parcellation
stringclasses 5
values | subject
stringclasses 1
value | correlation_matrix
listlengths 8
8
| corr_path
stringclasses 5
values | ts_path
stringclasses 5
values | corr_shape
listlengths 2
2
| ts_shape
listlengths 1
1
| corr_sha256
stringclasses 5
values | corr_bytes
int64 18.6k
108k
| ts_sha256
stringclasses 5
values | ts_bytes
int64 80.8k
195k
|
|---|---|---|---|---|---|---|---|---|---|---|
AAL116
|
sub-control3351
|
[
[
1,
0.11999999731779099,
-0.05000000074505806,
0.07999999821186066,
0.019999999552965164,
-0.10999999940395355,
0.029999999329447746,
0.09000000357627869
],
[
0.11999999731779099,
1,
0.07000000029802322,
-0.019999999552965164,
0.05000000074505806,
0.009999999776482582,
-0.03999999910593033,
0.05999999865889549
],
[
-0.05000000074505806,
0.07000000029802322,
1,
0.14000000059604645,
-0.029999999329447746,
0.019999999552965164,
0.05000000074505806,
-0.009999999776482582
],
[
0.07999999821186066,
-0.019999999552965164,
0.14000000059604645,
1,
0.09000000357627869,
-0.05999999865889549,
0,
0.03999999910593033
],
[
0.019999999552965164,
0.05000000074505806,
-0.029999999329447746,
0.09000000357627869,
1,
0.11999999731779099,
-0.019999999552965164,
0.009999999776482582
],
[
-0.10999999940395355,
0.009999999776482582,
0.019999999552965164,
-0.05999999865889549,
0.11999999731779099,
1,
0.15000000596046448,
-0.029999999329447746
],
[
0.029999999329447746,
-0.03999999910593033,
0.05000000074505806,
0,
-0.019999999552965164,
0.15000000596046448,
1,
0.10000000149011612
],
[
0.09000000357627869,
0.05999999865889549,
-0.009999999776482582,
0.03999999910593033,
0.009999999776482582,
-0.029999999329447746,
0.10000000149011612,
1
]
] |
data/parc-AAL116/sub-control3351/sub-control3351_desc-correlation_matrix_parc-AAL116.mat
|
data/parc-AAL116/sub-control3351/sub-control3351_desc-timeseries_parc-AAL116.mat
|
[
116,
116
] |
[
116
] |
53161c1ea79258bd8243b9fb923fbfb0f6c8427da8c60634e623b4c1cad73deb
| 107,832
|
5cf79c9700df2a1875496e4edb00aa988f65de3bb6186736df7216469452f661
| 195,064
|
harvard48
|
sub-control3351
|
[
[
1,
0.07999999821186066,
0.019999999552965164,
-0.029999999329447746,
0.05999999865889549,
0.009999999776482582,
-0.019999999552965164,
0.05000000074505806
],
[
0.07999999821186066,
1,
-0.03999999910593033,
0.07000000029802322,
0.029999999329447746,
-0.009999999776482582,
0.03999999910593033,
0.019999999552965164
],
[
0.019999999552965164,
-0.03999999910593033,
1,
0.09000000357627869,
0,
0.05000000074505806,
-0.029999999329447746,
0.009999999776482582
],
[
-0.029999999329447746,
0.07000000029802322,
0.09000000357627869,
1,
0.11999999731779099,
-0.05000000074505806,
0.05999999865889549,
0
],
[
0.05999999865889549,
0.029999999329447746,
0,
0.11999999731779099,
1,
0.07999999821186066,
-0.019999999552965164,
0.03999999910593033
],
[
0.009999999776482582,
-0.009999999776482582,
0.05000000074505806,
-0.05000000074505806,
0.07999999821186066,
1,
0.07000000029802322,
-0.019999999552965164
],
[
-0.019999999552965164,
0.03999999910593033,
-0.029999999329447746,
0.05999999865889549,
-0.019999999552965164,
0.07000000029802322,
1,
0.09000000357627869
],
[
0.05000000074505806,
0.019999999552965164,
0.009999999776482582,
0,
0.03999999910593033,
-0.019999999552965164,
