file_path
				 
			stringlengths 7 
			180 
			 | content
				 
			stringlengths 0 
			811k 
			 | repo
				 
			stringclasses 11
				values  | 
|---|---|---|
	docgen/src/main.rs 
 | 
	use regex::Regex;
use std::fs;
use std::path::Path;
fn main() {
    // TENSOR DOC
    let trait_path = "src/operators/tensor/core.cairo";
    let doc_path = "docs/framework/operators/tensor";
    let label = "tensor";
    let trait_name = "TensorTrait";
    doc_trait(trait_path, doc_path, label);
    doc_functions(trait_path, doc_path, trait_name, label);
    // NN DOC
    let trait_path = "src/operators/nn/core.cairo";
    let doc_path = "docs/framework/operators/neural-network";
    let label = "nn";
    let trait_name = "NNTrait";
    doc_trait(trait_path, doc_path, label);
    doc_functions(trait_path, doc_path, trait_name, label);
    // SEQUENCE DOC
    let trait_path = "src/operators/sequence/core.cairo";
    let doc_path = "docs/framework/operators/sequence";
    let label = "sequence";
    let trait_name = "SequenceTrait";
    doc_trait(trait_path, doc_path, label);
    doc_functions(trait_path, doc_path, trait_name, label);
    // FIXED POINT DOC
    let trait_path = "src/numbers/fixed_point/core.cairo";
    let doc_path = "docs/framework/numbers/fixed-point";
    let label = "fp";
    let trait_name = "FixedTrait";
    doc_trait(trait_path, doc_path, label);
    doc_functions(trait_path, doc_path, trait_name, label);
    // COMPLEX NUMBER DOC
    let trait_path = "src/numbers/complex_number/complex_trait.cairo";
    let doc_path = "docs/framework/numbers/complex-number";
    let label = "complex";
    let trait_name: &str = "ComplexTrait";
    doc_trait(trait_path, doc_path, label);
    doc_functions(trait_path, doc_path, trait_name, label);
    // TREE ENSEMBLE CLASSIFIER DOC
    let trait_path = "src/operators/ml/tree_ensemble/tree_ensemble_classifier.cairo";
    let doc_path = "docs/framework/operators/machine-learning/tree-ensemble-classifier";
    let label = "tree_ensemble_classifier";
    let trait_name: &str = "TreeEnsembleClassifierTrait";
    doc_trait(trait_path, doc_path, label);
    doc_functions(trait_path, doc_path, trait_name, label);
    // TREE ENSEMBLE REGRESSOR DOC
    let trait_path = "src/operators/ml/tree_ensemble/tree_ensemble_regressor.cairo";
    let doc_path = "docs/framework/operators/machine-learning/tree-ensemble-regressor";
    let label = "tree_ensemble_regressor";
    let trait_name: &str = "TreeEnsembleRegressorTrait";
    doc_trait(trait_path, doc_path, label);
    doc_functions(trait_path, doc_path, trait_name, label);
    // LINEAR REGRESSOR DOC
    let trait_path = "src/operators/ml/linear/linear_regressor.cairo";
    let doc_path = "docs/framework/operators/machine-learning/linear-regressor";
    let label = "linear_regressor";
    let trait_name: &str = "LinearRegressorTrait";
    doc_trait(trait_path, doc_path, label);
    doc_functions(trait_path, doc_path, trait_name, label);
    // LINEAR CLASSIFIER DOC
    let trait_path = "src/operators/ml/linear/linear_classifier.cairo";
    let doc_path = "docs/framework/operators/machine-learning/linear-classifier";
    let label = "linear_classifier";
    let trait_name: &str = "LinearClassifierTrait";
    doc_trait(trait_path, doc_path, label);
    doc_functions(trait_path, doc_path, trait_name, label);
    // SVM REGRESSOR DOC
    let trait_path = "src/operators/ml/svm/svm_regressor.cairo";
    let doc_path = "docs/framework/operators/machine-learning/svm-regressor";
    let label = "svm_regressor";
    let trait_name: &str = "SVMRegressorTrait";
    doc_trait(trait_path, doc_path, label);
    doc_functions(trait_path, doc_path, trait_name, label);
    // SVM CLASSIFIER DOC
    let trait_path = "src/operators/ml/svm/svm_classifier.cairo";
    let doc_path = "docs/framework/operators/machine-learning/svm-classifier";
    let label = "svm_classifier";
    let trait_name: &str = "SVMClassifierTrait";
    doc_trait(trait_path, doc_path, label);
    doc_functions(trait_path, doc_path, trait_name, label);
    // NORMALIZER DOC
    let trait_path = "src/operators/ml/normalizer/normalizer.cairo";
    let doc_path = "docs/framework/operators/machine-learning/normalizer";
    let label = "normalizer";
    let trait_name: &str = "NormalizerTrait";
    doc_trait(trait_path, doc_path, label);
    doc_functions(trait_path, doc_path, trait_name, label);
}
fn doc_trait(trait_path: &str, doc_path: &str, label: &str) {
    // Open and read core.cairo file
    let path_str = format!("../{}", trait_path);
    let path = Path::new(&path_str);
    let contents = fs::read_to_string(&path).expect("Could not read the file");
    // Create a regular expression to match the comment lines
    let re = Regex::new(r#"/// (\w+) - (.*)"#).unwrap();
    // Initialize an empty string to store our new formatted table
    let mut table = String::from("| function | description |\n| --- | --- |\n");
    // Go through the file and look for comments with our specific format
    for cap in re.captures_iter(&contents) {
        // Check if the function is the Trait definition and skip it
        if &cap[1] == "Trait" {
            continue;
        }
        // Add the function name and description to our table
        let func_name = format!(
            "[`{}.{}`]({}.{}.md)",
            label,
            &cap[1],
            label,
            &cap[1].replace('_', r"\_")
        );
        let func_desc = &cap[2];
        table += &format!("| {} | {} |\n", func_name, func_desc);
    }
    // Open the README.md file
    let readme_path_str = format!("../{}/README.md", doc_path);
    let readme_path = Path::new(&readme_path_str);
    let readme = fs::read_to_string(&readme_path).expect("Could not read the file");
    // Use regex to replace the table
    let re_table = Regex::new(r"(?ms)\n\n\| fun.*?(\n[^|]|\z)").unwrap();
    let new_readme = re_table.replace(&readme, &("\n\n".to_owned() + &table + "\n"));
    // Write the updated contents back to README.md
    fs::write(&readme_path, &*new_readme).expect("Could not write the file");
}
fn doc_functions(trait_path: &str, doc_path: &str, trait_name: &str, label: &str) {
    let filepath_str = format!("../{}", trait_path);
    let filepath = Path::new(&filepath_str);
    let contents = fs::read_to_string(filepath).expect("Something went wrong reading the file");
    // Find the trait block
    let trait_re = Regex::new(&format!(
        r"(?s)trait\s+{}\s*(<[\w\s,]*>)?\s*\{{.*?\n\s*\}}",
        trait_name
    ))
    .unwrap();
    let trait_match = trait_re.captures(&contents).unwrap();
    let trait_block = trait_match.get(0).unwrap().as_str();
    // Iterate over each function
    let func_re = Regex::new(r"(?s)(///.*?\n)\s*fn (\w+)\((.*?)\) -> (.*?);").unwrap();
    for func_match in func_re.captures_iter(trait_block) {
        let func_name = func_match.get(2).unwrap().as_str();
        let doc_comment = func_match.get(1).unwrap().as_str();
        // Go to the appropriate markdown file and write the transformed doc comment
        let markdown_filename = format!("../{}/{}.{}.md", doc_path, label, func_name);
        let transformed_comment = doc_comment
            .lines()
            .map(|line| {
                line.trim_start().strip_prefix("/// ").unwrap_or(
                    line.trim_start()
                        .strip_prefix("///")
                        .unwrap_or(line.trim_start()),
                )
            })
            .collect::<Vec<_>>()
            .join("\n");
        // Write or replace the transformed comment into the markdown file
        fs::write(markdown_filename, transformed_comment).expect("Unable to write file");
    }
}
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/__init__.py 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					|
	nodegen/file_manager.py 
 | 
	import os
from pathlib import Path
BASE_PATH = "./tests/nodes"
class ModFile:
    def __init__(self):
        """
        Initialize a ModFile object.
        This method creates a new file with a .cairo extension in the BASE_PATH directory.
        If the directory doesn't exist, it's created. The contents of the file are then read
        into the buffer attribute.
        """
        self.path = Path(f"{BASE_PATH}.cairo")
        self.path.parent.mkdir(parents=True, exist_ok=True)
        with self.path.open("r") as f:
            self.buffer = f.readlines()
    def update(self, name: str):
        """
        Update the .cairo file with a new module statement.
        Args:
            name (str): The name of the module to be added.
        This method checks if a module statement for the given name already exists in the buffer.
        If it doesn't, the new module statement is appended to the file.
        """
        statement = f"mod {name};"
        if any([line.startswith(statement) for line in self.buffer]):
            return
        with self.path.open("a") as f:
            f.write(f"{statement}\n")
class File:
    def __init__(self, path: str):
        """
        Initialize a File object.
        Args:
            path (str): The file path where the File object will operate.
        This method creates a new file at the specified path. If the file already exists, its
        contents are read into the buffer attribute.
        """
        self.path = Path(path)
        self.path.parent.mkdir(parents=True, exist_ok=True)
        self.buffer = []
        if os.path.isfile(path):
            with self.path.open("r") as f:
                self.buffer = f.readlines()
    def dump(self):
        """
        Write the contents of the buffer to the file.
        This method writes each line in the buffer to the file, ensuring each line is
        properly terminated with a newline character.
        """
        with self.path.open("w") as f:
            f.writelines([f"{line}\n" for line in self.buffer])
class CairoTest(File):
    def __init__(self, file: str):
        super().__init__(os.path.join(BASE_PATH, file))
    @classmethod
    def base_template(
        cls, name: str, arg_cnt: int, refs: list[str], func_sig: str, out_cnt: int = 1
    ) -> list[str]:
        """
        Create a template for a Cairo test function which expects a tensor output.
        Args:
            name (str): Name of the test function.
            arg_cnt (int): Number of arguments for the function.
            refs (list[str]): List of references (modules) to be used in the function.
            func_sig (str): The function signature.
            out_cnt (int): Number of outputs for the function. Defaults to 1.
        Returns:
            list[str]: A list of strings that together form the template of a Cairo test function.
        This method generates a list of strings that form the template of a Cairo test function,
        including module imports, function definition, and assertions.
        """
        template = [
            *[f"mod input_{i};" for i in range(arg_cnt)],
            *[f"mod output_{i};" for i in range(out_cnt)],
            "",
            "",
            *[f"use {ref};" for ref in refs],
            "",
            "#[test]",
            "#[available_gas(2000000000)]",
            f"fn test_{name}()" + " {",
            *[f"    let input_{i} = input_{i}::input_{i}();" for i in range(arg_cnt)],
            *[f"    let z_{i} = output_{i}::output_{i}();" for i in range(out_cnt)],
            ""
        ]
        # Handling conditional function signature based on the number of outputs
        if out_cnt > 1:
            template.append(f"    let ({', '.join(f'y_{i}' for i in range(out_cnt))}) = {func_sig};")
        else:
            template.append(f"    let y_0 = {func_sig};")
        # Continue appending to the template
        template.extend([
            "",
            *[f"    assert_eq(y_{i}, z_{i});" for i in range(out_cnt)],
            "}"
        ])
        return template
    @classmethod
    def sequence_template(cls, name: str, arg_cnt: int, refs: list[str], func_sig: str) -> list[str]:
        """
        Create a template for a Cairo test function which expects a tensor sequence.
        Args:
            name (str): Name of the test function.
            arg_cnt (int): Number of arguments for the function.
            refs (list[str]): List of references (modules) to be used in the function.
            func_sig (str): The function signature.
        Returns:
            list[str]: A list of strings that together form the template of a Cairo test function.
        This method generates a list of strings that form the template of a Cairo test function,
        including module imports, function definition, and assertions.
        """
        return [
            *[f"mod input_{i};" for i in range(arg_cnt)],
            *[ "mod output_0;"],
            *[ ""],
            *[ ""],
            *[f"use {ref};" for ref in refs],
            *[ ""],
            *[ "#[test]"],
            *[ "#[available_gas(2000000000)]"],
            *[f"fn test_{name}()"+" {"],
            *[f"    let input_{i} = input_{i}::input_{i}();" for i in range(arg_cnt)],
            *[ "    let z = output_0::output_0();"],
            *[ ""],
            *[f"    let y = {func_sig};"],
            *[ ""],
            *[ "    assert_seq_eq(y, z);"],
            *[ "}"],
        ]
class CairoData(File):
    def __init__(self, file: str):
        super().__init__(os.path.join(BASE_PATH, file))
    @classmethod
    def base_template(
        cls, func: str, dtype: str, refs: list[str], data: list[str], shape: tuple
    ) -> list[str]:
        """
        Create a base template for data representation in Cairo.
        Args:
            func (str): The function name.
            dtype (str): The data type of the tensor.
            refs (list[str]): A list of module references.
            data (list[str]): The data to be included in the tensor.
            shape (tuple): The shape of the tensor.
        Returns:
            list[str]: A list of strings that together form the template of a data function in Cairo.
        This method generates a list of strings representing a function in Cairo for data handling,
        defining the shape and contents of a tensor.
        """
        template = [
            *[f"use {ref};" for ref in refs],
            *[""],
            *[f"fn {func}() -> Tensor<{dtype}>" + " {"],
            *["    let mut shape = ArrayTrait::<usize>::new();"],
            *[f"    shape.append({s});" for s in shape],
            *[""],
            *["    let mut data = ArrayTrait::new();"],
            *[f"    data.append({d});" for d in data],
            *["    TensorTrait::new(shape.span(), data.span())"],
            *["}"],
        ]
        return template
    @classmethod
    def sequence_template(
        cls,
        func: str,
        dtype: str,
        refs: list[str],
        data: list[list[str]],
        shape: list[tuple],
    ) -> list[str]:
        """
        Create a template for handling tensor sequences in Cairo.
        Args:
            func (str): The function name.
            dtype (str): The data type of the tensor sequence.
            refs (list[str]): A list of module references.
            data (list[list[str]]): The data to be included in each tensor.
            shape (list[tuple]): The shapes of each tensor in the sequence.
        Returns:
            list[str]: A list of strings that together form the template of a sequence tensor function in Cairo.
        This method generates a list of strings representing a function in Cairo for handling a sequence
        of tensors, each with its own data and shape.
        """
        def expand_sequence_init(s: list[tuple], d: list[list[str]]) -> list[str]:
            snippet = []
            for i in range(len(s)):
                snippet += [
                    *["    let mut shape = ArrayTrait::<usize>::new();"],
                    *[f"    shape.append({s});" for s in s[i]],
                    *[""],
                    *["    let mut data = ArrayTrait::new();"],
                    *[f"    data.append({d});" for d in d[i]],
                    *[""],
                    *[
                        "    sequence.append(TensorTrait::new(shape.span(), data.span()));"
                    ],
                    *[""],
                ]
            return snippet
        template = [
            *[f"use {ref};" for ref in refs],
            *[""],
            *[f"fn {func}() -> Array<Tensor<{dtype}>>" + " {"],
            *["    let mut sequence = ArrayTrait::new();"],
            *[""],
            *expand_sequence_init(shape, data),
            *["    sequence"],
            *["}"],
        ]
        return template 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/helpers.py 
 | 
	from enum import Enum
import os
from typing import List
from .file_manager import CairoTest, CairoData, ModFile
import numpy as np
class FixedImpl(Enum):
    FP8x23 = 'FP8x23'
    FP16x16 = 'FP16x16'
    FP32x32 = 'FP32x32'
    
def to_fp(x: np.ndarray, fp_impl: FixedImpl):
    match fp_impl:
        case FixedImpl.FP8x23:
            return (x * 2**23).astype(np.int64)
        case FixedImpl.FP16x16:
            return (x * 2**16).astype(np.int64)
        case FixedImpl.FP32x32:
            return (x * 2**32).astype(np.int64)
class Dtype(Enum):
    FP8x23 = 'FP8x23'
    FP16x16 = 'FP16x16'
    FP32x32 = 'FP32x32'
    I8 = 'i8'
    I32 = 'i32'
    U32 = 'u32'
    BOOL = 'bool'
    COMPLEX64 = 'complex64'
class Tensor:
    def __init__(self, dtype: Dtype, shape: tuple, data: np.ndarray):
        self.dtype = dtype
        self.shape = shape
        self.data = data
Sequence = List[Tensor]
class Trait(Enum):
    TENSOR = 'TENSOR'
    NN = 'NN'
    SEQUENCE = 'SEQUENCE'
def make_test(inputs: list[Tensor | Sequence], output: Tensor | Sequence, func_sig: str, name: str, trait: Trait = Trait.TENSOR):
    """
    Generate and write Cairo tests based on the provided inputs and output.
    Args:
        inputs (list[Tensor | list[Tensor]]): A list of input tensors or tensor sequences.
        output (Tensor | list[Tensor]): The expected output tensor or tensor sequences.
        func_sig (str): The signature of the function to be tested.
        name (str): The name of the test.
        trait (Trait, optional): The trait of the tensors. Defaults to Trait.TENSOR.
    """
    ModFile().update(name)
    for i, input in enumerate(inputs):
        input_data = CairoData(os.path.join(name, f"input_{i}.cairo"))
        match input:
            case list():
                input_data.buffer = CairoData.sequence_template(
                    func=f"input_{i}",
                    dtype=input[0].dtype.value,
                    refs=get_data_refs(input[0].dtype),
                    data=get_data_statement_for_sequences(
                        input, input[0].dtype),
                    shape=[x.shape for x in input],
                )
            case Tensor():
                input_data.buffer = CairoData.base_template(
                    func=f"input_{i}",
                    dtype=input.dtype.value,
                    refs=get_data_refs(input.dtype),
                    data=get_data_statement(input.data, input.dtype),
                    shape=input.shape,
                )
        input_data.dump()
    match output:
        case list():
            output_data = CairoData(os.path.join(name, "output_0.cairo"))
            output_data.buffer = CairoData.sequence_template(
                func="output_0",
                dtype=output[0].dtype.value,
                refs=get_data_refs(output[0].dtype),
                data=get_data_statement_for_sequences(output, output[0].dtype),
                shape=[x.shape for x in output],
            )
            output_data.dump()
        case tuple():
            for i, out in enumerate(output):
                output_data = CairoData(
                    os.path.join(name, f"output_{i}.cairo"))
                output_data.buffer = CairoData.base_template(
                    func=f"output_{i}",
                    dtype=out.dtype.value,
                    refs=get_data_refs(out.dtype),
                    data=get_data_statement(out.data, out.dtype),
                    shape=out.shape,
                )
                output_data.dump()
        case Tensor():
            output_data = CairoData(os.path.join(name, "output_0.cairo"))
            output_data.buffer = CairoData.base_template(
                func="output_0",
                dtype=output.dtype.value,
                refs=get_data_refs(output.dtype),
                data=get_data_statement(output.data, output.dtype),
                shape=output.shape,
            )
            output_data.dump()
    test_file = CairoTest(f"{name}.cairo")
    match output:
        case list():
            test_file.buffer = CairoTest.sequence_template(
                name=name,
                arg_cnt=len(inputs),
                refs=get_all_test_refs(find_all_types([*inputs, *output]), trait),
                func_sig=func_sig,
            )
        case Tensor():
            test_file.buffer = CairoTest.base_template(
                name=name,
                arg_cnt=len(inputs),
                refs=get_all_test_refs(find_all_types([*inputs, output]), trait),
                func_sig=func_sig,
            )
        case tuple():
            test_file.buffer = CairoTest.base_template(
                name=name,
                arg_cnt=len(inputs),
                out_cnt=len(output),
                refs=get_all_test_refs(find_all_types([*inputs, output]), trait),
                func_sig=func_sig,
            )
    test_file.dump()
def get_data_refs(dtype: Dtype) -> list[str]:
    refs = [
        *trait_to_ref[Trait.TENSOR],
        *dtype_to_tensor[dtype],
        *dtype_to_numbers[dtype],
    ]
    return refs
def get_data_statement(data: np.ndarray, dtype: Dtype) -> list[str]:
    match dtype:
        case Dtype.U32:
            return [f"{int(x)}" for x in data.flatten()]
        case Dtype.I32:
            return [f"{int(x)}" for x in data.flatten()]
        case Dtype.I8:
            return [f"{int(x)}" for x in data.flatten()]
        case Dtype.FP8x23:
            return ["FP8x23 { "+f"mag: {abs(int(x))}, sign: {str(x < 0).lower()} "+"}" for x in data.flatten()]
        case Dtype.FP16x16:
            return ["FP16x16 { "+f"mag: {abs(int(x))}, sign: {str(x < 0).lower()} "+"}" for x in data.flatten()]
        case Dtype.FP32x32:
            return ["FP32x32 { "+f"mag: {abs(int(x))}, sign: {str(x < 0).lower()} "+"}" for x in data.flatten()]
        case Dtype.BOOL:
            return [str(x).lower() for x in data.flatten()]
        case Dtype.COMPLEX64:
            return ["complex64 { "+"real: FP64x64 { "+f"mag: {abs(int(np.real(x)))}, sign: {str(np.real(x) < 0).lower()} "+"} , img: FP64x64 { "+f"mag: {abs(int(np.imag(x)))}, sign: {str(np.imag(x) < 0).lower()} "+"} }" for x in data.flatten()]
        
