIndex(
            levels=[np.arange(10), np.arange(100), np.arange(100)],
            codes=[
                np.arange(10).repeat(10000),
                np.tile(np.arange(100).repeat(100), 10),
                np.tile(np.tile(np.arange(100), 100), 10),
            ],
        )
        self.df = DataFrame(np.random.randn(len(self.index), 4), index=self.index)
        self.df_level = DataFrame(np.random.randn(100, 4), index=self.index.levels[1]) | 
	negative_train_query0_00251 | |
| 
	asv_bench/benchmarks/reindex.py/LevelAlign/time_align_level
class LevelAlign:
def time_align_level(self):
        self.df.align(self.df_level, level=1, copy=False) | 
	negative_train_query0_00252 | |
| 
	asv_bench/benchmarks/reindex.py/LevelAlign/time_reindex_level
class LevelAlign:
def time_reindex_level(self):
        self.df_level.reindex(self.index, level=1) | 
	negative_train_query0_00253 | |
| 
	asv_bench/benchmarks/reindex.py/DropDuplicates/setup
class DropDuplicates:
def setup(self, inplace):
        N = 10000
        K = 10
        key1 = Index([f"i-{i}" for i in range(N)], dtype=object).values.repeat(K)
        key2 = Index([f"i-{i}" for i in range(N)], dtype=object).values.repeat(K)
        self.df = DataFrame(
            {"key1": key1, "key2": key2, "value": np.random.randn(N * K)}
        )
        self.df_nan = self.df.copy()
        self.df_nan.iloc[:10000, :] = np.nan
        self.s = Series(np.random.randint(0, 1000, size=10000))
        self.s_str = Series(
            np.tile(Index([f"i-{i}" for i in range(1000)], dtype=object).values, 10)
        )
        N = 1000000
        K = 10000
        key1 = np.random.randint(0, K, size=N)
        self.df_int = DataFrame({"key1": key1})
        self.df_bool = DataFrame(np.random.randint(0, 2, size=(K, 10), dtype=bool)) | 
	negative_train_query0_00254 | |
| 
	asv_bench/benchmarks/reindex.py/DropDuplicates/time_frame_drop_dups
class DropDuplicates:
def time_frame_drop_dups(self, inplace):
        self.df.drop_duplicates(["key1", "key2"], inplace=inplace) | 
	negative_train_query0_00255 | |
| 
	asv_bench/benchmarks/reindex.py/DropDuplicates/time_frame_drop_dups_na
class DropDuplicates:
def time_frame_drop_dups_na(self, inplace):
        self.df_nan.drop_duplicates(["key1", "key2"], inplace=inplace) | 
	negative_train_query0_00256 | |
| 
	asv_bench/benchmarks/reindex.py/DropDuplicates/time_series_drop_dups_int
class DropDuplicates:
def time_series_drop_dups_int(self, inplace):
        self.s.drop_duplicates(inplace=inplace) | 
	negative_train_query0_00257 | |
| 
	asv_bench/benchmarks/reindex.py/DropDuplicates/time_series_drop_dups_string
class DropDuplicates:
def time_series_drop_dups_string(self, inplace):
        self.s_str.drop_duplicates(inplace=inplace) | 
	negative_train_query0_00258 | |
| 
	asv_bench/benchmarks/reindex.py/DropDuplicates/time_frame_drop_dups_int
class DropDuplicates:
def time_frame_drop_dups_int(self, inplace):
        self.df_int.drop_duplicates(inplace=inplace) | 
	negative_train_query0_00259 | |
| 
	asv_bench/benchmarks/reindex.py/DropDuplicates/time_frame_drop_dups_bool
class DropDuplicates:
def time_frame_drop_dups_bool(self, inplace):
        self.df_bool.drop_duplicates(inplace=inplace) | 
	negative_train_query0_00260 | |
| 
	asv_bench/benchmarks/reindex.py/Align/setup
class Align:
def setup(self):
        n = 50000
        indices = Index([f"i-{i}" for i in range(n)], dtype=object)
        subsample_size = 40000
        self.x = Series(np.random.randn(n), indices)
        self.y = Series(
            np.random.randn(subsample_size),
            index=np.random.choice(indices, subsample_size, replace=False),
        ) | 
	negative_train_query0_00261 | |
| 