0.09000000357627869,
1
]
] |
data/parc-harvard48/sub-control3351/sub-control3351_desc-correlation_matrix_parc-harvard48.mat
|
data/parc-harvard48/sub-control3351/sub-control3351_desc-timeseries_parc-harvard48.mat
|
[
48,
48
] |
[
48
] |
9aa5083bddeb70b5cc443747592e117099c3143c64a497e28956d7fb189a2f8b
| 18,616
|
69061d32f407981d5f2b2d397f839fdf2ec5b92db084deb4823b00cadadddda1
| 80,824
|
kmeans100
|
sub-control3351
|
[
[
1,
-0.019999999552965164,
0.03999999910593033,
0.05999999865889549,
-0.009999999776482582,
0.029999999329447746,
0.07000000029802322,
0.019999999552965164
],
[
-0.019999999552965164,
1,
0.009999999776482582,
-0.05000000074505806,
0.07999999821186066,
0.019999999552965164,
-0.029999999329447746,
0.05999999865889549
],
[
0.03999999910593033,
0.009999999776482582,
1,
0.09000000357627869,
-0.019999999552965164,
0.05000000074505806,
0,
0.03999999910593033
],
[
0.05999999865889549,
-0.05000000074505806,
0.09000000357627869,
1,
0.10000000149011612,
-0.009999999776482582,
0.029999999329447746,
0.05000000074505806
],
[
-0.009999999776482582,
0.07999999821186066,
-0.019999999552965164,
0.10000000149011612,
1,
0.05999999865889549,
0.019999999552965164,
-0.029999999329447746
],
[
0.029999999329447746,
0.019999999552965164,
0.05000000074505806,
-0.009999999776482582,
0.05999999865889549,
1,
0.10999999940395355,
0
],
[
0.07000000029802322,
-0.029999999329447746,
0,
0.029999999329447746,
0.019999999552965164,
0.10999999940395355,
1,
0.07999999821186066
],
[
0.019999999552965164,
0.05999999865889549,
0.03999999910593033,
0.05000000074505806,
-0.029999999329447746,
0,
0.07999999821186066,
1
]
] |
data/parc-kmeans100/sub-control3351/sub-control3351_desc-correlation_matrix_parc-kmeans100.mat
|
data/parc-kmeans100/sub-control3351/sub-control3351_desc-timeseries_parc-kmeans100.mat
|
[
100,
100
] |
[
100
] |
8fccda155468301de2c3ea5c3c37d9f12cd99ce8ee3a3c74d726dbe29b39d02e
| 80,184
|
11572befea1db47daaa4c9d8671655ad483b459114643072e865d593a9579b52
| 168,184
|
schaefer100
|
sub-control3351
|
[
[
1,
0.029999999329447746,
0.05999999865889549,
-0.009999999776482582,
0.019999999552965164,
0.07000000029802322,
-0.019999999552965164,
0.03999999910593033
],
[
0.029999999329447746,
1,
-0.019999999552965164,
0.05000000074505806,
0.03999999910593033,
0.009999999776482582,
0.05999999865889549,
0.029999999329447746
],
[
0.05999999865889549,
-0.019999999552965164,
1,
0.10999999940395355,
-0.029999999329447746,
0.019999999552965164,
0.03999999910593033,
0.07000000029802322
],
[
-0.009999999776482582,
0.05000000074505806,
0.10999999940395355,
1,
0.07999999821186066,
-0.03999999910593033,
0.05000000074505806,
0.019999999552965164
],
[
0.019999999552965164,
0.03999999910593033,
-0.029999999329447746,
0.07999999821186066,
1,
0.05999999865889549,
-0.009999999776482582,
0.05000000074505806
],
[
0.07000000029802322,
0.009999999776482582,
0.019999999552965164,
-0.03999999910593033,
0.05999999865889549,
1,
0.09000000357627869,
-0.019999999552965164
],
[
-0.019999999552965164,
0.05999999865889549,
0.03999999910593033,
0.05000000074505806,
-0.009999999776482582,
0.09000000357627869,
1,
0.10000000149011612
],
[
0.03999999910593033,
0.029999999329447746,
0.07000000029802322,
0.019999999552965164,
0.05000000074505806,