def get_data_statement_for_sequences(data: Sequence, dtype: Dtype) -> list[list[str]]:
    return [get_data_statement(x.data, dtype) for x in data]
def get_all_test_refs(dtypes: list[Dtype], trait: Trait) -> list[str]:
    refs = []
    for dtype in dtypes:
        # refs += [*dtype_to_numbers[dtype]]
        refs += get_test_refs(dtype, trait)
    return list(set(refs))
def get_test_refs(dtype: Dtype, trait: Trait) -> list[str]:
    if trait == Trait.NN and dtype == Dtype.BOOL:
        raise Exception("NN trait does not support bool dtype")
    if trait == Trait.NN:
        dtype_ref = dtype_to_nn[dtype]
    elif trait == Trait.SEQUENCE:
        dtype_ref = dtype_to_sequence[dtype]
    else:
        dtype_ref = dtype_to_tensor[dtype]
    refs = [
        *trait_to_ref[trait],
        *dtype_ref,
        *dtype_to_partial_eq[dtype],
        "orion::utils::{assert_eq, assert_seq_eq}",
    ]
    return refs
def find_all_types(tensors: list[Tensor | Sequence]) -> list[Dtype]:
    dtypes = []
    for tensor in tensors:
        if isinstance(tensor, list) or isinstance(tensor, tuple):
            dtypes += [x.dtype for x in tensor]
        else:
            dtypes.append(tensor.dtype)
    return list(set(dtypes))
trait_to_ref = {
    Trait.TENSOR: [
        "core::array::{ArrayTrait, SpanTrait}",
        "orion::operators::tensor::{TensorTrait, Tensor}",
    ],
    Trait.NN: [
        "orion::numbers::FixedTrait",
        "orion::operators::nn::NNTrait",
    ],
    Trait.SEQUENCE: [
        "core::array::{ArrayTrait, SpanTrait}",
        "orion::operators::sequence::SequenceTrait",
    ],
}
dtype_to_tensor = {
    Dtype.U32: ["orion::operators::tensor::{U32Tensor, U32TensorAdd}",],
    Dtype.I32: ["orion::operators::tensor::{I32Tensor, I32TensorAdd}",],
    Dtype.I8: ["orion::operators::tensor::{I8Tensor, I8TensorAdd}",],
    Dtype.FP8x23: ["orion::operators::tensor::{FP8x23Tensor, FP8x23TensorAdd}",],
    Dtype.FP16x16: ["orion::operators::tensor::{FP16x16Tensor, FP16x16TensorAdd}",],
    Dtype.BOOL: ["orion::operators::tensor::BoolTensor",],
    Dtype.COMPLEX64: ["orion::operators::tensor::Complex64Tensor",],
    Dtype.FP32x32: ["orion::operators::tensor::FP32x32Tensor",],
}
dtype_to_nn = {
    Dtype.U32: ["orion::operators::nn::U32NN",],
    Dtype.I32: ["orion::operators::nn::I32NN",],
    Dtype.I8: ["orion::operators::nn::I8NN",],
    Dtype.FP8x23: ["orion::operators::nn::FP8x23NN",],
    Dtype.FP16x16: ["orion::operators::nn::FP16x16NN",],
}
dtype_to_sequence = {
    Dtype.U32: ["orion::operators::sequence::U32Sequence",],
    Dtype.I32: ["orion::operators::sequence::I32Sequence",],
    Dtype.I8: ["orion::operators::sequence::I8Sequence",],
    Dtype.FP8x23: ["orion::operators::sequence::FP8x23Sequence",],
    Dtype.FP16x16: ["orion::operators::sequence::FP16x16Sequence",],
}
dtype_to_partial_eq = {
    Dtype.U32: ["orion::operators::tensor::U32TensorPartialEq",],
    Dtype.I32: ["orion::operators::tensor::I32TensorPartialEq",],
    Dtype.I8: ["orion::operators::tensor::I8TensorPartialEq",],
    Dtype.FP8x23: ["orion::operators::tensor::FP8x23TensorPartialEq",],
    Dtype.FP16x16: ["orion::operators::tensor::FP16x16TensorPartialEq",],
    Dtype.FP32x32: ["orion::operators::tensor::FP32x32TensorPartialEq",],
    Dtype.BOOL: ["orion::operators::tensor::BoolTensorPartialEq",],
    Dtype.COMPLEX64: ["orion::operators::tensor::Complex64TensorPartialEq",],
}
dtype_to_numbers = {
    Dtype.U32: ["orion::numbers::NumberTrait"],
    Dtype.I32: ["orion::numbers::NumberTrait"],
    Dtype.I8: ["orion::numbers::NumberTrait"],
    Dtype.FP8x23: ["orion::numbers::{FixedTrait, FP8x23}",],
    Dtype.FP16x16: ["orion::numbers::{FixedTrait, FP16x16}",],
    Dtype.FP32x32: ["orion::numbers::{FixedTrait, FP32x32}",],
    Dtype.BOOL: [],
    Dtype.COMPLEX64: ["orion::numbers::{NumberTrait, complex64}",],
} 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/__init__.py 
 | 
	import argparse
import importlib
import os
import sys
class RunAll:
    @classmethod
    def run_all(cls):
        for method_name in dir(cls):
            if method_name.startswith('__') or method_name == 'run_all':
                continue
            method = getattr(cls, method_name)
            if callable(method):
                method()
# Add the path to the 'orion' directory to the Python path
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..'))
def main():
    parser = argparse.ArgumentParser(description="Generate nodes.")
    parser.add_argument('node_class', help="The class of node to run.")
    args = parser.parse_args()
    class_name = args.node_class.capitalize()
    # Verify that the specified Python file exists
    filename = os.path.join('nodegen/node', args.node_class + '.py')
    if not os.path.exists(filename):
        print(f"Error: {filename} does not exist.")
        return
    # Import the module dynamically
    module = importlib.import_module('nodegen.node.' + args.node_class)
    # Get the class from the module
    node_class = getattr(module, class_name)
    # Instantiate the class and call the run_all method
    node_instance = node_class()
    node_instance.run_all()
if __name__ == "__main__":
    main()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/abs.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Abs(RunAll):
    @staticmethod
    def abs_i32():
        x = np.random.randint(-127, 127, (2, 2)).astype(np.int32)
        y = abs(x)
        x = Tensor(Dtype.I32, x.shape, x.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "abs_i32"
        make_test([x], y, "input_0.abs()", name)
    @staticmethod
    def abs_i8():
        x = np.random.randint(-127, 127, (2, 2)).astype(np.int8)
        y = abs(x)
        x = Tensor(Dtype.I8, x.shape, x.flatten())
        y = Tensor(Dtype.I8, y.shape, y.flatten())
        name = "abs_i8"
        make_test([x], y, "input_0.abs()", name)
    @staticmethod
    def abs_fp8x23():
        x = to_fp(np.random.randint(-127, 127, (2, 2)
                                    ).astype(np.int64), FixedImpl.FP8x23)
        y = abs(x)
        x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
        y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
        name = "abs_fp8x23"
        make_test([x], y, "input_0.abs()", name)
    @staticmethod
    def abs_fp16x16():
        x = to_fp(np.random.randint(-127, 127, (2, 2)
                                    ).astype(np.int64), FixedImpl.FP16x16)
        y = abs(x)
        x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
        y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
        name = "abs_fp16x16"
        make_test([x], y, "input_0.abs()", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/acos.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Acos(RunAll):
   
    @staticmethod
    def acos_fp8x23():
        x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64)
        y = np.arccos(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
        
        name = "acos_fp8x23"
        make_test([x], y, "input_0.acos()", name)
     
    @staticmethod
    def acos_fp16x16():
        x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64)
        y = np.arccos(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "acos_fp16x16"
        make_test([x], y, "input_0.acos()", name)
     