	asv_bench/benchmarks/reindex.py/Align/time_align_series_irregular_string
class Align:
def time_align_series_irregular_string(self):
        self.x + self.y | 
	negative_train_query0_00262 | |
| 
	asv_bench/benchmarks/rolling.py/Methods/setup
class Methods:
def setup(self, constructor, window_kwargs, dtype, method):
        N = 10**5
        window, kwargs = window_kwargs
        arr = (100 * np.random.random(N)).astype(dtype)
        obj = getattr(pd, constructor)(arr)
        self.window = getattr(obj, window)(**kwargs) | 
	negative_train_query0_00263 | |
| 
	asv_bench/benchmarks/rolling.py/Methods/time_method
class Methods:
def time_method(self, constructor, window_kwargs, dtype, method):
        getattr(self.window, method)() | 
	negative_train_query0_00264 | |
| 
	asv_bench/benchmarks/rolling.py/Methods/peakmem_method
class Methods:
def peakmem_method(self, constructor, window_kwargs, dtype, method):
        getattr(self.window, method)() | 
	negative_train_query0_00265 | |
| 
	asv_bench/benchmarks/rolling.py/Apply/setup
class Apply:
def setup(self, constructor, window, dtype, function, raw):
        N = 10**3
        arr = (100 * np.random.random(N)).astype(dtype)
        self.roll = getattr(pd, constructor)(arr).rolling(window) | 
	negative_train_query0_00266 | |
| 
	asv_bench/benchmarks/rolling.py/Apply/time_rolling
class Apply:
def time_rolling(self, constructor, window, dtype, function, raw):
        self.roll.apply(function, raw=raw) | 
	negative_train_query0_00267 | |
| 
	asv_bench/benchmarks/rolling.py/NumbaEngineMethods/setup
class NumbaEngineMethods:
def setup(self, constructor, dtype, window_kwargs, method, parallel, cols):
        N = 10**3
        window, kwargs = window_kwargs
        shape = (N, cols) if cols is not None and constructor != "Series" else N
        arr = (100 * np.random.random(shape)).astype(dtype)
        data = getattr(pd, constructor)(arr)
        # Warm the cache
        with warnings.catch_warnings(record=True):
            # Catch parallel=True not being applicable e.g. 1D data
            self.window = getattr(data, window)(**kwargs)
            getattr(self.window, method)(
                engine="numba", engine_kwargs={"parallel": parallel}
            ) | 
	negative_train_query0_00268 | |
| 
	asv_bench/benchmarks/rolling.py/NumbaEngineMethods/test_method
class NumbaEngineMethods:
def test_method(self, constructor, dtype, window_kwargs, method, parallel, cols):
        with warnings.catch_warnings(record=True):
            getattr(self.window, method)(
                engine="numba", engine_kwargs={"parallel": parallel}
            ) | 
	negative_train_query0_00269 | |
| 
	asv_bench/benchmarks/rolling.py/NumbaEngineApply/setup
class NumbaEngineApply:
def setup(self, constructor, dtype, window_kwargs, function, parallel, cols):
        N = 10**3
        window, kwargs = window_kwargs
        shape = (N, cols) if cols is not None and constructor != "Series" else N
        arr = (100 * np.random.random(shape)).astype(dtype)
        data = getattr(pd, constructor)(arr)
        # Warm the cache
        with warnings.catch_warnings(record=True):
            # Catch parallel=True not being applicable e.g. 1D data
            self.window = getattr(data, window)(**kwargs)
            self.window.apply(
                function, raw=True, engine="numba", engine_kwargs={"parallel": parallel}
            ) | 
	negative_train_query0_00270 | |
| 
	asv_bench/benchmarks/rolling.py/NumbaEngineApply/test_method
class NumbaEngineApply:
def test_method(self, constructor, dtype, window_kwargs, function, parallel, cols):
        with warnings.catch_warnings(record=True):
            self.window.apply(
                function, raw=True, engine="numba", engine_kwargs={"parallel": parallel}