-0.019999999552965164,
0.10000000149011612,
1
]
] |
data/parc-schaefer100/sub-control3351/sub-control3351_desc-correlation_matrix_parc-schaefer100.mat
|
data/parc-schaefer100/sub-control3351/sub-control3351_desc-timeseries_parc-schaefer100.mat
|
[
100,
100
] |
[
100
] |
186dcfed291fc4a010d339ce3cea60caf82d2ddc08962aa0c5c00294ffe16718
| 80,184
|
43c9bf48b2cbaa83fc400be97a42fb260dc2fc7fb0b5f10e388ca6444c35734b
| 168,184
|
ward100
|
sub-control3351
|
[
[
1,
0.019999999552965164,
-0.029999999329447746,
0.05000000074505806,
0.009999999776482582,
-0.019999999552965164,
0.03999999910593033,
0.05999999865889549
],
[
0.019999999552965164,
1,
0.05000000074505806,
-0.009999999776482582,
0.029999999329447746,
0.03999999910593033,
-0.019999999552965164,
0.07000000029802322
],
[
-0.029999999329447746,
0.05000000074505806,
1,
0.07999999821186066,
-0.03999999910593033,
0.019999999552965164,
0.05999999865889549,
0.009999999776482582
],
[
0.05000000074505806,
-0.009999999776482582,
0.07999999821186066,
1,
0.09000000357627869,
-0.029999999329447746,
0.019999999552965164,
0.05000000074505806
],
[
0.009999999776482582,
0.029999999329447746,
-0.03999999910593033,
0.09000000357627869,
1,
0.07000000029802322,
-0.009999999776482582,
0.03999999910593033
],
[
-0.019999999552965164,
0.03999999910593033,
0.019999999552965164,
-0.029999999329447746,
0.07000000029802322,
1,
0.10000000149011612,
-0.019999999552965164
],
[
0.03999999910593033,
-0.019999999552965164,
0.05999999865889549,
0.019999999552965164,
-0.009999999776482582,
0.10000000149011612,
1,
0.09000000357627869
],
[
0.05999999865889549,
0.07000000029802322,
0.009999999776482582,
0.05000000074505806,
0.03999999910593033,
-0.019999999552965164,
0.09000000357627869,
1
]
] |
data/parc-ward100/sub-control3351/sub-control3351_desc-correlation_matrix_parc-ward100.mat
|
data/parc-ward100/sub-control3351/sub-control3351_desc-timeseries_parc-ward100.mat
|
[
100,
100
] |
[
100
] |
7f3a495f5de9a941b1f5bd2cfbd47b0eb51cc26c1bb3b4341b67f9edb3d13a02
| 80,184
|
c4d6768352805ed7cf4ba0ed89152a4dff24ea5307def328caf879329c3232f6
| 168,184
|
PPMI Connectivity Graphs — HF Staging (Derivatives)
This dataset ships ready-to-use functional brain connectivity graphs derived from the PPMI cohort in a BIDS-ish derivatives layout. For each subject and parcellation, we include:
- ROI time-series (
*_desc-timeseries_parc-<name>.mat) - Pearson correlation connectivity matrix (
*_desc-correlation_matrix_parc-<name>.mat) - JSON sidecars with summary fields (nodes, measure, symmetric/weighted flags)
Contents
data/
parc-<schema>/
sub-<id>/
sub-<id>\_desc-timeseries\_parc-<schema>.mat
sub-<id>\_desc-correlation\_matrix\_parc-<schema>.mat
\*.json
manifests/
manifest.jsonl # one JSON object per raw file (sha256, bytes, target\_rel)
participants.tsv
phenotype/ # subject-level variables (if present)
metadata/
raw/ # resources & summaries used to build the set
artifacts/ # inventory, checks, B5 manifest & reports
provenance/ # author notes, dataset summaries, exclusions
Quick start (Python)
from huggingface_hub import snapshot_download
from pathlib import Path
from scipy.io import loadmat
root = Path(snapshot_download(repo_id="<org>/<dataset>", repo_type="dataset", revision="<tag>"))