 
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/acosh.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Acosh(RunAll):
    @staticmethod
    def acosh_fp8x23():
        x = np.random.uniform(1, 5, (2, 2)).astype(np.float64)
        y = np.arccosh(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "acosh_fp8x23"
        make_test([x], y, "input_0.acosh()", name)
    @staticmethod
    def acosh_fp16x16():
        x = np.random.uniform(1, 5, (2, 2)).astype(np.float64)
        y = np.arccosh(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "acosh_fp16x16"
        make_test([x], y, "input_0.acosh()", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/add.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Add(RunAll):
    @staticmethod
    def add_u32():
        def default():
            x = np.random.randint(0, 3, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 3, (3, 3, 3)).astype(np.uint32)
            z = x + y
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "add_u32"
            make_test([x, y], z, "input_0 + input_1", name)
        def broadcast():
            x = np.random.randint(0, 3, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 3, (1, 3, 1)).astype(np.uint32)
            z = x + y
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "add_u32_broadcast"
            make_test([x, y], z, "input_0 + input_1", name)
        default()
        broadcast()
    @staticmethod
    def add_i32():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            z = x + y
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "add_i32"
            make_test([x, y], z, "input_0 + input_1", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.int32)
            z = x + y
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "add_i32_broadcast"
            make_test([x, y], z, "input_0 + input_1", name)
        default()
        broadcast()
    @staticmethod
    def add_i8():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            z = x + y
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I8, z.shape, z.flatten())
            name = "add_i8"
            make_test([x, y], z, "input_0 + input_1", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.int8)
            z = x + y
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I8, z.shape, z.flatten())
            name = "add_i8_broadcast"
            make_test([x, y], z, "input_0 + input_1", name)
        default()
        broadcast()
    @staticmethod
    def add_fp8x23():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = x + y
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape, to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "add_fp8x23"
            make_test([x, y], z, "input_0 + input_1", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.float64)
            z = x + y
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape, to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "add_fp8x23_broadcast"
            make_test([x, y], z, "input_0 + input_1", name)
        default()
        broadcast()
    @staticmethod
    def add_fp16x16():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = x + y
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape, to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "add_fp16x16"
            make_test([x, y], z, "input_0 + input_1", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.float64)
            z = x + y
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape, to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "add_fp16x16_broadcast"
            make_test([x, y], z, "input_0 + input_1", name)
        default()
        broadcast()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/and.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class And(RunAll):
    @staticmethod
    def and_bool():
        def default():
            x = (np.random.randn(3, 4) > 0).astype(bool)
            y = (np.random.randn(3, 4) > 0).astype(bool)
            z = np.logical_and(x, y)
            x = Tensor(Dtype.BOOL, x.shape, x.flatten())
            y = Tensor(Dtype.BOOL, y.shape, y.flatten())
            z = Tensor(Dtype.BOOL, z.shape, z.flatten())
            name = "and_bool"
            make_test([x, y], z, "BoolTensor::and(@input_0, @input_1)", name)
        def broadcast():
            x = (np.random.randn(3, 4, 5) > 0).astype(bool)
            y = (np.random.randn(3, 4, 5) > 0).astype(bool)
            z = np.logical_and(x, y)
            x = Tensor(Dtype.BOOL, x.shape, x.flatten())
            y = Tensor(Dtype.BOOL, y.shape, y.flatten())
            z = Tensor(Dtype.BOOL, z.shape, z.flatten())
            name = "and_bool_broadcast"
            make_test([x, y], z, "BoolTensor::and(@input_0, @input_1)", name)
        default()
        broadcast()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/argmax.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
def argmax_use_numpy(data: np.ndarray, axis: int = 0, keepdims: int = 1) -> np.ndarray:
    result = np.argmax(data, axis=axis)
    if keepdims == 1:
        result = np.expand_dims(result, axis)
    return result.astype(np.int64)
def argmax_use_numpy_select_last_index(
    data: np.ndarray, axis: int = 0, keepdims: int = True
) -> np.ndarray:
    data = np.flip(data, axis)
    result = np.argmax(data, axis=axis)
    result = data.shape[axis] - result - 1
    if keepdims:
        result = np.expand_dims(result, axis)
    return result.astype(np.int64)
class Argmax(RunAll):
    @staticmethod
    def no_keepdims():
        data = np.array([[2, 1], [3, 10]], dtype=np.float32)
        axis = 1
        keepdims = 0
        result = argmax_use_numpy(data, axis=axis, keepdims=keepdims)
        x = Tensor(Dtype.FP16x16, data.shape, data.flatten())
        y = Tensor(Dtype.I32, result.shape, result.flatten())
        name = "argmax_no_keepdims"
        make_test(
            [x], y, "input_0.argmax(1, Option::Some(false), Option::None(()))", name)
    @staticmethod
    def keepdims():
        data = np.array([[2, 1], [3, 10]], dtype=np.float32)
        axis = 1
        keepdims = 1
        result = argmax_use_numpy(data, axis=axis, keepdims=keepdims)
        x = Tensor(Dtype.FP16x16, data.shape, data.flatten())
        y = Tensor(Dtype.I32, result.shape, result.flatten())
        name = "argmax_keepdims"
        make_test(
            [x], y, "input_0.argmax(1, Option::Some(true), Option::None(()))", name)
    @staticmethod
    def default_axes_keepdims():
        data = np.array([[2, 1], [3, 10]], dtype=np.float32)
        keepdims = 1
        result = argmax_use_numpy(data, keepdims=keepdims)
        x = Tensor(Dtype.FP16x16, data.shape, data.flatten())
        y = Tensor(Dtype.I32, result.shape, result.flatten())
        name = "argmax_default_axes_keepdims"
        make_test(
            [x], y, "input_0.argmax(0, Option::Some(true), Option::None(()))", name)
    @staticmethod
    def negative_axis_keepdims():
        data = np.array([[2, 1], [3, 10]], dtype=np.float32)
        axis = -1
        keepdims = 1
        result = argmax_use_numpy(data, axis=axis, keepdims=keepdims)
        x = Tensor(Dtype.FP16x16, data.shape, data.flatten())
        y = Tensor(Dtype.I32, result.shape, result.flatten())
        name = "argmax_negative_axis_keepdims"
        make_test(
            [x], y, "input_0.argmax(-1, Option::Some(true), Option::None(()))", name)
    @staticmethod
    def no_keepdims_select_last_index():
        data = np.array([[2, 2], [3, 10]], dtype=np.float32)
        axis = 1
        keepdims = 0
        result = argmax_use_numpy_select_last_index(
            data, axis=axis, keepdims=keepdims)
        x = Tensor(Dtype.FP16x16, data.shape, data.flatten())
        y = Tensor(Dtype.I32, result.shape, result.flatten())
        name = "argmax_no_keepdims_select_last_index"
        make_test(
            [x], y, "input_0.argmax(1, Option::Some(false), Option::Some(true))", name)
    @staticmethod
    def keepdims_select_last_index():
        data = np.array([[2, 2], [3, 10]], dtype=np.float32)
        axis = 1
        keepdims = 1
        result = argmax_use_numpy_select_last_index(
            data, axis=axis, keepdims=keepdims)
        x = Tensor(Dtype.FP16x16, data.shape, data.flatten())
        y = Tensor(Dtype.I32, result.shape, result.flatten())
        name = "argmax_keepdims_select_last_index"
        make_test(
            [x], y, "input_0.argmax(1, Option::Some(true), Option::Some(true))", name)
    @staticmethod
    def default_axes_keepdims_select_last_index():
        data = np.array([[2, 2], [3, 10]], dtype=np.float32)
        keepdims = 1
        result = argmax_use_numpy_select_last_index(data, keepdims=keepdims)
        x = Tensor(Dtype.FP16x16, data.shape, data.flatten())
        y = Tensor(Dtype.I32, result.shape, result.flatten())
        name = "argmax_default_axes_keepdims_select_last_index"
        make_test(
            [x], y, "input_0.argmax(0, Option::Some(true), Option::Some(true))", name)
    @staticmethod
    def negative_axis_keepdims_select_last_index():
        data = np.array([[2, 2], [3, 10]], dtype=np.float32)
        axis = -1
        keepdims = 1
        result = argmax_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims)
        x = Tensor(Dtype.FP16x16, data.shape, data.flatten())
        y = Tensor(Dtype.I32, result.shape, result.flatten())
        name = "argmax_negative_axis_keepdims_select_last_index"
        make_test(
            [x], y, "input_0.argmax(-1, Option::Some(true), Option::Some(true))", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/argmin.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
def argmin_use_numpy(data: np.ndarray, axis: int = 0, keepdims: int = 1, dtype=np.int64) -> np.ndarray:
    result = np.argmin(data, axis=axis)
    if keepdims == 1:
        result = np.expand_dims(result, axis)
    return result.astype(dtype)
def argmin_use_numpy_select_last_index(
    data: np.ndarray, axis: int = 0, keepdims: int = True, dtype=np.int64
) -> np.ndarray:
    data = np.flip(data, axis)
    result = np.argmin(data, axis=axis)
    result = data.shape[axis] - result - 1
    if keepdims:
        result = np.expand_dims(result, axis)
    return result.astype(dtype)
class Argmin(RunAll):
    @staticmethod
    def argmin_u32():
        def argmin_1D():
            def default_params():
                x = np.random.randint(0, 255, (3)).astype(np.uint32)
                y = argmin_use_numpy(x, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_u32_1D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = np.random.randint(0, 255, (3)).astype(np.uint32)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_u32_1D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = np.random.randint(0, 255, (3)).astype(np.uint32)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_u32_1D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_1D()
        def argmin_2D():
            def default_params():
                x = np.random.randint(0, 255, (2, 2)).astype(np.uint32)
                y = argmin_use_numpy(x, dtype=np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_u32_2D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = np.random.randint(0, 255, (2, 2)).astype(np.uint32)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_u32_2D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = np.random.randint(0, 255, (2, 2)).astype(np.uint32)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_u32_2D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_2D()
        def argmin_3D():
            def default_params():
                x = np.random.randint(0, 255, (2, 2, 2)).astype(np.uint32)
                y = argmin_use_numpy(x, dtype=np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_u32_3D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = np.random.randint(0, 255, (2, 2, 2)).astype(np.uint32)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_u32_3D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = np.random.randint(0, 255, (2, 2, 2)).astype(np.uint32)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_u32_3D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_3D()
    @staticmethod
    def argmin_i32():
        def argmin_1D():
            def default_params():
                x = np.random.randint(-127, 127, (3)).astype(np.int32)
                y = argmin_use_numpy(x, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i32_1D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = np.random.randint(-127, 127, (3)).astype(np.int32)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i32_1D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = np.random.randint(0, 255, (3)).astype(np.int32)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i32_1D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_1D()
        def argmin_2D():
            def default_params():
                x = np.random.randint(-127, 127, (2, 2)).astype(np.int32)
                y = argmin_use_numpy(x, dtype=np.uint32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i32_2D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = np.random.randint(-127, 127, (2, 2)).astype(np.int32)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i32_2D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = np.random.randint(-127, 127, (2, 2)).astype(np.int32)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.int32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i32_2D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_2D()
        def argmin_3D():
            def default_params():
                x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int32)
                y = argmin_use_numpy(x, dtype=np.uint32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i32_3D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int32)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i32_3D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int32)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.uint32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i32_3D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_3D()
    @staticmethod
    def argmin_i8():
        def argmin_1D():
            def default_params():
                x = np.random.randint(-127, 127, (3)).astype(np.int8)
                y = argmin_use_numpy(x, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i8_1D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = np.random.randint(-127, 127, (3)).astype(np.int8)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i8_1D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = np.random.randint(0, 255, (3)).astype(np.int8)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i8_1D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_1D()
        def argmin_2D():
            def default_params():
                x = np.random.randint(-127, 127, (2, 2)).astype(np.int8)
                y = argmin_use_numpy(x, dtype=np.uint32)
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i8_2D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = np.random.randint(-127, 127, (2, 2)).astype(np.int8)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32)
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i8_2D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = np.random.randint(-127, 127, (2, 2)).astype(np.int8)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.int8)
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i8_2D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_2D()
        def argmin_3D():
            def default_params():
                x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int8)
                y = argmin_use_numpy(x, dtype=np.uint32)
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i8_3D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int8)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32)
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i8_3D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int8)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.uint32)
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_i8_3D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_3D()
    @staticmethod
    def argmin_fp16x16():
        def argmin_1D():
            def default_params():
                x = to_fp(np.random.randint(-127, 127, (3)
                                            ).astype(np.int8), FixedImpl.FP16x16)
                y = argmin_use_numpy(x, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp16x16_1D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = to_fp(np.random.randint(-127, 127, (3)
                                            ).astype(np.int8), FixedImpl.FP16x16)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp16x16_1D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = to_fp(np.random.randint(0, 255, (3)).astype(
                    np.int8), FixedImpl.FP16x16)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp16x16_1D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_1D()
        def argmin_2D():
            def default_params():
                x = to_fp(np.random.randint(-127, 127, (2, 2)
                                            ).astype(np.int8), FixedImpl.FP16x16)
                y = argmin_use_numpy(x, dtype=np.uint32)
                x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp16x16_2D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = to_fp(np.random.randint(-127, 127, (2, 2)
                                            ).astype(np.int8), FixedImpl.FP16x16)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32)
                x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp16x16_2D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = to_fp(np.random.randint(-127, 127, (2, 2)
                                            ).astype(np.int8), FixedImpl.FP16x16)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.int8)
                x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp16x16_2D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_2D()
        def argmin_3D():
            def default_params():
                x = to_fp(np.random.randint(-127, 127, (2, 2, 2)
                                            ).astype(np.int8), FixedImpl.FP16x16)
                y = argmin_use_numpy(x, dtype=np.uint32)
                x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp16x16_3D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = to_fp(np.random.randint(-127, 127, (2, 2, 2)
                                            ).astype(np.int8), FixedImpl.FP16x16)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32)
                x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp16x16_3D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = to_fp(np.random.randint(-127, 127, (2, 2, 2)
                                            ).astype(np.int8), FixedImpl.FP16x16)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.uint32)
                x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp16x16_3D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_3D()
    @staticmethod
    def argmin_fp8x23():
        def argmin_1D():
            def default_params():
                x = to_fp(np.random.randint(-127, 127, (3)
                                            ).astype(np.int8), FixedImpl.FP8x23)
                y = argmin_use_numpy(x, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.FP8x23, x.shape,
                           x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp8x23_1D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = to_fp(np.random.randint(-127, 127, (3)
                                            ).astype(np.int8), FixedImpl.FP8x23)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.FP8x23, x.shape,
                           x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp8x23_1D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = to_fp(np.random.randint(0, 255, (3)).astype(
                    np.int8), FixedImpl.FP8x23)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.uint32).reshape((1))
                x = Tensor(Dtype.FP8x23, x.shape,
                           x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp8x23_1D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_1D()
        def argmin_2D():
            def default_params():
                x = to_fp(np.random.randint(-127, 127, (2, 2)
                                            ).astype(np.int8), FixedImpl.FP8x23)
                y = argmin_use_numpy(x, dtype=np.uint32)
                x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp8x23_2D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = to_fp(np.random.randint(-127, 127, (2, 2)
                                            ).astype(np.int8), FixedImpl.FP8x23)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32)
                x = Tensor(Dtype.FP8x23, x.shape,
                           x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp8x23_2D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = to_fp(np.random.randint(-127, 127, (2, 2)
                                            ).astype(np.int8), FixedImpl.FP8x23)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.int8)
                x = Tensor(Dtype.FP8x23, x.shape,
                           x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp8x23_2D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_2D()
        def argmin_3D():
            def default_params():
                x = to_fp(np.random.randint(-127, 127, (2, 2, 2)
                                            ).astype(np.int8), FixedImpl.FP8x23)
                y = argmin_use_numpy(x, dtype=np.uint32)
                x = Tensor(Dtype.FP8x23, x.shape,
                           x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp8x23_3D_default"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name)
            def keepdims_false():
                x = to_fp(np.random.randint(-127, 127, (2, 2, 2)
                                            ).astype(np.int8), FixedImpl.FP8x23)
                y = argmin_use_numpy(
                    x, keepdims=0, dtype=np.uint32)
                x = Tensor(Dtype.FP8x23, x.shape,
                           x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp8x23_3D_keepdims_false"
                make_test(
                    [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name)
            def last_index():
                x = to_fp(np.random.randint(-127, 127, (2, 2, 2)
                                            ).astype(np.int8), FixedImpl.FP8x23)
                y = argmin_use_numpy_select_last_index(
                    x, dtype=np.uint32)
                x = Tensor(Dtype.FP8x23, x.shape,
                           x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "argmin_fp8x23_3D_last_index"
                make_test(
                    [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name)
            default_params()
            keepdims_false()
            last_index()
        argmin_3D()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/array_feature_extractor.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Array_feature_extractor(RunAll):
    @staticmethod
    def array_feature_extractor_3D():
        def array_feature_extractor_i32():
            x = np.random.randint(-3, 3, (2, 3, 4)).astype(np.int32)
            y = np.array([1, 3]).astype(np.uint32)
            z = (x[..., y])
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "array_feature_extractor_3D_i32"
            make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name)
        def array_feature_extractor_fp8x23():
            x = np.random.randint(-3, 3, (2, 3, 4)).astype(np.float64)
            y = np.array([1, 3]).astype(np.uint32)
            z = (x[..., y])
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.FP8x23, z.shape, to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "array_feature_extractor_3D_fp8x23"
            
            make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name)
        
        def array_feature_extractor_fp16x16():
            x = np.random.randint(-3, 3, (2, 3, 4)).astype(np.float64)
            y = np.array([1, 3]).astype(np.uint32)
            z = (x[..., y])
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.FP16x16, z.shape, to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "array_feature_extractor_3D_fp16x16"
            
            make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name)
        array_feature_extractor_i32()
        array_feature_extractor_fp8x23()
        array_feature_extractor_fp16x16()
    @staticmethod
    def array_feature_extractor_2D():
        def array_feature_extractor_i32():
            x = np.random.randint(-3, 3, (3, 4)).astype(np.int32)
            y = np.array([1, 3]).astype(np.uint32)
            z = (x[..., y])
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "array_feature_extractor_2D_i32"
            
            make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name)
        def array_feature_extractor_fp8x23():
            x = np.random.randint(-3, 3, (3, 4)).astype(np.float64)
            y = np.array([1, 3]).astype(np.uint32)
            z = (x[..., y])
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.FP8x23, z.shape, to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "array_feature_extractor_2D_fp8x23"
            
            make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name)
        
        def array_feature_extractor_fp16x16():
            x = np.random.randint(-3, 3, (3, 4)).astype(np.float64)
            y = np.array([1, 3]).astype(np.uint32)
            z = (x[..., y])
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.FP16x16, z.shape, to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "array_feature_extractor_2D_fp16x16"
            
            make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name)
        array_feature_extractor_i32()
        array_feature_extractor_fp8x23()
        array_feature_extractor_fp16x16()
    @staticmethod
    def array_feature_extractor_1D():
        def array_feature_extractor_i32():
            x = np.random.randint(-3, 3, (4)).astype(np.int32)
            y = np.array([1, 3]).astype(np.uint32)
            z = (x[..., y])
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "array_feature_extractor_1D_i32"
            
            make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name)
        def array_feature_extractor_fp8x23():
            x = np.random.randint(-3, 3, (4)).astype(np.float64)
            y = np.array([1, 3]).astype(np.uint32)
            z = (x[..., y])
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.FP8x23, z.shape, to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "array_feature_extractor_1D_fp8x23"
            
            make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name)
        
        def array_feature_extractor_fp16x16():
            x = np.random.randint(-3, 3, (4)).astype(np.float64)
            y = np.array([1, 3]).astype(np.uint32)
            z = (x[..., y])
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.FP16x16, z.shape, to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "array_feature_extractor_1D_fp16x16"
            
            make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name)
        array_feature_extractor_i32()
        array_feature_extractor_fp8x23()
        array_feature_extractor_fp16x16() 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/asin.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Asin(RunAll):
   
    @staticmethod
    def asin_fp8x23():
        x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64)
        y = np.arcsin(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
        
        name = "asin_fp8x23"
        make_test([x], y, "input_0.asin()", name)
     
    @staticmethod
    def asin_fp16x16():
        x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64)
        y = np.arcsin(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "asin_fp16x16"
        make_test([x], y, "input_0.asin()", name)
     
 
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/asinh.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Asinh(RunAll):
    @staticmethod
    def asinh_fp8x23():
        x = np.random.uniform(1, 5, (2, 2)).astype(np.float64)
        y = np.arcsinh(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "asinh_fp8x23"
        make_test([x], y, "input_0.asinh()", name)
    @staticmethod
    def asinh_fp16x16():
        x = np.random.uniform(1, 5, (2, 2)).astype(np.float64)
        y = np.arcsinh(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "asinh_fp16x16"
        make_test([x], y, "input_0.asinh()", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/atan.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Atan(RunAll):
    @staticmethod
    def atan_fp8x23():
        x = np.random.uniform(-10, 127, (2, 2)).astype(np.float64)
        y = np.arctan(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "atan_fp8x23"
        make_test([x], y, "input_0.atan()", name)
    @staticmethod
    def atan_fp16x16():
        x = np.random.uniform(-10, 127, (2, 2)).astype(np.float64)
        y = np.arctan(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "atan_fp16x16"
        make_test([x], y, "input_0.atan()", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/binarizer.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_node, make_test, to_fp, Tensor, Dtype, FixedImpl
class Binarizer(RunAll):
    @staticmethod
    def binarizer_fp8x23():
        x = np.random.uniform(-3, 3, (3, 3, 3)).astype(np.float64)
        threshold = np.float64(1)
        y = (x > threshold).astype(np.float64)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "binarizer_fp8x23"
        make_node([x], [y], name)
        make_test([x], y, "TensorTrait::binarizer(@input_0, Option::Some(FixedTrait::new(8388608, false));", name)
    
    @staticmethod
    def binarizer_fp16x16():
        x = np.random.uniform(-3, 3, (3, 3, 3)).astype(np.float64)
        threshold = np.float64(1)
        y = (x > threshold).astype(np.float64)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "binarizer_fp16x16"
        make_node([x], [y], name)
        make_test([x], y, "TensorTrait::binarizer(@input_0, Option::Some(FixedTrait::new(65536, false));", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/blackman_window.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait, get_data_statement
def blackman_window(size, output_datatype=None, periodic=None) -> np.ndarray:  # type: ignore
    if periodic == 1:
        N_1 = size
    else:
        N_1 = size - 1
    ni = np.arange(size, dtype=output_datatype)
    alpha = 0.42
    beta = 0.08
    y = np.cos((ni * (np.float64(np.pi).astype(output_datatype) * 2)) / N_1).astype(output_datatype) * (-0.5)
    y += np.cos((ni * (np.float64(np.pi).astype(output_datatype) * 4)) / N_1) * beta
    y += alpha
    return y.astype(output_datatype)
class Blackman_window(RunAll):
     
    @staticmethod
    # We test here with fp8x23 implementation.
    def fp8x23():
        args = [3]
        # x = np.float64(4)
        args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP8x23), Dtype.FP8x23)
        y = blackman_window(*args, np.float64)
        
        # Convert the floats values in `y` to fixed points with `to_fp` method:
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
        
        # Define the name of the generated folder. 
        name = "blackman_window_fp8x23"
        # Invoke `make_test` method to generate corresponding Cairo tests:
        make_test(
            [], # List of input tensors.
            y, # The expected output result.
            f"TensorTrait::blackman_window({','.join(args_str)}, Option::Some(0))", # The code signature.
            name # The name of the generated folder.
        )
     
    @staticmethod
    # We test here with fp16x16 implementation.
    def fp16x16():
        print(get_data_statement(to_fp(np.array([np.pi]).flatten(), FixedImpl.FP16x16), Dtype.FP16x16))
        args = [3]
        # x = np.float64(4)
        args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP16x16), Dtype.FP16x16)
        y = blackman_window(*args, np.float16, 1)
        # Convert the floats values in `y` to fixed points with `to_fp` method:
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        
        # Define the name of the generated folder. 
        name = "blackman_window_fp16x16"
        # Invoke `make_test` method to generate corresponding Cairo tests:
        make_test(
            [], # List of input tensors.
            y, # The expected output result.
            f"TensorTrait::blackman_window({','.join(args_str)}, Option::Some(1))", # The code signature.
            name # The name of the generated folder.
        )
     
    # @staticmethod
    # # We test here with i8 implementation.
    # def i8():
    #     print(get_data_statement(np.array([np.pi]).flatten(), Dtype.I8))
    #     args = [5]
    #     # x = np.float64(4)
    #     args_str = get_data_statement(np.array(args).flatten(), Dtype.I8)
    #     y = blackman_window(*args, np.int8)
    #     print(y)
        
    #     # Convert the floats values in `y` to fixed points with `to_fp` method:
    #     y = Tensor(Dtype.I8, y.shape, y.flatten())
        
    #     # Define the name of the generated folder. 
    #     name = "blackman_window_i8"
    #     # Invoke `make_test` method to generate corresponding Cairo tests:
    #     make_test(
    #         [], # List of input tensors.
    #         y, # The expected output result.
    #         f"TensorTrait::blackman_window({','.join(args_str)}, Option::Some(1))", # The code signature.
    #         name # The name of the generated folder.
    #     )
    
    # @staticmethod
    # # We test here with i32 implementation.
    # def i32():
    #     print(get_data_statement(np.array([np.pi]).flatten(), Dtype.I32))
    #     args = [4]
    #     # x = np.float64(4)
    #     args_str = get_data_statement(np.array(args).flatten(), Dtype.I32)
    #     y = blackman_window(*args, np.int32)
    #     print(y)
        
    #     # Convert the floats values in `y` to fixed points with `to_fp` method:
    #     y = Tensor(Dtype.I32, y.shape, y.flatten())
        
    #     # Define the name of the generated folder. 
    #     name = "blackman_window_i32"
    #     # Invoke `make_test` method to generate corresponding Cairo tests:
    #     make_test(
    #         [], # List of input tensors.
    #         y, # The expected output result.
    #         f"TensorTrait::blackman_window({','.join(args_str)}, Option::Some(0))", # The code signature.
    #         name # The name of the generated folder.
    #     )
     
    # @staticmethod
    # # We test here with u32 implementation.
    # def u32():
    #     print(get_data_statement(np.array([np.pi]).flatten(), Dtype.U32))
    #     args = [4]
    #     # x = np.float64(4)
    #     args_str = get_data_statement(np.array(args).flatten(), Dtype.U32)
    #     y = blackman_window(*args, np.uint32)
    #     print(y)
        
    #     # Convert the floats values in `y` to fixed points with `to_fp` method:
    #     y = Tensor(Dtype.U32, y.shape, y.flatten())
        
    #     # Define the name of the generated folder. 
    #     name = "blackman_window_u32"
    #     # Invoke `make_test` method to generate corresponding Cairo tests:
    #     make_test(
    #         [], # List of input tensors.
    #         y, # The expected output result.
    #         f"TensorTrait::blackman_window({','.join(args_str)}, Option::Some(0))", # The code signature.
    #         name # The name of the generated folder.
    #     )
         
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/ceil.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Ceil(RunAll):
   
    @staticmethod
    def ceil_fp8x23():
        x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64)
        y = np.ceil(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
        
        name = "ceil_fp8x23"
        make_test([x], y, "input_0.ceil()", name)
     