            ) | 
	negative_train_query0_00271 | |
| 
	asv_bench/benchmarks/rolling.py/EWMMethods/setup
class EWMMethods:
def setup(self, constructor, kwargs_method, dtype):
        N = 10**5
        kwargs, method = kwargs_method
        arr = (100 * np.random.random(N)).astype(dtype)
        self.method = method
        self.ewm = getattr(pd, constructor)(arr).ewm(**kwargs) | 
	negative_train_query0_00272 | |
| 
	asv_bench/benchmarks/rolling.py/EWMMethods/time_ewm
class EWMMethods:
def time_ewm(self, constructor, kwargs_method, dtype):
        getattr(self.ewm, self.method)() | 
	negative_train_query0_00273 | |
| 
	asv_bench/benchmarks/rolling.py/VariableWindowMethods/setup
class VariableWindowMethods:
def setup(self, constructor, window, dtype, method):
        N = 10**5
        arr = (100 * np.random.random(N)).astype(dtype)
        index = pd.date_range("2017-01-01", periods=N, freq="5s")
        self.window = getattr(pd, constructor)(arr, index=index).rolling(window) | 
	negative_train_query0_00274 | |
| 
	asv_bench/benchmarks/rolling.py/Pairwise/setup
class Pairwise:
def setup(self, kwargs_window, method, pairwise):
        N = 10**4
        n_groups = 20
        kwargs, window = kwargs_window
        groups = [i for _ in range(N // n_groups) for i in range(n_groups)]
        arr = np.random.random(N)
        self.df = pd.DataFrame(arr)
        self.window = getattr(self.df, window)(**kwargs)
        self.window_group = getattr(
            pd.DataFrame({"A": groups, "B": arr}).groupby("A"), window
        )(**kwargs) | 
	negative_train_query0_00275 | |
| 
	asv_bench/benchmarks/rolling.py/Pairwise/time_pairwise
class Pairwise:
def time_pairwise(self, kwargs_window, method, pairwise):
        getattr(self.window, method)(self.df, pairwise=pairwise) | 
	negative_train_query0_00276 | |
| 
	asv_bench/benchmarks/rolling.py/Pairwise/time_groupby
class Pairwise:
def time_groupby(self, kwargs_window, method, pairwise):
        getattr(self.window_group, method)(self.df, pairwise=pairwise) | 
	negative_train_query0_00277 | |
| 
	asv_bench/benchmarks/rolling.py/Quantile/setup
class Quantile:
def setup(self, constructor, window, dtype, percentile, interpolation):
        N = 10**5
        arr = np.random.random(N).astype(dtype)
        self.roll = getattr(pd, constructor)(arr).rolling(window) | 
	negative_train_query0_00278 | |
| 
	asv_bench/benchmarks/rolling.py/Quantile/time_quantile
class Quantile:
def time_quantile(self, constructor, window, dtype, percentile, interpolation):
        self.roll.quantile(percentile, interpolation=interpolation) | 
	negative_train_query0_00279 | |
| 
	asv_bench/benchmarks/rolling.py/Rank/setup
class Rank:
def setup(self, constructor, window, dtype, percentile, ascending, method):
        N = 10**5
        arr = np.random.random(N).astype(dtype)
        self.roll = getattr(pd, constructor)(arr).rolling(window) | 
	negative_train_query0_00280 | |
| 
	asv_bench/benchmarks/rolling.py/Rank/time_rank
class Rank:
def time_rank(self, constructor, window, dtype, percentile, ascending, method):
        self.roll.rank(pct=percentile, ascending=ascending, method=method) | 
	negative_train_query0_00281 | |
| 
	asv_bench/benchmarks/rolling.py/PeakMemFixedWindowMinMax/setup
class PeakMemFixedWindowMinMax:
def setup(self, operation):
        N = 10**6
        arr = np.random.random(N)
        self.roll = pd.Series(arr).rolling(2) | 
	negative_train_query0_00282 | |
| 
	asv_bench/benchmarks/rolling.py/PeakMemFixedWindowMinMax/peakmem_fixed
class PeakMemFixedWindowMinMax:
def peakmem_fixed(self, operation):
        for x in range(5):
            getattr(self.roll, operation)() | 
	negative_train_query0_00283 | |