pid, parc = "sub-prodromal75492", "ward100"
ts = loadmat(root / f"data/parc-{parc}/{pid}/{pid}_desc-timeseries_parc-{parc}.mat")
cm = loadmat(root / f"data/parc-{parc}/{pid}/{pid}_desc-correlation_matrix_parc-{parc}.mat")
# common variable names (fallback-friendly)
X = next((ts.get(k) for k in ["features_timeseries","timeseries","X"] if k in ts), None) # (nodes × time)
A = next((cm.get(k) for k in ["correlation_matrix","corr","A"] if k in cm), None) # (nodes × nodes)
print("Timeseries:", None if X is None else X.shape, " Connectivity:", None if A is None else A.shape)
Use with datasets (viewer‑ready, no scripts)
Note: modern datasets (>= 3.x) does not execute local Python dataset scripts. Use data_files= with Parquet/JSONL as shown below.
You can explore a tiny, fast preview split directly via the datasets library. The preview embeds a small 8×8 top‑left
slice of the correlation matrix so the Hugging Face viewer renders rows/columns quickly. Paths to the full on‑disk
arrays are included for downstream loading.
from datasets import load_dataset
# Root-level Viewer splits (recommended on the Hub):
# train.parquet — tiny preview with embedded 8×8 matrices
# validation.parquet — metadata-only dev slice
ds = load_dataset("pakkinlau/multi-modal-derived-brain-network", data_files="train.parquet", split="train")
row = ds[0]
print(row["parcellation"], row["subject"]) # e.g., 'AAL116', 'sub-control3351'
print(row["corr_shape"], row["ts_shape"]) # e.g., [116, 116], [116]
corr8 = row["correlation_matrix"] # 8×8 nested list (for display)
# Light dev slice (metadata+paths only). Stream to avoid downloads in CI.
dev = load_dataset("pakkinlau/multi-modal-derived-brain-network", data_files="validation.parquet", split="train", streaming=True)
for ex in dev.take(3):
_ = (ex["parcellation"], ex["subject"], ex["corr_path"]) # no embedded arrays
You can also use the manifest entrypoints under manifests/:
from datasets import load_dataset
preview = load_dataset("pakkinlau/multi-modal-derived-brain-network", data_files="manifests/preview.parquet", split="train")
dev = load_dataset("pakkinlau/multi-modal-derived-brain-network", data_files="manifests/dev.parquet", split="train", streaming=True)
To access the full arrays, load from the returned corr_path / ts_path using SciPy or mat73 with variable name fallbacks:
from pathlib import Path
from scipy.io import loadmat
root = Path(ds.cache_files[0]["filename"]).parents[2] # dataset snapshot root (one way to locate)
row = ds[0]
cm = loadmat(root / row["corr_path"]) # correlation matrix (.mat)
ts = loadmat(root / row["ts_path"]) # timeseries (.mat)
A = next((cm.get(k) for k in ["correlation_matrix","corr","A"] if k in cm), None)
X = next((ts.get(k) for k in ["features_timeseries","timeseries","X"] if k in ts), None)
Preview vs. dev vs. full
- preview: tiny split meant for the HF viewer, includes 8×8
correlation_matrixas a nested list plus shapes and file paths (seemanifests/preview.parquet). - dev: small metadata‑only slice across 1–2 parcellations; yields
parcellation,subject, shapes, and file paths (seemanifests/dev.parquet). - full arrays: kept in‑repo under
data/and referenced by the manifests; load them locally using the variable fallbacks above.