    @staticmethod
    def ceil_fp16x16():
        x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64)
        y = np.ceil(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "ceil_fp16x16"
        make_test([x], y, "input_0.ceil()", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/clip.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Clip(RunAll):
    @staticmethod
    def clip_u32():
        def clip_2D():
            x = np.random.randint(0, 255, (2, 4)).astype(np.uint32)
            y = np.clip(x, np.uint32(10), np.uint32(20))
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "clip_u32_2d"
            make_test(
                [x], y, "input_0.clip(Option::Some(10_u32), Option::Some(20_u32))", name)
        def clip_3D():
            x = np.random.randint(0, 255, (20, 10, 5)).astype(np.uint32)
            y = np.clip(x, np.uint32(10), np.uint32(20))
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "clip_u32_3d"
            make_test(
                [x], y, "input_0.clip(Option::Some(10_u32), Option::Some(20_u32))", name)
        clip_2D()
        clip_3D()
    @staticmethod
    def clip_i32():
        def clip_2D():
            x = np.random.randint(-127, 127, (2, 4)).astype(np.int32)
            y = np.clip(x, np.int32(-10), np.int32(20))
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "clip_i32_2d"
            make_test(
                [x], y, "input_0.clip(Option::Some(-10_i32), Option::Some(20_i32))", name)
        def clip_3D():
            x = np.random.randint(-127, 127, (20, 10, 5)).astype(np.int32)
            y = np.clip(x, np.int32(-10), np.int32(20))
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "clip_i32_3d"
            make_test(
                [x], y, "input_0.clip(Option::Some(-10_i32), Option::Some(20_i32))", name)
        clip_2D()
        clip_3D()
    @staticmethod
    def clip_i8():
        def clip_2D():
            x = np.random.randint(-127, 127, (2, 4)).astype(np.int8)
            y = np.clip(x, np.int8(-10), np.int8(20))
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "clip_i8_2d"
            make_test(
                [x], y, "input_0.clip(Option::Some(-10_i8), Option::Some(20_i8))", name)
        def clip_3D():
            x = np.random.randint(-127, 127, (20, 10, 5)).astype(np.int8)
            y = np.clip(x, np.int8(-10), np.int8(20))
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "clip_i8_3d"
            make_test(
                [x], y, "input_0.clip(Option::Some(-10_i8), Option::Some(20_i8))", name)
        clip_2D()
        clip_3D()
    @staticmethod
    def clip_fp8x23():
        def clip_2D():
            x = to_fp(np.random.randint(-127, 127, (2, 4)
                                        ).astype(np.int64), FixedImpl.FP8x23)
            y = np.clip(x, to_fp(np.int64(-10), FixedImpl.FP8x23), to_fp(np.int64(20), FixedImpl.FP8x23))
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            
            name = "clip_fp8x23_2d"
            make_test(
                [x], y, "input_0.clip(Option::Some(FP8x23 { mag: 83886080, sign: true }), Option::Some(FP8x23 { mag: 167772160, sign: false }))", name)
        def clip_3D():
            x = to_fp(np.random.randint(-127, 127, (20, 10, 5)
                                        ).astype(np.int64), FixedImpl.FP8x23)
            y = np.clip(x, to_fp(np.int64(-10), FixedImpl.FP8x23), to_fp(np.int64(20), FixedImpl.FP8x23))
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            
            name = "clip_fp8x23_3d"
            make_test(
                [x], y, "input_0.clip(Option::Some(FP8x23 { mag: 83886080, sign: true }), Option::Some(FP8x23 { mag: 167772160, sign: false }))", name)
        clip_2D()
        clip_3D()
    @staticmethod
    def clip_fp16x16():
        def clip_2D():
            x = to_fp(np.random.randint(-127, 127, (2, 4)
                                        ).astype(np.int64), FixedImpl.FP16x16)
            y = np.clip(x, to_fp(np.int64(-10), FixedImpl.FP16x16), to_fp(np.int64(20), FixedImpl.FP16x16))
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "clip_fp16x16_2d"
            make_test(
                [x], y, "input_0.clip(Option::Some(FP16x16 { mag: 655360, sign: true }), Option::Some(FP16x16 { mag: 1310720, sign: false }))", name)
        def clip_3D():
            x = to_fp(np.random.randint(-127, 127, (20, 10, 5)
                                        ).astype(np.int64), FixedImpl.FP16x16)
            y = np.clip(x, to_fp(np.int64(-10), FixedImpl.FP16x16), to_fp(np.int64(20), FixedImpl.FP16x16))
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "clip_fp16x16_3d"
            make_test(
                [x], y, "input_0.clip(Option::Some(FP16x16 { mag: 655360, sign: true }), Option::Some(FP16x16 { mag: 1310720, sign: false }))", name)
        clip_2D()
        clip_3D()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/col2im.py 
 | 
	
import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
def col2im(data, image_shape, block_shape, dilations=None, pads=None, strides=None):  # type: ignore
    if dilations is None:
        dilations = [1 for s in image_shape]
    if pads is None:
        pads = [0 for s in image_shape] * 2
    if strides is None:
        strides = [1 for s in image_shape]
    bl = np.prod(block_shape)
    C = data.shape[1] // bl
    data = data.reshape(data.shape[:1] + (C,) + (bl,) + data.shape[2:])
    ks = tuple(block_shape)
    res = None
    for n in range(data.shape[0]):
        for c in range(data.shape[1]):
            out = col2im_naive_implementation(
                data[n, c, ...], image_shape, ks, dilations, pads, strides
            )
            if res is None:
                new_shape = data.shape[:2] + out.shape
                res = np.empty(new_shape, dtype=data.dtype)
            res[n, c, ...] = out
    return (res,)  # type: ignore
def _get_indices(i, shape):
    res = np.empty((len(shape),), dtype=np.int64)
    k = len(shape) - 1
    while k > 0:
        m = i % shape[k]
        res[k] = m
        i -= m
        i /= shape[k]
        k -= 1
    res[0] = i
    return res
def _col2im_shape_check(X, output_shape, kernel_shape, dilations, pads, strides):  # type: ignore
    n_input_plane = X.shape[0]
    kernel_size = np.prod(kernel_shape)
    if n_input_plane % kernel_size != 0:
        raise ValueError(
            f"Expected size of input's dimension 1 to be divisible by the "
            f"product of kernel_size={kernel_size}, "
            f"but got input.size(1)={n_input_plane} "
            f"and kernel_shape={kernel_shape}, X.shape={X.shape}, output_shape={output_shape}."
        )
    input_length = X.shape[1]
    n_dims = len(output_shape)
    n_blocks = []
    
    for i in range(n_dims):
        n_block = (
            output_shape[i]
            + pads[i, :].sum()
            - dilations[i] * (kernel_shape[i] - 1)
            - 1
        ) // strides[i] + 1
        n_blocks.append(n_block)
    
    block_size = np.prod(n_blocks)
    if input_length != block_size:
        raise ValueError(
            f"Given n_input_plane={n_input_plane}, X.shape={X.shape}, "
            f"output_shape={output_shape}, kernel_shape={kernel_shape}, "
            f"dilations={dilations}, pads={pads}, strides={strides}, "
            f"expected size of input's dimension 2 to match the calculated number of "
            f"sliding blocks {n_blocks} = {block_size}, "
            f"but got input.size(2)={input_length}.",
        )
def col2im_naive_implementation(data, image_shape, kernel_shape, dilations, pads, strides):  # type: ignore
    n_dims = len(pads) // 2
    new_pads = np.array([(pads[i], pads[i + n_dims]) for i in range(n_dims)])
    _col2im_shape_check(data, image_shape, kernel_shape, dilations, new_pads, strides)
    data_col = data
    data_im = np.zeros(image_shape, dtype=data.dtype)
    dim_col = []
    for i in range(n_dims):
        col = (
            image_shape[i]
            + new_pads[i, :].sum()
            - (dilations[i] * (kernel_shape[i] - 1) + 1)
        ) // strides[i] + 1
        dim_col.append(col) 
    kernel_size = np.prod(kernel_shape)
    col_size = np.prod(dim_col)
    for c_col in range(kernel_size):
        offset = _get_indices(c_col, kernel_shape)     
        for col in range(col_size):
            
            ind_col = _get_indices(col, dim_col)
            ind_im = []
            for i in range(n_dims):
                ind = (
                    ind_col[i] * strides[i] - new_pads[i, 0] + offset[i] * dilations[i]
                )
                ind_im.append(ind)
            if not _is_out(ind_im, data_im.shape):
                data_im[tuple(ind_im)] += data_col[c_col, col]
    return data_im
def _is_out(ind, shape):  
    for i, s in zip(ind, shape):
        if i < 0:
            return True
        if i >= s:
            return True
    return False
    
class Col2im(RunAll):
    @staticmethod
    def export_col2im() -> None:
        x = np.array(
            [
                [
                    [1.0, 6.0, 11.0, 16.0, 21.0],  # (1, 5, 5)
                    [2.0, 7.0, 12.0, 17.0, 22.0],
                    [3.0, 8.0, 13.0, 18.0, 23.0],
                    [4.0, 9.0, 14.0, 19.0, 24.0],
                    [5.0, 0.0, 15.0, 20.0, 25.0],
                ]
            ]
        ).astype(np.float32)
        image_shape = np.array([5, 5]).astype(np.int64)
        block_shape = np.array([1, 5]).astype(np.int64)
    
        y = col2im(x,image_shape,block_shape)
        y = np.array(y[0])
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "col2im"
        func_sig = "NNTrait::col2im("
        func_sig += "@input_0,"
        func_sig += "array![5, 5].span(),"
        func_sig += "array![1, 5].span(),"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x], y, func_sig, name, Trait.NN)
        
    @staticmethod
    def export_col2im_strides() -> None:
        x = np.array(
            [
                [
                    [0.0, 0.0, 0.0, 0.0],  # (1, 9, 4)
                    [1.0, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.0, 1.0],
                    [0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0],
                    [1.0, 1.0, 1.0, 1.0],
                    [0.0, 0.0, 0.0, 0.0],
                ]
            ]
        ).astype(np.float32)
        image_shape = np.array([5, 5]).astype(np.int64)
        block_shape = np.array([3, 3]).astype(np.int64)
        y = col2im(x,image_shape,block_shape,strides=[2, 2])
        y = np.array(y[0])
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "col2im_strides"
        func_sig = "NNTrait::col2im("
        func_sig += "@input_0,"
        func_sig += "array![5, 5].span(),"
        func_sig += "array![3, 3].span(),"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(array![2, 2].span()))"
        make_test(
            [x], y, func_sig, name, Trait.NN)
    @staticmethod
    def export_col2im_pads() -> None:
        x = np.array(
            [
                [
                    [
                        1.0, 6.0, 11.0, 16.0, 21.0, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71,
                    ],  # (1, 5, 15)
                    [
                        2.0, 7.0, 12.0, 17.0, 22.0, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72,
                    ],
                    [
                        3.0, 8.0, 13.0, 18.0, 23.0, 28, 33, 38, 43, 48, 53, 58, 63, 68, 73,
                    ],
                    [
                        4.0, 9.0, 14.0, 19.0, 24.0, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74,
                    ],
                    [
                        5.0, 10.0, 15.0, 20.0, 25.0, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
                    ],
                ]
            ]
        ).astype(np.float32)
        image_shape = np.array([5, 5]).astype(np.int64)
        block_shape = np.array([1, 5]).astype(np.int64)
        y = col2im(x,image_shape,block_shape,pads=[0, 1, 0, 1])
        y = np.array(y[0])
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "col2im_pads"
        func_sig = "NNTrait::col2im("
        func_sig += "@input_0,"
        func_sig += "array![5, 5].span(),"
        func_sig += "array![1, 5].span(),"
        func_sig += "Option::None,"
        func_sig += "Option::Some(array![0, 1, 0, 1].span()),"
        func_sig += "Option::None)"
        make_test(
            [x], y, func_sig, name, Trait.NN)
        
    @staticmethod
    def export_col2im_dilations() -> None:
        x = np.array(
            [
                [
                    [1.0, 5.0, 9.0, 13.0, 17],  # (1, 4, 5)
                    [2.0, 6.0, 10.0, 14.0, 18],
                    [3.0, 7.0, 11.0, 15.0, 19],
                    [4.0, 8.0, 12.0, 16.0, 20],
                ]
            ]
        ).astype(np.float32)
        image_shape = np.array([6, 6]).astype(np.int64)
        block_shape = np.array([2, 2]).astype(np.int64)
        y = col2im(x,image_shape,block_shape, dilations=[1, 5])
        y = np.array(y[0])
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "col2im_dilations"
        func_sig = "NNTrait::col2im("
        func_sig += "@input_0,"
        func_sig += "array![6, 6].span(),"
        func_sig += "array![2, 2].span(),"
        func_sig += "Option::Some(array![1, 5].span()),"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x], y, func_sig, name, Trait.NN)
        
    @staticmethod
    def export_col2im_5D() -> None:
        x = np.array(
            [
                [
                    [1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56],  # (1, 10, 12)
                    [2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57],
                    [3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58],
                    [4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59],
                    [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60],
                    [61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116],
                    [62, 67, 72, 77, 82, 87, 92, 97, 102, 107, 112, 117],
                    [63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, 118],
                    [64, 69, 74, 79, 84, 89, 94, 99, 104, 109, 114, 119],
                    [65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120],
                ]
            ]
        ).astype(np.float32)
        image_shape = np.array([3, 4, 5]).astype(np.int64)
        block_shape = np.array([1, 1, 5]).astype(np.int64)
    
        y = col2im(x,image_shape,block_shape)
        y = np.array(y[0])
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "col2im_5D"
        func_sig = "NNTrait::col2im("
        func_sig += "@input_0,"
        func_sig += "array![3, 4, 5].span(),"
        func_sig += "array![1, 1, 5].span(),"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x], y, func_sig, name, Trait.NN)
         
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/compress.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
class Compress(RunAll):
    @staticmethod
    def compress_fp16x16():
            
        def compress_3D():
            def default():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
                x2 = np.array([0, 1, 1]).astype(np.uint32)
                y = x1.compress(x2, axis=0)
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "compress_fp16x16_3d_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", 
                    name= name)
                
            def axis1():
                x1 = np.arange(0,180).reshape(3,4,3,5).astype(np.int64)
                x2 = np.array([1, 1, 1, 0]).astype(np.int64)
                y = x1.compress(x2, axis=1)
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "compress_fp16x16_3d_axis1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", 
                    name= name)
                
            def axis2():
                x1 = np.arange(0,48).reshape(4,3,4).astype(np.int64)
                x2 = np.array([1, 0, 1, 1]).astype(np.int64)
                y = x1.compress(x2, axis=2)
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "compress_fp16x16_3d_axis2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", 
                    name= name)
                
            def axis3():
                x1 = np.arange(0,96).reshape(4,3,4, 2).astype(np.int64)
                x2 = np.array([1, 0]).astype(np.int64)
                y = x1.compress(x2, axis=3)
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "compress_fp16x16_3d_axis3"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(3))", 
                    name= name)
                
            def noaxis():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
                x2 = np.array([1, 0, 1, 0, 1, 1, 1, 1, 1]).astype(np.int64)
                y = x1.compress(x2)
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "compress_fp16x16_3d_noaxis"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::None(()))", 
                    name= name)
                
            default()
            axis1()
            axis2()
            axis3()
            noaxis()
        compress_3D()
    @staticmethod
    def compress_fp8x23():
            
        def compress_3D():
            def default():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
                x2 = np.array([0, 1, 1]).astype(np.uint32)
                y = x1.compress(x2, axis=0)
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
                name = "compress_fp8x23_3d_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", 
                    name= name)
                
            def axis1():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
                x2 = np.array([0, 1, 1]).astype(np.uint32)
                y = x1.compress(x2, axis=1)
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())  
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) 
                name = "compress_fp8x23_3d_axis1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", 
                    name= name)
                
            def axis2():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
                x2 = np.array([0, 1, 1]).astype(np.uint32)
                y = x1.compress(x2, axis=2)
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
                name = "compress_fp8x23_3d_axis2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", 
                    name= name)
                
            default()
            axis1()
            axis2()
        compress_3D()
    @staticmethod
    def compress_i8():
            
        def compress_3D():
            def default():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int8)
                x2 = np.array([0, 1, 1]).astype(np.uint8)
                y = x1.compress(x2, axis=0)
                x1 =  Tensor(Dtype.I8, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y =  Tensor(Dtype.I8, y.shape, y.flatten()) 
                name = "compress_i8_3d_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", 
                    name= name)
                
            def axis1():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int8)
                x2 = np.array([0, 1, 1]).astype(np.uint8)
                y = x1.compress(x2, axis=1)
                x1 =  Tensor(Dtype.I8, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y =  Tensor(Dtype.I8, y.shape, y.flatten())
                name = "compress_i8_3d_axis1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", 
                    name= name)
                
            def axis2():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int8)
                x2 = np.array([0, 1, 1]).astype(np.uint8)
                y = x1.compress(x2, axis=2)
                x1 =  Tensor(Dtype.I8, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y =  Tensor(Dtype.I8, y.shape, y.flatten())
                name = "compress_i8_3d_axis2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", 
                    name= name)
                
            default()
            axis1()
            axis2()
        compress_3D()
    