| 
	asv_bench/benchmarks/rolling.py/ForwardWindowMethods/setup
class ForwardWindowMethods:
def setup(self, constructor, window_size, dtype, method):
        N = 10**5
        arr = np.random.random(N).astype(dtype)
        indexer = pd.api.indexers.FixedForwardWindowIndexer(window_size=window_size)
        self.roll = getattr(pd, constructor)(arr).rolling(window=indexer) | 
	negative_train_query0_00284 | |
| 
	asv_bench/benchmarks/rolling.py/ForwardWindowMethods/time_rolling
class ForwardWindowMethods:
def time_rolling(self, constructor, window_size, dtype, method):
        getattr(self.roll, method)() | 
	negative_train_query0_00285 | |
| 
	asv_bench/benchmarks/rolling.py/ForwardWindowMethods/peakmem_rolling
class ForwardWindowMethods:
def peakmem_rolling(self, constructor, window_size, dtype, method):
        getattr(self.roll, method)() | 
	negative_train_query0_00286 | |
| 
	asv_bench/benchmarks/rolling.py/Groupby/setup
class Groupby:
def setup(self, method, window_kwargs):
        N = 1000
        window, kwargs = window_kwargs
        df = pd.DataFrame(
            {
                "A": [str(i) for i in range(N)] * 10,
                "B": list(range(N)) * 10,
            }
        )
        if isinstance(kwargs.get("window", None), str):
            df.index = pd.date_range(start="1900-01-01", freq="1min", periods=N * 10)
        self.groupby_window = getattr(df.groupby("A"), window)(**kwargs) | 
	negative_train_query0_00287 | |
| 
	asv_bench/benchmarks/rolling.py/Groupby/time_method
class Groupby:
def time_method(self, method, window_kwargs):
        getattr(self.groupby_window, method)() | 
	negative_train_query0_00288 | |
| 
	asv_bench/benchmarks/rolling.py/GroupbyLargeGroups/setup
class GroupbyLargeGroups:
def setup(self):
        N = 100000
        self.df = pd.DataFrame({"A": [1, 2] * (N // 2), "B": np.random.randn(N)}) | 
	negative_train_query0_00289 | |
| 
	asv_bench/benchmarks/rolling.py/GroupbyLargeGroups/time_rolling_multiindex_creation
class GroupbyLargeGroups:
def time_rolling_multiindex_creation(self):
        self.df.groupby("A").rolling(3).mean() | 
	negative_train_query0_00290 | |
| 
	asv_bench/benchmarks/rolling.py/GroupbyEWM/setup
class GroupbyEWM:
def setup(self, method):
        df = pd.DataFrame({"A": range(50), "B": range(50)})
        self.gb_ewm = df.groupby("A").ewm(com=1.0) | 
	negative_train_query0_00291 | |
| 
	asv_bench/benchmarks/rolling.py/GroupbyEWM/time_groupby_method
class GroupbyEWM:
def time_groupby_method(self, method):
        getattr(self.gb_ewm, method)() | 
	negative_train_query0_00292 | |
| 
	asv_bench/benchmarks/rolling.py/GroupbyEWMEngine/setup
class GroupbyEWMEngine:
def setup(self, engine):
        df = pd.DataFrame({"A": range(50), "B": range(50)})
        self.gb_ewm = df.groupby("A").ewm(com=1.0) | 
	negative_train_query0_00293 | |
| 
	asv_bench/benchmarks/rolling.py/GroupbyEWMEngine/time_groupby_mean
class GroupbyEWMEngine:
def time_groupby_mean(self, engine):
        self.gb_ewm.mean(engine=engine) | 
	negative_train_query0_00294 | |
| 
	asv_bench/benchmarks/rolling.py/table_method_func
def table_method_func(x):
    return np.sum(x, axis=0) + 1 | 
	negative_train_query0_00295 | |
| 
	asv_bench/benchmarks/rolling.py/TableMethod/setup
class TableMethod:
def setup(self, method):
        self.df = pd.DataFrame(np.random.randn(10, 1000)) | 
	negative_train_query0_00296 | |
| 
	asv_bench/benchmarks/rolling.py/TableMethod/time_apply
class TableMethod:
def time_apply(self, method):
        self.df.rolling(2, method=method).apply(
            table_method_func, raw=True, engine="numba"
        ) | 
	negative_train_query0_00297 | 
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.