If you use our main analysis repo, you can also load pairs via its adapters (if installed):
from brain_graph.data import hf_pair # provided by the main repo
# hf_pair(parcellation, subject, root=Path(...)) returns (timeseries, correlation) arrays
X, A = hf_pair("AAL116", "sub-control3351", root=Path("/path/to/local/snapshot"))
Parcellations
- AAL116 — 116 ROIs
- harvard48 — 48 ROIs
- kmeans100 — 100 ROIs
- schaefer100 — 100 ROIs
- ward100 — 100 ROIs
File layout
data/
parc-<parc>/
sub-<id>/
<id>_desc-timeseries_parc-<parc>.mat
<id>_desc-correlation_matrix_parc-<parc>.mat
*.json # sidecars
manifests/
manifest.jsonl # machine inventory (sha256, bytes, target_rel per file)
preview.jsonl # tiny viewer split (subject+paths+8x8)
preview.parquet # Parquet version (fast viewer)
dev.jsonl # optional light split (metadata+paths only)
dev.parquet # Parquet version (fast viewer)
Data files
- Root (used by the Viewer):
train.parquet— tiny viewer‑ready preview with embedded 8×8 correlation matricesvalidation.parquet— dev metadata‑only slice (no embedded arrays)
- Manifests (secondary entrypoints):
manifests/preview.parquet— same content astrain.parquet(if duplicated)manifests/dev.parquet— same asvalidation.parquet(if duplicated)
Integrity & Checksums
Rows in the preview/dev manifests include *_sha256 and *_bytes for both corr_path and ts_path, derived from manifests/manifest.jsonl.
You can verify a local copy by recomputing SHA‑256 and matching the values.
Example (verify a correlation .mat):
import hashlib
from pathlib import Path
def sha256(path: Path, buf=131072):
h = hashlib.sha256()
with open(path, 'rb') as f:
while True:
b = f.read(buf)
if not b:
break
h.update(b)
return h.hexdigest()
# compare with row['corr_sha256']
Scripts (optional)
scripts/enrich_manifests.py: Enrich preview/dev JSONL with shapes (from sidecars), embedded 8×8 tiles (frompreview/), and checksums (frommanifests/manifest.jsonl).scripts/jsonl_to_parquet.py: Convert any JSONL to Parquet with a stable schema.scripts/scan_to_manifest.py: Scandata/to produce a metadata-only JSONL (parcellation, subject, shapes, paths, checksums). Useful for making new dev slices.scripts/make_preview.py: Generate 8×8 correlation previews from.matfiles for rows in a manifest. Requires SciPy ormat73locally.
Cohort & Metadata
participants.tsv(+ optionalparticipants.json)phenotype/(subject-level variables)metadata/raw/,metadata/artifacts/,metadata/provenance/(provenance, inventories, checks)- JSON sidecars colocated with
.matunderdata/ - Parquet mirrors (optional, if you add them later)
Integrity
- A machine manifest lives at
manifests/manifest.jsonl(one JSON object per raw file) with SHA-256 and byte size. - You can re-compute and verify locally if needed.
License
- Data (everything under
data/,participants.tsv,phenotype/, andmetadatatables): CC BY-NC-SA 4.0. - Docs & examples (this README, helper scripts): Apache-2.0.
See
LICENSEfor details.
How to cite
See CITATION.cff. Please also acknowledge PPMI and the original derivative providers.
Changelog
- v1.0.0 — Initial HF release: multi-schema connectivity with cohort tables & provenance.
- Downloads last month
- 251