    @staticmethod
    def compress_i32():
            
        def compress_3D():
            def default():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int32)
                x2 = np.array([0, 1, 1]).astype(np.int32)
                y = x1.compress(x2, axis=0)
                x1 =  Tensor(Dtype.I32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y =  Tensor(Dtype.I32, y.shape, y.flatten()) 
                name = "compress_i32_3d_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", 
                    name= name)
                
            def axis1():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int32)
                x2 = np.array([0, 1, 1]).astype(np.int32)
                y = x1.compress(x2, axis=1)
                x1 =  Tensor(Dtype.I32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y =  Tensor(Dtype.I32, y.shape, y.flatten())
                name = "compress_i32_3d_axis1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", 
                    name= name)
                
            def axis2():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int32)
                x2 = np.array([0, 1, 1]).astype(np.int32)
                y = x1.compress(x2, axis=2)
                x1 =  Tensor(Dtype.I32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y =  Tensor(Dtype.I32, y.shape, y.flatten())
                name = "compress_i32_3d_axis2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", 
                    name= name)
                
            default()
            axis1()
            axis2()
        compress_3D()
    @staticmethod
    def compress_u32():
            
        def compress_3D():
            def default():
                x1 = np.arange(0,48).reshape(4,4,3).astype(np.uint32)
                x2 = np.array([1, 1]).astype(np.uint32)
                y = x1.compress(x2, axis=0)
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                y =  Tensor(Dtype.U32, y.shape, y.flatten()) 
                name = "compress_u32_3d_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", 
                    name= name)
                
            def axis1():
                x1 = np.arange(0,36).reshape(3,4,3).astype(np.uint32)
                x2 = np.array([0, 1, 1]).astype(np.uint32)
                y = x1.compress(x2, axis=1)
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y =  Tensor(Dtype.U32, y.shape, y.flatten())
                name = "compress_u32_3d_axis1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", 
                    name= name)
                
            def axis2():
                x1 = np.arange(0,48).reshape(3,4,4).astype(np.uint32)
                x2 = np.array([0, 1, 1]).astype(np.uint32)
                y = x1.compress(x2, axis=2)
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                y =  Tensor(Dtype.U32, y.shape, y.flatten())
                name = "compress_u32_3d_axis2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", 
                    name= name)
                
            def axis2_2():
                x1 = np.arange(0,60).reshape(3,4,5).astype(np.uint32)
                x2 = np.array([0, 1, 1]).astype(np.uint32)
                y = x1.compress(x2, axis=2)
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                y =  Tensor(Dtype.U32, y.shape, y.flatten())
                name = "compress_u32_3d_axis2_2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", 
                    name= name)
                
            def axis3():
                x1 = np.arange(0,270).reshape(3,3,5,6).astype(np.uint32)
                x2 = np.array([0, 1, 1,1,0,1]).astype(np.uint32)
                y = x1.compress(x2, axis=3)
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                y =  Tensor(Dtype.U32, y.shape, y.flatten())
                name = "compress_u32_3d_axis3"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(3))", 
                    name= name)
                
            default()
            axis1()
            axis2()
            axis2_2()
            axis3()
        compress_3D()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/concat.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
# 687
class Concat(RunAll):
    @staticmethod
    def concat_u32():
        def concat_1D():
            x1 = np.arange(0,3).astype(np.uint32)
            x2 = np.arange(3,6).astype(np.uint32)
            y = np.concatenate((x1, x2))
            x1 = Tensor(Dtype.U32, x1.shape, x1.flatten())
            x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "concat_u32_1d"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                name= name, trait= Trait.TENSOR)
                    
            
        def concat_2D():
            x1 = np.arange(0,4).astype(np.uint32).reshape(2,2)
            x2 = np.arange(4,8).astype(np.uint32).reshape(2,2)
            y = np.concatenate((x1, x2), axis=0)
            x1 = Tensor(Dtype.U32, x1.shape, x1.flatten())
            x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "concat_u32_2d"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                name= name, trait= Trait.TENSOR)
            
        def concat_3D():
            def default():
                x1 = np.arange(0,27).astype(np.uint32).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=0)
                x1 = Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "concat_u32_3d_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                    name= name, trait= Trait.TENSOR)
            def axis_1():
                x1 = np.arange(0,27).astype(np.uint32).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=1)
                x1 = Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "concat_u32_3d_axis_1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", 
                    name= name, trait= Trait.TENSOR)
            def axis_2():
                x1 = np.arange(0,27).astype(np.uint32).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=2)
                x1 = Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "concat_u32_3d_axis_2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", 
                    name= name, trait= Trait.TENSOR)
            def three_tensors_axis_1():
                x1 = np.arange(0,27).astype(np.uint32).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3)
                x3 = np.arange(54,81).astype(np.uint32).reshape(3,3,3)
                y = np.concatenate((x1, x2, x3), axis=1)
                x1 = Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "concat_u32_3d_three_tensors_axis_1"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 1)", 
                    name= name, trait= Trait.TENSOR)
                
            def three_tensors_axis_2():
                x1 = np.arange(0,27).astype(np.uint32).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3)
                x3 = np.arange(54,81).astype(np.uint32).reshape(3,3,3)
                y = np.concatenate((x1, x2, x3), axis=2)
                x1 = Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "concat_u32_3d_three_tensors_axis_2"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", 
                    name= name, trait= Trait.TENSOR)
            default()
            axis_1()
            axis_2()
            three_tensors_axis_1()
            three_tensors_axis_2()
    
        concat_1D()
        concat_2D()
        concat_3D()
    @staticmethod
    def concat_i32():
        def concat_1D():
            x1 = np.arange(0,3).astype(np.int32)
            x2 = np.arange(3,6).astype(np.int32)
            y = np.concatenate((x1, x2))
            x1 = Tensor(Dtype.I32, x1.shape, x1.flatten())
            x2 = Tensor(Dtype.I32, x2.shape, x2.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "concat_i32_1d"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                name= name, trait= Trait.TENSOR.TENSOR)
                    
            
        def concat_2D():
            x1 = np.arange(0,4).astype(np.int32).reshape(2,2)
            x2 = np.arange(4,8).astype(np.int32).reshape(2,2)
            y = np.concatenate((x1, x2), axis=0)
            x1 = Tensor(Dtype.I32, x1.shape, x1.flatten())
            x2 = Tensor(Dtype.I32, x2.shape, x2.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "concat_i32_2d"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                name= name, trait= Trait.TENSOR)
            
        def concat_3D():
            def default():
                x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=0)
                x1 = Tensor(Dtype.I32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.I32, x2.shape, x2.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "concat_i32_3d_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                    name= name, trait= Trait.TENSOR)
            def axis_1():
                x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=1)
                x1 = Tensor(Dtype.I32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.I32, x2.shape, x2.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "concat_i32_3d_axis_1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", 
                    name= name, trait= Trait.TENSOR)
            def axis_2():
                x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=2)
                x1 = Tensor(Dtype.I32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.I32, x2.shape, x2.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "concat_i32_3d_axis_2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", 
                    name= name, trait= Trait.TENSOR)
            def three_tensors_axis_1():
                x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3)
                x3 = np.arange(54,81).astype(np.int32).reshape(3,3,3)
                y = np.concatenate((x1, x2, x3), axis=1)
                x1 = Tensor(Dtype.I32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.I32, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.I32, x3.shape, x3.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "concat_i32_3d_three_tensors_axis_1"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 1)", 
                    name= name, trait= Trait.TENSOR)
                
            def three_tensors_axis_2():
                x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3)
                x3 = np.arange(54,81).astype(np.int32).reshape(3,3,3)
                y = np.concatenate((x1, x2, x3), axis=2)
                x1 = Tensor(Dtype.I32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.I32, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.I32, x3.shape, x3.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "concat_i32_3d_three_tensors_axis_2"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", 
                    name= name, trait= Trait.TENSOR)
            default()
            axis_1()
            axis_2()
            three_tensors_axis_1()
            three_tensors_axis_2()
        concat_1D()
        concat_2D()
        concat_3D()
        
    @staticmethod
    def concat_i8():
        def concat_1D():
            x1 = np.arange(0,3).astype(np.int8)
            x2 = np.arange(3,6).astype(np.int8)
            y = np.concatenate((x1, x2))
            x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten())
            x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "concat_i8_1d"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                name= name, trait= Trait.TENSOR.TENSOR)
                    
            
        def concat_2D():
            x1 = np.arange(0,4).astype(np.int8).reshape(2,2)
            x2 = np.arange(4,8).astype(np.int8).reshape(2,2)
            y = np.concatenate((x1, x2), axis=0)
            x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten())
            x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "concat_i8_2d"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                name= name, trait= Trait.TENSOR)
            
        def concat_3D():
            def default():
                x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=0)
                x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten())
                y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
                name = "concat_i8_3d_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                    name= name, trait= Trait.TENSOR)
            def axis_1():
                x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=1)
                x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten())
                y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
                name = "concat_i8_3d_axis_1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", 
                    name= name, trait= Trait.TENSOR)
            def axis_2():
                x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=2)
                x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten())
                y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
                name = "concat_i8_3d_axis_2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", 
                    name= name, trait= Trait.TENSOR)
            def three_tensors_axis_1():
                x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3)
                x3 = np.arange(54,81).astype(np.int8).reshape(3,3,3)
                y = np.concatenate((x1, x2, x3), axis=1)
                x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.FP8x23, x3.shape, x3.flatten())
                y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
                name = "concat_i8_3d_three_tensors_axis_1"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 1)", 
                    name= name, trait= Trait.TENSOR)
                
            def three_tensors_axis_2():
                x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3)
                x3 = np.arange(54,81).astype(np.int8).reshape(3,3,3)
                y = np.concatenate((x1, x2, x3), axis=2)
                x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.FP8x23, x3.shape, x3.flatten())
                y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
                name = "concat_i8_3d_three_tensors_axis_2"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", 
                    name= name, trait= Trait.TENSOR)
            default()
            axis_1()
            axis_2()
            three_tensors_axis_1()
            three_tensors_axis_2()
        concat_1D()
        concat_2D()
        concat_3D()
        
    @staticmethod
    def concat_fp8x23():
        def concat_1D():
            x1 = np.arange(0,3).astype(np.int64)
            x2 = np.arange(3,6).astype(np.int64)
            y = np.concatenate((x1, x2))
            x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(
                x1.flatten(), FixedImpl.FP8x23))  
            x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp(
                x2.flatten(), FixedImpl.FP8x23)) 
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23)) 
            name = "concat_fp8x23_1d"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                name= name, trait= Trait.TENSOR.TENSOR)
                    
            
        def concat_2D():
            x1 = np.arange(0,4).astype(np.int64).reshape(2,2)
            x2 = np.arange(4,8).astype(np.int64).reshape(2,2)
            y = np.concatenate((x1, x2), axis=0)
            x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(
                x1.flatten(), FixedImpl.FP8x23))
            x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp(
                x2.flatten(), FixedImpl.FP8x23)) 
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23)) 
            name = "concat_fp8x23_2d"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                name= name, trait= Trait.TENSOR)
            
        def concat_3D():
            def default():
                x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=0)
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(
                x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp(
                x2.flatten(), FixedImpl.FP8x23)) 
                y = Tensor(Dtype.FP8x23, y.shape,to_fp(
                y.flatten(), FixedImpl.FP8x23)) 
                name = "concat_fp8x23_3d_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                    name= name, trait= Trait.TENSOR)
            def axis_1():
                x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=1)
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(
                x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp(
                x2.flatten(), FixedImpl.FP8x23)) 
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23)) 
                name = "concat_fp8x23_3d_axis_1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", 
                    name= name, trait= Trait.TENSOR)
            def axis_2():
                x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=2)
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(
                x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp(
                x2.flatten(), FixedImpl.FP8x23)) 
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23)) 
                name = "concat_fp8x23_3d_axis_2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", 
                    name= name, trait= Trait.TENSOR)
            def three_tensors_axis_1():
                x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3)
                x3 = np.arange(54,81).astype(np.int64).reshape(3,3,3)
                y = np.concatenate((x1, x2, x3), axis=1)
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(
                x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp(
                x2.flatten(), FixedImpl.FP8x23)) 
                x3 = Tensor(Dtype.FP8x23, x3.shape,to_fp(
                x3.flatten(), FixedImpl.FP8x23)) 
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23)) 
                name = "concat_fp8x23_3d_three_tensors_axis_1"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 1)", 
                    name= name, trait= Trait.TENSOR)
                
            def three_tensors_axis_2():
                x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3)
                x3 = np.arange(54,81).astype(np.int64).reshape(3,3,3)
                y = np.concatenate((x1, x2, x3), axis=2)
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(
                x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp(
                x2.flatten(), FixedImpl.FP8x23)) 
                x3 = Tensor(Dtype.FP8x23, x3.shape, to_fp(
                x3.flatten(), FixedImpl.FP8x23)) 
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23)) 
                name = "concat_fp8x23_3d_three_tensors_axis_2"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", 
                    name= name, trait= Trait.TENSOR)
            default()
            axis_1()
            axis_2()
            three_tensors_axis_1()
            three_tensors_axis_2()
        concat_1D()
        concat_2D()
        concat_3D()
    
    staticmethod
    def concat_fp16x16():
        def concat_1D():
            x1 = np.arange(0,3).astype(np.int64)
            x2 = np.arange(3,6).astype(np.int64)
            y = np.concatenate((x1, x2))
            x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(
                x1.flatten(), FixedImpl.FP16x16))  
            x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp(
                x2.flatten(), FixedImpl.FP16x16)) 
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
            name = "concat_fp16x16_1d"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                name= name, trait= Trait.TENSOR.TENSOR)
                    
            
        def concat_2D():
            x1 = np.arange(0,4).astype(np.int64).reshape(2,2)
            x2 = np.arange(4,8).astype(np.int64).reshape(2,2)
            y = np.concatenate((x1, x2), axis=0)
            x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(
                x1.flatten(), FixedImpl.FP16x16))
            x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp(
                x2.flatten(), FixedImpl.FP16x16)) 
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
            name = "concat_fp16x16_2d"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                name= name, trait= Trait.TENSOR)
            
        def concat_3D():
            def default():
                x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=0)
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(
                x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp(
                x2.flatten(), FixedImpl.FP16x16)) 
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "concat_fp16x16_3d_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", 
                    name= name, trait= Trait.TENSOR)
            def axis_1():
                x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=1)
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(
                x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp(
                x2.flatten(), FixedImpl.FP16x16)) 
                y = Tensor(Dtype.FP16x16, y.shape ,to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "concat_fp16x16_3d_axis_1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", 
                    name= name, trait= Trait.TENSOR)
            def axis_2():
                x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3)
                y = np.concatenate((x1, x2), axis=2)
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(
                x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp(
                x2.flatten(), FixedImpl.FP16x16)) 
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "concat_fp16x16_3d_axis_2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", 
                    name= name, trait= Trait.TENSOR)
            def three_tensors_axis_1():
                x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3)
                x3 = np.arange(54,81).astype(np.int64).reshape(3,3,3)
                y = np.concatenate((x1, x2, x3), axis=1)
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(
                x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp(
                x2.flatten(), FixedImpl.FP16x16)) 
                x3 = Tensor(Dtype.FP16x16, x3.shape, to_fp(
                x3.flatten(), FixedImpl.FP16x16)) 
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "concat_fp16x16_3d_three_tensors_axis_1"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 1)", 
                    name= name, trait= Trait.TENSOR)
                
            def three_tensors_axis_2():
                x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3)
                x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3)
                x3 = np.arange(54,81).astype(np.int64).reshape(3,3,3)
                y = np.concatenate((x1, x2, x3), axis=2)
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(
                x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp(
                x2.flatten(), FixedImpl.FP16x16)) 
                x3 = Tensor(Dtype.FP16x16, x3.shape, to_fp(
                x3.flatten(), FixedImpl.FP16x16)) 
                y = Tensor(Dtype.FP16x16, y.shape,to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "concat_fp16x16_3d_three_tensors_axis_2"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", 
                    name= name, trait= Trait.TENSOR)
            default()
            axis_1()
            axis_2()
            three_tensors_axis_1()
            three_tensors_axis_2()
        concat_1D()
        concat_2D()
        concat_3D()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/concat_from_sequence.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
class Concat_from_sequence(RunAll):
    @staticmethod
    def concat_from_sequence_u32():
        def new_axis_zero():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(0, 6, shape).astype(np.uint32)
                tensor = Tensor(Dtype.U32, values.shape, values.flatten())
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(0)
            concatenated_tensor = np.concatenate(values_array, axis)
            concatenated_tensor = Tensor(Dtype.U32, concatenated_tensor.shape, concatenated_tensor.flatten())
            name = "concat_from_sequence_u32_new_axis_zero"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE)
        def new_axis_one():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(0, 6, shape).astype(np.uint32)
                tensor = Tensor(Dtype.U32, values.shape, values.flatten())
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(1)
            concatenated_tensor = np.stack(values_array, axis)
            concatenated_tensor = Tensor(Dtype.U32, concatenated_tensor.shape, concatenated_tensor.flatten())
            name = "concat_from_sequence_u32_new_axis_one"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE)
        def new_axis_default():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(0, 6, shape).astype(np.uint32)
                tensor = Tensor(Dtype.U32, values.shape, values.flatten())
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(0)
            concatenated_tensor = np.concatenate(values_array, axis)
            concatenated_tensor = Tensor(Dtype.U32, concatenated_tensor.shape, concatenated_tensor.flatten())
            name = "concat_from_sequence_u32_new_axis_default"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE)
        new_axis_zero()
        new_axis_one()
        new_axis_default()
    @staticmethod
    def concat_from_sequence_i32():
        def new_axis_zero():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int32)
                tensor = Tensor(Dtype.I32, values.shape, values.flatten())
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(0)
            concatenated_tensor = np.concatenate(values_array, axis)
            concatenated_tensor = Tensor(Dtype.I32, concatenated_tensor.shape, concatenated_tensor.flatten())
            name = "concat_from_sequence_i32_new_axis_zero"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE)
        def new_axis_one():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int32)
                tensor = Tensor(Dtype.I32, values.shape, values.flatten())
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(1)
            concatenated_tensor = np.stack(values_array, axis)
            concatenated_tensor = Tensor(Dtype.I32, concatenated_tensor.shape, concatenated_tensor.flatten())
            name = "concat_from_sequence_i32_new_axis_one"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE)
        def new_axis_default():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int32)
                tensor = Tensor(Dtype.I32, values.shape, values.flatten())
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(0)
            concatenated_tensor = np.concatenate(values_array, axis)
            concatenated_tensor = Tensor(Dtype.I32, concatenated_tensor.shape, concatenated_tensor.flatten())
            name = "concat_from_sequence_i32_new_axis_default"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE)
        new_axis_zero()
        new_axis_one()
        new_axis_default()
    @staticmethod
    def concat_from_sequence_i8():
        def new_axis_zero():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int8)
                tensor = Tensor(Dtype.I8, values.shape, values.flatten())
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(0)
            concatenated_tensor = np.concatenate(values_array, axis)
            concatenated_tensor = Tensor(Dtype.I8, concatenated_tensor.shape, concatenated_tensor.flatten())
            name = "concat_from_sequence_i8_new_axis_zero"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE)
        def new_axis_one():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int8)
                tensor = Tensor(Dtype.I8, values.shape, values.flatten())
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(1)
            concatenated_tensor = np.stack(values_array, axis)
            concatenated_tensor = Tensor(Dtype.I8, concatenated_tensor.shape, concatenated_tensor.flatten())
            name = "concat_from_sequence_i8_new_axis_one"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE)
        def new_axis_default():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int8)
                tensor = Tensor(Dtype.I8, values.shape, values.flatten())
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(0)
            concatenated_tensor = np.concatenate(values_array, axis)
            concatenated_tensor = Tensor(Dtype.I8, concatenated_tensor.shape, concatenated_tensor.flatten())
            name = "concat_from_sequence_i8_new_axis_default"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE)
        new_axis_zero()
        new_axis_one()
        new_axis_default()
    @staticmethod
    def concat_from_sequence_fp8x23():
        def new_axis_zero():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23))
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(0)
            concatenated_tensor = np.concatenate(values_array, axis)
            concatenated_tensor = Tensor(Dtype.FP8x23, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP8x23))
            name = "concat_from_sequence_fp8x23_new_axis_zero"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE)
        def new_axis_one():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23))
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(1)
            concatenated_tensor = np.stack(values_array, axis)
            concatenated_tensor = Tensor(Dtype.FP8x23, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP8x23))
            name = "concat_from_sequence_fp8x23_new_axis_one"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE)
        def new_axis_default():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23))
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(0)
            concatenated_tensor = np.concatenate(values_array, axis)
            concatenated_tensor = Tensor(Dtype.FP8x23, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP8x23))
            name = "concat_from_sequence_fp8x23_new_axis_default"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE)
        new_axis_zero()
        new_axis_one()
        new_axis_default()
    @staticmethod
    def concat_from_sequence_fp16x16():
        def new_axis_zero():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16))
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(0)
            concatenated_tensor = np.concatenate(values_array, axis)
            concatenated_tensor = Tensor(Dtype.FP16x16, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP16x16))
            name = "concat_from_sequence_fp16x16_new_axis_zero"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE)
        def new_axis_one():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16))
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(1)
            concatenated_tensor = np.stack(values_array, axis)
            concatenated_tensor = Tensor(Dtype.FP16x16, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP16x16))
            name = "concat_from_sequence_fp16x16_new_axis_one"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE)
        def new_axis_default():
            sequence = []
            values_array = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16))
                sequence.append(tensor)
                values_array.append(values)
            axis = np.int32(1)
            new_axis = np.uint32(0)
            concatenated_tensor = np.concatenate(values_array, axis)
            concatenated_tensor = Tensor(Dtype.FP16x16, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP16x16))
            name = "concat_from_sequence_fp16x16_new_axis_default"
            make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE)
        new_axis_zero()
        new_axis_one()
        new_axis_default() 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/conv.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
import numpy as np
def r_index_check(r_index, shape_out):
    for i in range(len(r_index)):
        if r_index[i] >= shape_out[i]:
            return False
    return True    
def stride(arr):
    stride = np.zeros(len(arr))
    acc = 1
    for i in range(len(arr)):
        stride[i] = acc
        acc *= arr[-(i + 1)]
    return np.flip(stride) 
        
def conv(
        X,
        W,
        B=None,
        auto_pad=None,
        dilations=None,
        group=None,
        kernel_shape=None,
        pads=None,
        strides=None,
):
    if dilations is None:
        dilations = [1 for s in X.shape[2:]]
    if kernel_shape is None:
        kernel_shape = W.shape[2:]
    if pads is None:
        pads = [0 for s in X.shape[2:]] * 2
    if strides is None:
        strides = [1 for s in X.shape[2:]]
    if X.shape[1] != W.shape[1] * group or W.shape[0] % group != 0:
        raise ValueError(
            f"Shape inconsistencies, X.shape={X.shape}, W.shape={W.shape}, group={group}, "
            f"W should be {(W.shape[0], X.shape[1] // group, np.prod(W.shape[1:]) // X.shape[1] * group)}."
        )
    if group > 1:
        res = []
        td = 0
        mg = W.shape[0] // group
        dw = W.shape[1]
        for b in range(X.shape[0]):
            for g in range(group):
                gx = X[b : b + 1, g * dw : (g + 1) * dw]
                gw = W[g * mg : (g + 1) * mg]
                try:
                    cv = conv(
                        gx,
                        gw,
                        None,
                        auto_pad,
                        dilations,
                        1,
                        kernel_shape,
                        pads,
                        strides,
                    )
                except (ValueError, RuntimeError) as e:
                    raise ValueError(
                        f"Shape inconsistencies, X.shape={X.shape}, W.shape={W.shape}, group={g}/{group}, "
                        f"gx.shape={gx.shape}, gw.shape={gw.shape}, auto_pad={auto_pad}, "
                        f"dilations={dilations}, kernel_shape={kernel_shape}, pads={pads}, "
                        f"strides={strides}."
                    ) from e
                if b == 0:
                    td += cv.shape[1]
                res.append((b, cv))
        new_shape = [X.shape[0], *list(res[0][1].shape[1:])]
        new_shape[1] = td
        final = np.zeros(tuple(new_shape), dtype=res[0][1].dtype)
        p = 0
        for b, cv in res:
            final[b : b + 1, p : p + cv.shape[1]] = cv
            p += cv.shape[1]
            if p >= final.shape[1]:
                p = 0
        if B is not None:
            new_shape = [1 for s in final.shape]
            new_shape[1] = B.shape[0]
            b = B.reshape(tuple(new_shape))
            final += b
        return final
    if dilations[0] != 1 or min(dilations) != max(dilations):
        # Let's compute the dilated kernel.
        nd = len(dilations)
        new_kernel_shape = []
        new_shape = list(W.shape[:-nd])
        for i, d in enumerate(dilations):
            di = len(W.shape) - nd + i
            new_shape.append(W.shape[di] + (W.shape[di] - 1) * (d - 1))
            new_kernel_shape.append(kernel_shape[i] + (kernel_shape[i] - 1) * (d - 1))
        new_w = np.zeros(tuple(new_shape), dtype=W.dtype)
        indices = [slice(0, new_w.shape[0]), slice(0, new_w.shape[1])]
        for i, d in enumerate(dilations):
            di = len(W.shape) - nd + i
            indices.append(slice(0, new_w.shape[di], d))
        new_w[tuple(indices)] = W
        W = new_w
        kernel_shape = new_kernel_shape
    if auto_pad in {"SAME_LOWER", "SAME_UPPER", "VALID"}:
        head = []
        tail = []
        for i in range(len(X.shape) - 2):
            d = X.shape[i]
            target_size = (d + strides[i] - 1) // strides[i]
            pad_needed = (target_size - 1) * strides[i] + kernel_shape[i] - d
            if auto_pad == "SAME_LOWER":
                pad_head = (pad_needed + 1) // 2
            else:
                pad_head = pad_needed // 2
            pad_tail = pad_needed - pad_head
            head.append(pad_head)
            tail.append(pad_tail)
        pads = head + tail
    if len(X.shape) == 3:
        sN, sC, sH = X.shape
        # M, C_group, kH, kW = W.shape
        (kh,) = kernel_shape
        (sth,) = strides
        h_out = int(((sH - kh + pads[0] + pads[1]) / sth) + 1)
        h0 = pads[0]
        oh = -1 * (kh % 2)
        bh = -h0
        eh = h_out * sth
        res = np.zeros((X.shape[0], W.shape[0], h_out))  # type: ignore[assignment]
        if B is not None:
            res[:, :, :] += B.reshape((1, -1, 1))  # type: ignore
        for n in range(0, sN):
            for nw in range(W.shape[0]):
                for c in range(0, sC):
                    w = W[nw : nw + 1, c : c + 1]
                    for io in range(bh, eh, sth):
                        hr = (io - bh) // sth
                        if hr >= h_out:
                            continue
                        i = io + kh % 2
                        ih1, ih2 = max(0, i + oh), min(i + oh + kh, sH)
                        img = X[n : n + 1, c : c + 1, ih1:ih2]
                        if img.shape != w.shape:
                            jh1, jh2 = max(-oh - i, 0), min(kh, kh + sH - (i + oh + kh))
                            w_ = w[:1, :1, jh1:jh2]
                            
                            if img.shape != w_.shape:
                                raise RuntimeError(
                                    f"Unexpected shape {img.shape} != {w_.shape}, oh={oh}, "
                                    f"i={i}, kh={kh}, sH={sH}, sth={sth}."
                                )
                            s = np.dot(img.reshape((1, -1)), w_.reshape((-1, 1)))[
                                0, 0
                            ]  # (img * w_).sum()
                        else:
                            s = np.dot(img.reshape((1, -1)), w.reshape((-1, 1)))[
                                0, 0
                            ]  # (img * w).sum()
                        res[n, nw, hr] += s  # type: ignore
        return res
    if len(X.shape) == 4:
        sN, sC, sH, sW = X.shape
        # M, C_group, kH, kW = W.shape
        kh, kw = kernel_shape
        sth, stw = strides
        h_out = int(((sH - kh + pads[0] + pads[2]) / sth) + 1)
        w_out = int(((sW - kw + pads[1] + pads[3]) / stw) + 1)
        h0, w0 = pads[0], pads[1]
        oh, ow = -1 * (kh % 2), -1 * (kw % 2)
        bh, bw = -h0, -w0
        eh, ew = h_out * sth, w_out * stw
        res = np.zeros((X.shape[0], W.shape[0], h_out, w_out))  # type: ignore[assignment]
        if B is not None:
            res[:, :, :, :] = B.reshape((1, -1, 1, 1))  # type: ignore
        for n in range(0, sN):
            for nw in range(W.shape[0]):
                for c in range(0, sC):
                    w = W[nw : nw + 1, c : c + 1]
                    for io in range(bh, eh, sth):
                        hr = (io - bh) // sth
                        if hr >= h_out:
                            continue
                        i = io + kh % 2
                        ih1, ih2 = max(0, i + oh), min(i + oh + kh, sH)
                        for jo in range(bw, ew, stw):
                            wr = (jo - bw) // stw
                            if wr >= w_out:
                                continue
                            
                            j = jo + kw % 2
                            iw1, iw2 = max(0, j + ow), min(j + ow + kw, sW)
                            img = X[n : n + 1, c : c + 1, ih1:ih2, iw1:iw2]
                            if img.shape != w.shape:
                                jh1, jh2 = max(-oh - i, 0), min(
                                    kh, kh + sH - (i + oh + kh)
                                )
                                jw1, jw2 = max(-ow - j, 0), min(
                                    kw, kw + sW - (j + ow + kw)
                                )
                                w_ = w[:1, :1, jh1:jh2, jw1:jw2]
                                if img.shape != w_.shape:
                                    raise RuntimeError(
                                        f"Unexpected shape {img.shape} != {w_.shape}, oh={oh}, ow={ow}, "
                                        f"i={i}, j={j}, kh={kh}, kw={kw}, sH={sH}, sW={sW}, sth={sth}, stw={stw}."
                                    )
                                s = np.dot(img.reshape((1, -1)), w_.reshape((-1, 1)))[
                                    0, 0
                                ]  # (img * w_).sum()
                            else:
                                s = np.dot(img.reshape((1, -1)), w.reshape((-1, 1)))[
                                    0, 0
                                ]  # (img * w).sum()
                            res[n, nw, hr, wr] += s  # type: ignore
        return res
    if len(X.shape) == 5:
        sN, sC, sH, sW, sZ = X.shape
        kh, kw, kz = kernel_shape
        sth, stw, stz = strides
        h_out = int(((sH - kh + pads[0] + pads[3]) / sth) + 1)
        w_out = int(((sW - kw + pads[1] + pads[4]) / stw) + 1)
        z_out = int(((sZ - kz + pads[2] + pads[5]) / stz) + 1)
        h0, w0, z0 = pads[0], pads[1], pads[2]
        oh, ow, oz = -1 * (kh % 2), -1 * (kw % 2), -1 * (kz % 2)
        bh, bw, bz = -h0, -w0, -z0
        eh, ew, ez = h_out * sth, w_out * stw, z_out * stz
        res = np.zeros((X.shape[0], W.shape[0], h_out, w_out, z_out))  # type: ignore[assignment]
        if B is not None:
            res[:, :, :, :, :] = B.reshape((1, -1, 1, 1, 1))  # type: ignore
        for n in range(0, sN):
            for nw in range(W.shape[0]):
                for c in range(0, sC):
                    w = W[nw : nw + 1, c : c + 1]
                    for io in range(bh, eh, sth):
                        hr = (io - bh) // sth
                        if hr >= h_out:
                            continue
                        i = io + kh % 2
                        ih1, ih2 = max(0, i + oh), min(i + oh + kh, sH)
                        for jo in range(bw, ew, stw):
                            wr = (jo - bw) // stw
                            if wr >= w_out:
                                continue
                            j = jo + kw % 2
                            iw1, iw2 = max(0, j + ow), min(j + ow + kw, sW)
                            for zo in range(bz, ez, stz):
                                zr = (zo - bz) // stz
                                if zr >= z_out:
                                    continue
                                z = zo + kz % 2
                                iz1, iz2 = max(0, z + oz), min(z + oz + kz, sZ)
                                img = X[n : n + 1, c : c + 1, ih1:ih2, iw1:iw2, iz1:iz2]
                                
                                ### ICI
                                if img.shape != w.shape:
                                    jh1, jh2 = max(-oh - i, 0), min(
                                        kh, kh + sH - (i + oh + kh)
                                    )
                                    jw1, jw2 = max(-ow - j, 0), min(
                                        kw, kw + sW - (j + ow + kw)
                                    )
                                    jz1, jz2 = max(-oz - z, 0), min(
                                        kz, kz + sZ - (z + oz + kz)
                                    )
                                    w_ = w[:1, :1, jh1:jh2, jw1:jw2, jz1:jz2]
                                    if img.shape != w_.shape:
                                        raise RuntimeError(
                                            f"Unexpected shape {img.shape} != {w_.shape}, oh={oh}, ow={ow}, oz={oz}, "
                                            f"i={i}, j={j}, z={z}, kh={kh}, kw={kw}, kz={kz}, "
                                            f"sH={sH}, sW={sW}, sZ={sZ}, sth={sth}, stw={stw}, stz={stz}."
                                        )
                                        
                                    s = np.dot(
                                        img.reshape((1, -1)), w_.reshape((-1, 1))
                                    )[
                                        0, 0
                                    ]  
                                else:
                                    
                                    s = np.dot(
                                        img.reshape((1, -1)), w.reshape((-1, 1))
                                    )[
                                        0, 0
                                    ]  
                                res[n, nw, hr, wr, zr] += s  # type: ignore
        return res
    else:
        nd = len(X.shape[2:])
        sN, sC = X.shape[:2]
        
        x_stride = stride(X.shape)
        w_stride = stride(W.shape)
        x_flatten = X.reshape(int(x_stride[0] * X.shape[0]))
        
        
        shape_out = [int(((X.shape[2+i] - kernel_shape[i] + pads[i] + pads[i + nd]) / strides[i]) + 1) for i in range(nd)]
        o_index = [-1 * (kernel_shape[i] % 2) for i in range(nd)]
        b_index = [-pads[i] for i in range(nd)]
        e_index = [shape_out[i] * strides[i] for i in range(nd)]
        
        
        range_len = [e_index[i] - b_index[i] / strides[i] for i in range(nd)]
        range_stride = stride(range_len)
        
        res_shape = [X.shape[0], W.shape[0]] + shape_out
        res = np.zeros(res_shape) 
        
        res_strides = stride(res_shape)
        if B is not None:
            res[:, :, :, :, :] = B.reshape((1, -1, 1, 1, 1))  # type: ignore
        for n in range(0, sN):
            for nw in range(W.shape[0]):
                for c in range(0, sC):
                    w = W[nw : nw + 1, c : c + 1]
                    for i in range(int(range_len[0] * range_stride[0])):
                        flatten_index = i
                        io_index = np.zeros(nd)
                        r_index = np.zeros(nd)
                        for nx in range(nd):    
                            n_index, rem = divmod(flatten_index, range_stride[nx])
                            flatten_index = rem
                            io_index[nx] = n_index * strides[nx] + b_index[nx]
                            r_index[nx] = n_index
                        if r_index_check(r_index, shape_out):
                            indices = [io_index[nx] + (kernel_shape[nx] % 2) for nx in range(nd)]
                            i1_index = [max(0, indices[nx] + o_index[nx]) for nx in range(nd)]
                            i2_index = [min(X.shape[2 + nx], indices[nx] + o_index[nx] + kernel_shape[nx]) for nx in range(nd)]
                            idiff_index = [int(i2_index[nx] - i1_index[nx]) for nx in range(nd - 1)]
                        
                            i_stride = stride(idiff_index)
                            img = []
                            for ii in range(int(i_stride[0] * idiff_index[0])):
                                flatten_index = ii
                                start = n * x_stride[0] + c * x_stride[1]
                                for nx in range(nd - 1):    
                                    ii_index, rem = divmod(flatten_index, i_stride[nx])
                                    flatten_index = rem
                                    start += (i1_index[nx] + ii_index) * x_stride[2 + nx]
                                start += i1_index[nd-1]   
                                end = start + (i2_index[nd-1] - i1_index[nd-1])
                                img.append(x_flatten[int(start):int(end)])
                            img_shape = [1, 1] + idiff_index
                            w = w.reshape(np.prod(kernel_shape))
                            if len(img) != len(w):
                                j1_index = [max(0, -indices[nx] - o_index[nx]) for nx in range(nd)]
                                j2_index = [min(X.shape[2 + nx] - indices[nx] - o_index[nx], kernel_shape[nx]) for nx in range(nd)]
                                jdiff_index = [j2_index[nx] - j1_index[nx] for nx in range(nd - 1)]
                                w_ = []
                                j_stride = stride(jdiff_index)
                                for jj in range(int(j_stride[0] * jdiff_index[0])):
                                    flatten_index = jj
                                    start = 0
                                    for nx in range(nd):    
                                        jj_index, rem = divmod(flatten_index, range_stride[nx])
                                        flatten_index = rem
                                        start += (j1_index[nx] + jj_index) * kernel_shape[nx]
                                    w_.append(w[int(start + j1_index[-1]):int(start + j1_index[-1] + j2_index[nd-1] - j1_index[nd-1])])
                                
                                
                                img = np.array(img)                                
                                s = np.dot(
                                    np.array(img).reshape((1, -1)), np.array(w_).reshape((-1, 1))
                                )[
                                    0, 0
                                ]  
                            else:
                                img = np.array(img)
                                s = np.dot(
                                    np.array(img).reshape((1, -1)), np.array(w_).reshape((-1, 1))
                                )[
                                    0, 0
                                ]  
                            res_index = []
                            for nx in range(nd):
                                res_index.append(int(r_index[nx]))
                            index = tuple([n, nw]) + tuple(res_index)
                            res[index] += s  # type: ignore
            return res
class Conv(RunAll):
    
    @staticmethod
    def export_conv_1D_no_padding() -> None:
        x = np.array(
            [
                [
                    [
                        0.0, 1.0, 2.0, 3.0, 4.0
                    ]
                ]
            ]
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [
                        1.0, 1.0, 1.0
                    ]
                ]
            ]
        ).astype(np.float32)
        
        y = conv(x, w, group = 1)
        
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))   
        name = "conv_1D_no_padding"
        func_sig = "NNTrait::conv("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
    
    @staticmethod
    def export_conv_1D_with_padding() -> None:
        x = np.array(
            [
                [
                    [
                        0.0, 1.0, 2.0, 3.0, 4.0
                    ]
                ]
            ]
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [
                        1.0, 1.0, 1.0
                    ]
                ]
            ]
        ).astype(np.float32)
        
        y = conv(x, w, group = 1, pads=[1, 1])
        
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))   
        name = "conv_1D_with_padding"
        func_sig = "NNTrait::conv("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(array![1, 1].span()),"
        func_sig += "Option::None)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
        
    @staticmethod
    def export_conv_2D_no_padding() -> None:
        x = np.array(
            [
                [
                    [
                        [0.0, 1.0, 2.0, 3.0, 4.0], 
                        [5.0, 6.0, 7.0, 8.0, 9.0],
                        [10.0, 11.0, 12.0, 13.0, 14.0],
                        [15.0, 16.0, 17.0, 18.0, 19.0],
                        [20.0, 21.0, 22.0, 23.0, 24.0],
                    ]
                ]
            ]
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [
                        [1.0, 1.0, 1.0],  
                        [1.0, 1.0, 1.0],
                        [1.0, 1.0, 1.0],
                    ]
                ]
            ]
        ).astype(np.float32)
        
        y = conv(x, w, group = 1, kernel_shape=[3, 3],pads=[0, 0, 0, 0],)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))   
        
        name = "conv_2D_with_padding"
        func_sig = "NNTrait::conv("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
        
    @staticmethod
    def export_con_2D_with_padding() -> None:
        x = np.array(
            [
                [
                    [
                        [0.0, 1.0, 2.0, 3.0, 4.0], 
                        [5.0, 6.0, 7.0, 8.0, 9.0],
                        [10.0, 11.0, 12.0, 13.0, 14.0],
                        [15.0, 16.0, 17.0, 18.0, 19.0],
                        [20.0, 21.0, 22.0, 23.0, 24.0],
                    ]
                ]
            ]
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [
                        [1.0, 1.0, 1.0], 
                        [1.0, 1.0, 1.0],
                        [1.0, 1.0, 1.0],
                    ]
                ]
            ]
        ).astype(np.float32)
        y = conv(x, w, group = 1, kernel_shape=[3, 3],pads=[1, 1, 1, 1],)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))   
        
        name = "conv_2D_with_padding"
        func_sig = "NNTrait::conv("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(array![1, 1, 1, 1].span()),"
        func_sig += "Option::None)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
        
        
    @staticmethod
    def export_conv_3D_no_padding() -> None:
        x = np.array(
            [
                [
                    [
                        [
                            [  0,   1,   2,   3,   4],[  5,   6,   7,   8,   9],[ 10,  11,  12,  13,  14],[ 15,  16,  17,  18,  19],[ 20,  21,  22,  23,  24]
                        ],
                        [
                            [ 25,  26,  27,  28,  29],[ 30,  31,  32,  33,  34],[ 35,  36,  37,  38,  39],[ 40,  41,  42,  43,  44],[ 45,  46,  47,  48,  49]
                        ],
                        [
                            [ 50,  51,  52,  53,  54],[ 55,  56,  57,  58,  59],[ 60,  61,  62,  63,  64],[ 65,  66,  67,  68,  69],[ 70,  71,  72,  73,  74]
                        ],
                        [
                            [ 75,  76,  77,  78,  79],[ 80,  81,  82,  83,  84],[ 85,  86,  87,  88,  89],[ 90,  91,  92,  93,  94],[ 95,  96,  97,  98,  99]
                        ],
                        [
                            [100, 101, 102, 103, 104],[105, 106, 107, 108, 109],[110, 111, 112, 113, 114],[115, 116, 117, 118, 119],[120, 121, 122, 123, 124]
                        ]
                    ]
                ]
            ]
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [
                        [
                            [1., 1., 1.],[1., 1., 1.],[1., 1., 1.]
                        ],
                        [
                            [1., 1., 1.],[1., 1., 1.],[1., 1., 1.]
                        ],
                        [
                            [1., 1., 1.],[1., 1., 1.],[1., 1., 1.]
                        ]
                    ]
                ]
            ]
        ).astype(np.float32)
        
        y = conv(x, w, group = 1)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))   
        
        name = "conv_3D_no_padding"
        func_sig = "NNTrait::conv("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)    
    
    @staticmethod
    def export_conv_3D_with_padding() -> None:
        x = np.array(
            [
                [
                    [
                        [
                            [  0,   1,   2,   3,   4],[  5,   6,   7,   8,   9],[ 10,  11,  12,  13,  14],[ 15,  16,  17,  18,  19],[ 20,  21,  22,  23,  24]
                        ],
                        [
                            [ 25,  26,  27,  28,  29],[ 30,  31,  32,  33,  34],[ 35,  36,  37,  38,  39],[ 40,  41,  42,  43,  44],[ 45,  46,  47,  48,  49]
                        ],
                        [
                            [ 50,  51,  52,  53,  54],[ 55,  56,  57,  58,  59],[ 60,  61,  62,  63,  64],[ 65,  66,  67,  68,  69],[ 70,  71,  72,  73,  74]
                        ],
                        [
                            [ 75,  76,  77,  78,  79],[ 80,  81,  82,  83,  84],[ 85,  86,  87,  88,  89],[ 90,  91,  92,  93,  94],[ 95,  96,  97,  98,  99]
                        ],
                        [
                            [100, 101, 102, 103, 104],[105, 106, 107, 108, 109],[110, 111, 112, 113, 114],[115, 116, 117, 118, 119],[120, 121, 122, 123, 124]
                        ]
                    ]
                ]
            ]
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [
                        [
                            [1., 1., 1.],[1., 1., 1.],[1., 1., 1.]
                        ],
                        [
                            [1., 1., 1.],[1., 1., 1.],[1., 1., 1.]
                        ],
                        [
                            [1., 1., 1.],[1., 1., 1.],[1., 1., 1.]
                        ]
                    ]
                ]
            ]
        ).astype(np.float32)
        
        y = conv(x, w, group = 1, pads=[1, 1, 1, 1, 1, 1])
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))   
        
        name = "conv_3D_with_padding"
        func_sig = "NNTrait::conv("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(array![1, 1, 1, 1, 1, 1].span()),"
        func_sig += "Option::None)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)  
        
    @staticmethod
    def export_conv_4D_no_padding() -> None:
        x = np.array(
            [
                [
                    [
                        [
                            [
                                [ 0,  1,  2],[ 3,  4,  5],[ 6,  7,  8]
                            ],
                            [
                                [ 9, 10, 11],[12, 13, 14],[15, 16, 17]
                            ],
                            [
                                [18, 19, 20],[21, 22, 23],[24, 25, 26]
                            ]
                        ],
                        [
                            [
                                [27, 28, 29],[30, 31, 32],[33, 34, 35]
                            ],
                            [
                                [36, 37, 38],[39, 40, 41],[42, 43, 44]
                            ],
                            [
                                [45, 46, 47],[48, 49, 50],[51, 52, 53]
                            ]
                        ],
                        [
                            [
                                [54, 55, 56],[57, 58, 59],[60, 61, 62]
                            ],
                            [
                                [63, 64, 65],[66, 67, 68],[69, 70, 71]
                            ],
                            [
                                [72, 73, 74],[75, 76, 77],[78, 79, 80]
                            ]
                        ]
                    ]
                ]
            ]
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [
                        [
                            [
                                [1., 1.],[1., 1.]
                            ],
                            [
                                [1., 1.],[1., 1.]
                            ]
                        ],
                        [
                            [
                                [1., 1.],[1., 1.]
                            ],
                            [
                                [1., 1.],[1., 1.]
                            ]
                        ]
                    ]
                ]
            ]
        ).astype(np.float32)
        
        y = conv(x, w, group = 1)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))   
        
        name = "conv_4D_no_padding"
        func_sig = "NNTrait::conv("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
        
    @staticmethod
    def export_conv_4D_with_padding() -> None:
        x = np.array(
            [
                [
                    [
                        [
                            [
                                [ 0,  1,  2],[ 3,  4,  5],[ 6,  7,  8]
                            ],
                            [
                                [ 9, 10, 11],[12, 13, 14],[15, 16, 17]
                            ],
                            [
                                [18, 19, 20],[21, 22, 23],[24, 25, 26]
                            ]
                        ],
                        [
                            [
                                [27, 28, 29],[30, 31, 32],[33, 34, 35]
                            ],
                            [
                                [36, 37, 38],[39, 40, 41],[42, 43, 44]
                            ],
                            [
                                [45, 46, 47],[48, 49, 50],[51, 52, 53]
                            ]
                        ],
                        [
                            [
                                [54, 55, 56],[57, 58, 59],[60, 61, 62]
                            ],
                            [
                                [63, 64, 65],[66, 67, 68],[69, 70, 71]
                            ],
                            [
                                [72, 73, 74],[75, 76, 77],[78, 79, 80]
                            ]
                        ]
                    ]
                ]
            ]
    ).astype(np.float32)
        w = np.array(
            [
                [
                    [
                        [
                            [
                                [1., 1.],[1., 1.]
                            ],
                            [
                                [1., 1.],[1., 1.]
                            ]
                        ],
                        [
                            [
                                [1., 1.],[1., 1.]
                            ],
                            [
                                [1., 1.],[1., 1.]
                            ]
                        ]
                    ]
                ]
            ]
        ).astype(np.float32)
        
        y = conv(x, w, group = 1, pads=[1, 1, 1, 1, 1, 1, 1, 1])
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))   #
        
        name = "conv_4D_with_padding"
        func_sig = "NNTrait::conv("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(array![1, 1, 1, 1, 1, 1, 1, 1].span()),"
        func_sig += "Option::None)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
        
        
    
    @staticmethod
    def export_conv_with_autopad_same() -> None:
        x = np.array(
            [
                [
                    [
                        [0.0, 1.0, 2.0, 3.0, 4.0], 
                        [5.0, 6.0, 7.0, 8.0, 9.0],
                        [10.0, 11.0, 12.0, 13.0, 14.0],
                        [15.0, 16.0, 17.0, 18.0, 19.0],
                        [20.0, 21.0, 22.0, 23.0, 24.0],
                    ]
                ]
            ]
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [
                        [1.0, 1.0, 1.0],  
                        [1.0, 1.0, 1.0],
                        [1.0, 1.0, 1.0],
                    ]
                ]
            ]
        ).astype(np.float32)  
        
        y = conv(x, w, group = 1, kernel_shape=[3, 3],auto_pad="SAME_LOWER",strides = [2, 2])
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))   
        
        name = "conv_2D_with_autopad_same"
        func_sig = "NNTrait::conv("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(AUTO_PAD::SAME_LOWER)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(array![3, 3].span()),"
        func_sig += "Option::None,"
        func_sig += "Option::Some(array![2, 2].span()))"
        make_test(
            [x, w], y, func_sig, name, Trait.NN) 
        
    @staticmethod
    def export_conv_with_strides_asymmetric_padding() -> None:
        x = np.array(
            [
                [
                    [
                        [0.0, 1.0, 2.0, 3.0, 4.0], 
                        [5.0, 6.0, 7.0, 8.0, 9.0],
                        [10.0, 11.0, 12.0, 13.0, 14.0],
                        [15.0, 16.0, 17.0, 18.0, 19.0],
                        [20.0, 21.0, 22.0, 23.0, 24.0],
                        [25.0, 26.0, 27.0, 28.0, 29.0],
                        [30.0, 31.0, 32.0, 33.0, 34.0],
                    ]
                ]
            ]
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [
                        [1.0, 1.0, 1.0],  
                        [1.0, 1.0, 1.0],
                        [1.0, 1.0, 1.0],
                    ]
                ]
            ]
        ).astype(np.float32)
        y = conv(x, w, group = 1, kernel_shape=[3, 3],pads=[1, 0, 1, 0],strides = [2, 2])
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))   
        
        name = "conv_2D_with_strides_asymmetric_padding"
        func_sig = "NNTrait::conv("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(array![3, 3].span()),"
        func_sig += "Option::Some(array![1, 0, 1, 0].span()),"
        func_sig += "Option::Some(array![2, 2].span()))"
        make_test(
            [x, w], y, func_sig, name, Trait.NN) 
        
    @staticmethod
    def export_conv_with_strides_with_padding() -> None:
        x = np.array(
            [
                [
                    [
                        [0.0, 1.0, 2.0, 3.0, 4.0], 
                        [5.0, 6.0, 7.0, 8.0, 9.0],
                        [10.0, 11.0, 12.0, 13.0, 14.0],
                        [15.0, 16.0, 17.0, 18.0, 19.0],
                        [20.0, 21.0, 22.0, 23.0, 24.0],
                        [25.0, 26.0, 27.0, 28.0, 29.0],
                        [30.0, 31.0, 32.0, 33.0, 34.0],
                    ]
                ]
            ]
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [
                        [1.0, 1.0, 1.0], 
                        [1.0, 1.0, 1.0],
                        [1.0, 1.0, 1.0],
                    ]
                ]
            ]
        ).astype(np.float32)
        
        y = conv(x, w, group = 1, kernel_shape=[3, 3],pads=[1, 1, 1, 1],strides = [2, 2])
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))   
        
        name = "conv_2D_with_strides_with_padding"
        func_sig = "NNTrait::conv("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(array![3, 3].span()),"
        func_sig += "Option::Some(array![1, 1, 1, 1].span()),"
        func_sig += "Option::Some(array![2, 2].span()))"
        make_test(
            [x, w], y, func_sig, name, Trait.NN) 
        
    @staticmethod
    def export_conv_with_2_groups() -> None:
        x = np.array(
            [
                [
                    [
                        [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
                    [
                        [9.0, 10.0, 11.0], [12.0, 13.0, 14.0], [15.0, 16.0, 17.0]]
                ]
            ]
        ).astype(np.float32)
        w =  np.array(
            [
                [
                    [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], 
                ], 
                [
                    [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], 
                ]
            ]
        ).astype(np.float32)
        y = conv(x, w, group = 2)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) 
        
        name = "conv_2D_with_2_groups"
        func_sig = "NNTrait::conv("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::Some(2),"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN) 
     
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/conv_transpose.py 
 | 
	
import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
def conv_transpose( 
    X,
    W,
    B=None,
    auto_pad=None,
    dilations=None,
    group=None,
    kernel_shape=None,
    output_padding=None,
    output_shape=None,
    pads=None,
    strides=None,
):
    if dilations is None:
        dilations = [1 for s in X.shape[2:]]
    if kernel_shape is None:
        kernel_shape = W.shape[2:]
    if output_padding is None:
        output_padding = [0 for s in X.shape[2:]] * 2
    if strides is None:
        strides = [1 for s in X.shape[2:]]
    if pads is None and auto_pad not in {"SAME_UPPER", "SAME_LOWER"}:
        pads = [0 for i in range(2 * len(strides))]
    if pads is None:
        if output_shape is None:
            output_shape = [
                X.shape[i + 2] * strides[i] for i in range(len(strides))
            ]
        total_padding = [
            strides[i] * (X.shape[i + 2] - 1)
            + output_padding[i]
            + ((kernel_shape[i] - 1) * dilations[i] + 1)
            - output_shape[i]
            for i in range(len(output_shape))
        ]
        pads_1 = []
        pads_2 = []
        for i in range(len(output_shape)):
            if auto_pad == "SAME_UPPER":
                pads_1.append(total_padding[i] // 2)
                pads_2.append(total_padding[i] - (total_padding[i] // 2))
            else:
                pads_1.append(total_padding[i] - (total_padding[i] // 2))
                pads_2.append(total_padding[i] // 2)
        pads = pads_1 + pads_2
        n_dims = len(pads) // 2
    else:
        n_dims = len(X.shape) - 2
        new_pads = np.array([(pads[i], pads[i + n_dims]) for i in range(n_dims)])
        if output_shape is None:
            output_shape = [
                strides[i] * (X.shape[i + 2] - 1)
                + output_padding[i]
                + ((kernel_shape[i] - 1) * dilations[i] + 1)
                - new_pads[i, :].sum()
                for i in range(n_dims)
            ]
    kernel_shape = W.shape[2:]
    kernel_size = np.prod(kernel_shape)
    num_output_channels = W.shape[1] * group
    kernel_dim = num_output_channels // group * kernel_size
    C = X.shape[1]  # num_inputs_channels
    m = kernel_dim  # kernel_dim
    n = np.prod(X.shape[2:])  # input_image_size
    k = C // group
    w_reshaped = W.reshape((group, k, m))
    final = None
    # N x C x H x W = X.shape
    # C x M/group x k1 x k2 = W.shape
    if group == 1:
        for image_id in range(X.shape[0]):
            w_t = w_reshaped[0].T
            gemm = np.matmul(w_t, X[image_id].reshape((k, n)))
            gemmc = gemm.reshape((num_output_channels, -1, gemm.shape[-1]))
            for c in range(num_output_channels):
                res = col2im_naive_implementation(
                    gemmc[c], output_shape, kernel_shape, dilations, pads, strides
                )
                if final is None:
                    final = np.empty(
                        X.shape[:1] + (num_output_channels,) + res.shape,
                        dtype=X.dtype,
                    )
                if B is not None:
                    res += B[c]
                final[image_id, c, ...] = res[...]
    else:
        final = np.zeros((X.shape[0], num_output_channels ) + tuple(output_shape))
        output_array = []
        for group_id in range(group):
            group_X = X[:, group_id * C // group : (group_id + 1) * C // group, ...]
            group_W = W[group_id * num_output_channels // group : (group_id + 1) * num_output_channels // group, ...]
            group_output = conv_transpose(
                group_X,
                group_W,
                B=B,  
                auto_pad=auto_pad,
                dilations=dilations,
                group=1, 
                kernel_shape=kernel_shape,
                output_padding=output_padding,
                output_shape=output_shape,
                pads=pads,
                strides=strides,
            )
            group_output = np.array(group_output[0])
            output_array.append(group_output)
            
        for image_id in range(X.shape[0]):
            for group_id in range(group):
                group_output = output_array[group_id]
                final[image_id, group_id:(group_id+1), ...] = group_output[image_id, ...]
    return (final.astype(X.dtype),) 
def _get_indices(i, shape):
    res = np.empty((len(shape),), dtype=np.int64)
    k = len(shape) - 1
    while k > 0:
        m = i % shape[k]
        res[k] = m
        i -= m
        i /= shape[k]
        k -= 1
    res[0] = i
    return res
def _col2im_shape_check(X, output_shape, kernel_shape, dilations, pads, strides):  # type: ignore
    n_input_plane = X.shape[0]
    kernel_size = np.prod(kernel_shape)
    if n_input_plane % kernel_size != 0:
        raise ValueError(
            f"Expected size of input's dimension 1 to be divisible by the "
            f"product of kernel_size={kernel_size}, "
            f"but got input.size(1)={n_input_plane} "
            f"and kernel_shape={kernel_shape}, X.shape={X.shape}, output_shape={output_shape}."
        )
    input_length = X.shape[1]
    n_dims = len(output_shape)
    n_blocks = []
    
    for i in range(n_dims):
        n_block = (
            output_shape[i]
            + pads[i, :].sum()
            - dilations[i] * (kernel_shape[i] - 1)
            - 1
        ) // strides[i] + 1
        n_blocks.append(n_block)
    block_size = np.prod(n_blocks)
    if input_length != block_size:
        raise ValueError(
            f"Given n_input_plane={n_input_plane}, X.shape={X.shape}, "
            f"output_shape={output_shape}, kernel_shape={kernel_shape}, "
            f"dilations={dilations}, pads={pads}, strides={strides}, "
            f"expected size of input's dimension 2 to match the calculated number of "
            f"sliding blocks {n_blocks} = {block_size}, "
            f"but got input.size(2)={input_length}.",
        )
def col2im_naive_implementation(data, image_shape, kernel_shape, dilations, pads, strides):  # type: ignore
    n_dims = len(pads) // 2
    new_pads = np.array([(pads[i], pads[i + n_dims]) for i in range(n_dims)])
    _col2im_shape_check(data, image_shape, kernel_shape, dilations, new_pads, strides)
    data_col = data
    data_im = np.zeros(image_shape, dtype=data.dtype)
    dim_col = []
    for i in range(n_dims):
        col = (
            image_shape[i]
            + new_pads[i, :].sum()
            - (dilations[i] * (kernel_shape[i] - 1) + 1)
        ) // strides[i] + 1
        dim_col.append(col) 
    kernel_size = np.prod(kernel_shape)
    col_size = np.prod(dim_col)
    for c_col in range(kernel_size):
        offset = _get_indices(c_col, kernel_shape)     
        for col in range(col_size):
            
            ind_col = _get_indices(col, dim_col)
            ind_im = []
            for i in range(n_dims):
                ind = (
                    ind_col[i] * strides[i] - new_pads[i, 0] + offset[i] * dilations[i]
                )
                ind_im.append(ind)
            if not _is_out(ind_im, data_im.shape):
                data_im[tuple(ind_im)] += data_col[c_col, col]
    return data_im
def _is_out(ind, shape):  
    for i, s in zip(ind, shape):
        if i < 0:
            return True
        if i >= s:
            return True
    return False
class Conv_transpose(RunAll):
    @staticmethod
    def export_conv_transpose() -> None:
        x = np.array(
            [[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]]]  # (1, 1, 3, 3)
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],  # (1, 2, 3, 3)
                    [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],
                ]
            ]
        ).astype(np.float32)
        y = conv_transpose(x, w, group=1)[0]
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "conv_transpose"
        func_sig = "NNTrait::conv_transpose("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
        
    @staticmethod
    def export_convtranspose_1d() -> None:
        x = np.array([[[0.0, 1.0, 2.0]]]).astype(np.float32)  # (1, 1, 3)
        w = np.array([[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]).astype(  # (1, 2, 3)
            np.float32
        )
        y = conv_transpose(x, w, group=1)[0]
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "conv_transpose_1d"
        func_sig = "NNTrait::conv_transpose("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
    @staticmethod
    def export_convtranspose_3d() -> None:
        x = np.array(
            [
                [
                    [
                        [
                            [0.0, 1.0, 2.0, 3.0, 4.0],  # (1, 1, 3, 4, 5)
                            [5.0, 6.0, 7.0, 8.0, 9.0],
                            [10.0, 11.0, 12.0, 13.0, 14.0],
                            [15.0, 16.0, 17.0, 18.0, 19.0],
                        ],
                        [
                            [20.0, 21.0, 22.0, 23.0, 24.0],
                            [25.0, 26.0, 27.0, 28.0, 29.0],
                            [30.0, 31.0, 32.0, 33.0, 34.0],
                            [35.0, 36.0, 37.0, 38.0, 39.0],
                        ],
                        [
                            [40.0, 41.0, 42.0, 43.0, 44.0],
                            [45.0, 46.0, 47.0, 48.0, 49.0],
                            [50.0, 51.0, 52.0, 53.0, 54.0],
                            [55.0, 56.0, 57.0, 58.0, 59.0],
                        ],
                    ]
                ]
            ]
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [
                        [
                            [1.0, 1.0, 1.0],  # (1, 2, 3, 3, 3)
                            [1.0, 1.0, 1.0],
                            [1.0, 1.0, 1.0],
                        ],
                        [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],
                        [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],
                    ],
                    [
                        [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],
                        [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],
                        [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],
                    ],
                ]
            ]
        ).astype(np.float32)
        y = conv_transpose(x, w, group=1)[0]
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "conv_transpose_3d"
        func_sig = "NNTrait::conv_transpose("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
    @staticmethod
    def export_convtranspose_attributes() -> None:
        x = np.array(
            [[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]]]  # (1, 1, 3, 3)
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],  # (1, 2, 3, 3)
                    [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],
                ]
            ]
        ).astype(np.float32)
        y = conv_transpose(x, w, group=1)[0]
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "conv_transpose_attributes"
        func_sig = "NNTrait::conv_transpose("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
    @staticmethod
    def export_convtranspose_pads() -> None:
        x = np.array(
            [[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]]]  # (1, 1, 3, 3)
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],  # (1, 2, 3, 3)
                    [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],
                ]
            ]
        ).astype(np.float32)
        y = conv_transpose(x, w, group=1,strides=[3, 2],output_shape=[10, 8], kernel_shape=[3, 3], output_padding=[1, 1],)[0]
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "conv_transpose_pads"
        func_sig = "NNTrait::conv_transpose("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(array![3, 3].span()),"
        func_sig += "Option::Some(array![1, 1].span()),"
        func_sig += "Option::Some(array![10, 8].span()),"
        func_sig += "Option::None,"
        func_sig += "Option::Some(array![3, 2].span()))"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
    @staticmethod
    def export_convtranspose_dilations() -> None:
        x = np.array(
            [[[[3.0, 8.0, 1.0], [9.0, 5.0, 7.0], [3.0, 2.0, 6.0]]]]  # (1, 1, 3, 3)
        ).astype(np.float32)
        w = np.array([[[[7.0, 2.0], [1.0, 9.0]]]]).astype(np.float32)  # (1, 1, 2, 2)
        y = conv_transpose(x, w, group=1,  dilations=[2, 2])[0]
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "conv_transpose_dilations"
        func_sig = "NNTrait::conv_transpose("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(array![2, 2].span())," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
    @staticmethod
    def export_convtranspose_autopad_same() -> None:
        x = np.array(
            [[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]]]  # (1, 1, 3, 3)
        ).astype(np.float32)
        w = np.array(
            [
                [
                    [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],  # (1, 2, 3, 3)
                    [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],
                ]
            ]
        ).astype(np.float32)
        y = conv_transpose(x, w, group=1, auto_pad="SAME_UPPER", strides=[2, 2])[0]
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "conv_transpose_autopad_same"
        func_sig = "NNTrait::conv_transpose("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(AUTO_PAD::SAME_UPPER),"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(array![2, 2].span()))"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
        
    @staticmethod
    def export_convtranspose_group_2() -> None:
        x = np.array(
            [
                [
                    [
                        [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
                    [
                        [9.0, 10.0, 11.0], [12.0, 13.0, 14.0], [15.0, 16.0, 17.0]]
                ]
            ]
        ).astype(np.float32)
        w =  np.array(
            [
                [
                    [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], 
                ], 
                [
                    [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], 
                ]
            ]
        ).astype(np.float32)
        y = conv_transpose(x, w, group=2)[0]
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "conv_transpose_group_2"
        func_sig = "NNTrait::conv_transpose("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::Some(2)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
        
    @staticmethod
    def export_convtranspose_group_2_image_3() -> None:
        x = np.array(
            [
                [
                    [
                        [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
                    [
                        [9.0, 10.0, 11.0], [12.0, 13.0, 14.0], [15.0, 16.0, 17.0]
                    ]
                ], 
                [
                    [
                        [18.0, 19.0, 20.0], [21.0, 22.0, 23.0], [24.0, 25.0, 26.0]
                    ],
                    [
                        [9.0, 10.0, 11.0], [12.0, 13.0, 14.0], [15.0, 16.0, 17.0]
                    ]
                ],   
                [
                    [
                        [0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]
                    ],
                    [
                        [9.0, 10.0, 11.0], [12.0, 13.0, 14.0], [15.0, 16.0, 17.0]
                    ]
                ]
            ]
        ).astype(np.float32)
        w =  np.array(
            [
                [
                    [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], 
                ], 
                [
                    [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], 
                ]
            ]
        ).astype(np.float32)
        y = conv_transpose(x, w, group=2)[0]
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(w.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "conv_transpose_group_2_image_3"
        func_sig = "NNTrait::conv_transpose("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::Some(2)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,)"
        make_test(
            [x, w], y, func_sig, name, Trait.NN)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/cos.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Cos(RunAll):
    @staticmethod
    def cos_fp8x23():
        x = np.random.uniform(-10, 127, (2, 2)).astype(np.float64)
        y = np.cos(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "cos_fp8x23"
        make_test([x], y, "input_0.cos()", name)
    @staticmethod
    def cos_fp16x16():
        x = np.random.uniform(-10, 127, (2, 2)).astype(np.float64)
        y = np.cos(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "cos_fp16x16"
        make_test([x], y, "input_0.cos()", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/cosh.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Cosh(RunAll):
    @staticmethod
    def cosh_fp8x23():
        x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64)
        y = np.cosh(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "cosh_fp8x23"
        make_test([x], y, "input_0.cosh()", name)
    @staticmethod
    def cosh_fp16x16():
        x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64)
        y = np.cosh(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "cosh_fp16x16"
        make_test([x], y, "input_0.cosh()", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/cumsum.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Cumsum(RunAll):
    @staticmethod
    def cumsum_u32():
        def cumsum_1D():
            def default():
                x = np.array([1, 2, 3, 4, 5]).astype(np.uint32)
                y = np.array([1, 3, 6, 10, 15]).astype(np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "cumsum_u32_1d_default"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name)
            def exclusive():
                x = np.array([1, 2, 3, 4, 5]).astype(np.uint32)
                y = np.array([0, 1, 3, 6, 10]).astype(np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "cumsum_u32_1d_exclusive"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(false))", name)
            def reverse():
                x = np.array([1, 2, 3, 4, 5]).astype(np.uint32)
                y = np.array([15, 14, 12, 9, 5]).astype(np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "cumsum_u32_1d_reverse"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(false), Option::Some(true))", name)
            def reverse_exclusive():
                x = np.array([1, 2, 3, 4, 5]).astype(np.uint32)
                y = np.array([14, 12, 9, 5, 0]).astype(np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "cumsum_u32_1d_reverse_exclusive"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(true))", name)
            default()
            exclusive()
            reverse()
            reverse_exclusive()
        cumsum_1D()
        def cumsum_2D():
            def axis_0():
                x = np.array([1, 2, 3, 4, 5, 6]).astype(
                    np.uint32).reshape((2, 3))
                y = np.array([1, 2, 3, 5, 7, 9]).astype(
                    np.uint32).reshape((2, 3))
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "cumsum_u32_2d_axis_0"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name)
            def axis_1():
                x = np.array([1, 2, 3, 4, 5, 6]).astype(
                    np.uint32).reshape((2, 3))
                y = np.array([1, 3, 6, 4, 9, 15]).astype(
                    np.uint32).reshape((2, 3))
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "cumsum_u32_2d_axis_1"
                make_test(
                    [x], y, "input_0.cumsum(1, Option::None(()), Option::None(()))", name)
            axis_0()
            axis_1()
        cumsum_2D()
    @staticmethod
    def cumsum_i32():
        def cumsum_1D():
            def default():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int32)
                y = np.array([1, 3, 6, 10, 15]).astype(np.int32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "cumsum_i32_1d_default"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name)
            def exclusive():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int32)
                y = np.array([0, 1, 3, 6, 10]).astype(np.int32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "cumsum_i32_1d_exclusive"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(false))", name)
            def reverse():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int32)
                y = np.array([15, 14, 12, 9, 5]).astype(np.int32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "cumsum_i32_1d_reverse"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(false), Option::Some(true))", name)
            def reverse_exclusive():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int32)
                y = np.array([14, 12, 9, 5, 0]).astype(np.int32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "cumsum_i32_1d_reverse_exclusive"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(true))", name)
            default()
            exclusive()
            reverse()
            reverse_exclusive()
        cumsum_1D()
        def cumsum_2D():
            def axis_0():
                x = np.array([1, 2, 3, 4, 5, 6]).astype(
                    np.int32).reshape((2, 3))
                y = np.array([1, 2, 3, 5, 7, 9]).astype(
                    np.int32).reshape((2, 3))
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "cumsum_i32_2d_axis_0"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name)
            def axis_1():
                x = np.array([1, 2, 3, 4, 5, 6]).astype(
                    np.int32).reshape((2, 3))
                y = np.array([1, 3, 6, 4, 9, 15]).astype(
                    np.int32).reshape((2, 3))
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "cumsum_i32_2d_axis_1"
                make_test(
                    [x], y, "input_0.cumsum(1, Option::None(()), Option::None(()))", name)
            axis_0()
            axis_1()
        cumsum_2D()
    @staticmethod
    def cumsum_i8():
        def cumsum_1D():
            def default():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int8)
                y = np.array([1, 3, 6, 10, 15]).astype(np.int8)
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.I8, y.shape, y.flatten())
                name = "cumsum_i8_1d_default"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name)
            def exclusive():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int8)
                y = np.array([0, 1, 3, 6, 10]).astype(np.int8)
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.I8, y.shape, y.flatten())
                name = "cumsum_i8_1d_exclusive"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(false))", name)
            def reverse():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int8)
                y = np.array([15, 14, 12, 9, 5]).astype(np.int8)
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.I8, y.shape, y.flatten())
                name = "cumsum_i8_1d_reverse"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(false), Option::Some(true))", name)
            def reverse_exclusive():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int8)
                y = np.array([14, 12, 9, 5, 0]).astype(np.int8)
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.I8, y.shape, y.flatten())
                name = "cumsum_i8_1d_reverse_exclusive"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(true))", name)
            default()
            exclusive()
            reverse()
            reverse_exclusive()
        cumsum_1D()
        def cumsum_2D():
            def axis_0():
                x = np.array([1, 2, 3, 4, 5, 6]).astype(
                    np.int8).reshape((2, 3))
                y = np.array([1, 2, 3, 5, 7, 9]).astype(
                    np.int8).reshape((2, 3))
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.I8, y.shape, y.flatten())
                name = "cumsum_i8_2d_axis_0"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name)
            def axis_1():
                x = np.array([1, 2, 3, 4, 5, 6]).astype(
                    np.int8).reshape((2, 3))
                y = np.array([1, 3, 6, 4, 9, 15]).astype(
                    np.int8).reshape((2, 3))
                x = Tensor(Dtype.I8, x.shape, x.flatten())
                y = Tensor(Dtype.I8, y.shape, y.flatten())
                name = "cumsum_i8_2d_axis_1"
                make_test(
                    [x], y, "input_0.cumsum(1, Option::None(()), Option::None(()))", name)
            axis_0()
            axis_1()
        cumsum_2D()
    @staticmethod
    def cumsum_fp8x23():
        def cumsum_1D():
            def default():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int64)
                y = np.array([1, 3, 6, 10, 15]).astype(np.int64)
                x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP8x23))
                name = "cumsum_fp8x23_1d_default"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name)
            def exclusive():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int64)
                y = np.array([0, 1, 3, 6, 10]).astype(np.int64)
                x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP8x23))
                name = "cumsum_fp8x23_1d_exclusive"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(false))", name)
            def reverse():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int64)
                y = np.array([15, 14, 12, 9, 5]).astype(np.int64)
                x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP8x23))
                name = "cumsum_fp8x23_1d_reverse"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(false), Option::Some(true))", name)
            def reverse_exclusive():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int64)
                y = np.array([14, 12, 9, 5, 0]).astype(np.int64)
                x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP8x23))
                name = "cumsum_fp8x23_1d_reverse_exclusive"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(true))", name)
            default()
            exclusive()
            reverse()
            reverse_exclusive()
        cumsum_1D()
        def cumsum_2D():
            def axis_0():
                x = np.array([1, 2, 3, 4, 5, 6]).astype(
                    np.int64).reshape((2, 3))
                y = np.array([1, 2, 3, 5, 7, 9]).astype(
                    np.int64).reshape((2, 3))
                x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP8x23))
                name = "cumsum_fp8x23_2d_axis_0"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name)
            def axis_1():
                x = np.array([1, 2, 3, 4, 5, 6]).astype(
                    np.int64).reshape((2, 3))
                y = np.array([1, 3, 6, 4, 9, 15]).astype(
                    np.int64).reshape((2, 3))
                x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP8x23))
                name = "cumsum_fp8x23_2d_axis_1"
                make_test(
                    [x], y, "input_0.cumsum(1, Option::None(()), Option::None(()))", name)
            axis_0()
            axis_1()
        cumsum_2D()
    @staticmethod
    def cumsum_fp16x16():
        def cumsum_1D():
            def default():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int64)
                y = np.array([1, 3, 6, 10, 15]).astype(np.int64)
                x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP16x16))
                name = "cumsum_fp16x16_1d_default"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name)
            def exclusive():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int64)
                y = np.array([0, 1, 3, 6, 10]).astype(np.int64)
                x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP16x16))
                name = "cumsum_fp16x16_1d_exclusive"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(false))", name)
            def reverse():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int64)
                y = np.array([15, 14, 12, 9, 5]).astype(np.int64)
                x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP16x16))
                name = "cumsum_fp16x16_1d_reverse"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(false), Option::Some(true))", name)
            def reverse_exclusive():
                x = np.array([1, 2, 3, 4, 5]).astype(np.int64)
                y = np.array([14, 12, 9, 5, 0]).astype(np.int64)
                x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP16x16))
                name = "cumsum_fp16x16_1d_reverse_exclusive"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::Some(true), Option::Some(true))", name)
            default()
            exclusive()
            reverse()
            reverse_exclusive()
        cumsum_1D()
        def cumsum_2D():
            def axis_0():
                x = np.array([1, 2, 3, 4, 5, 6]).astype(
                    np.int64).reshape((2, 3))
                y = np.array([1, 2, 3, 5, 7, 9]).astype(
                    np.int64).reshape((2, 3))
                x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP16x16))
                name = "cumsum_fp16x16_2d_axis_0"
                make_test(
                    [x], y, "input_0.cumsum(0, Option::None(()), Option::None(()))", name)
            def axis_1():
                x = np.array([1, 2, 3, 4, 5, 6]).astype(
                    np.int64).reshape((2, 3))
                y = np.array([1, 3, 6, 4, 9, 15]).astype(
                    np.int64).reshape((2, 3))
                x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP16x16))
                name = "cumsum_fp16x16_2d_axis_1"
                make_test(
                    [x], y, "input_0.cumsum(1, Option::None(()), Option::None(()))", name)
            axis_0()
            axis_1()
        cumsum_2D()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/depth_to_space.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
def depth_to_space(data: np.ndarray, blocksize: int = 2, mode = "DCR") -> np.ndarray:
    if len(data.shape) != 4:
        raise RuntimeError(f"Unexpected shape {data.shape!r}.")
    b, c, h, w = data.shape
    if mode == "DCR":
        tmpshape = (
            b,
            blocksize,
            blocksize,
            c // (blocksize * blocksize),
            h,
            w,
        )
        reshaped = data.reshape(tmpshape)
        transposed = np.transpose(reshaped, [0, 3, 4, 1, 5, 2])
    else:
        # assert mode == "CRD"
        tmpshape = (
            b,
            c // (blocksize * blocksize),
            blocksize,
            blocksize,
            h,
            w,
        )
        reshaped = data.reshape(tmpshape)
        transposed = np.transpose(reshaped, [0, 1, 4, 2, 5, 3])
    finalshape = (
        b,
        c // (blocksize * blocksize),
        h * blocksize,
        w * blocksize,
    )
    y = np.reshape(transposed, finalshape)
    return y
class Depth_to_space(RunAll):
    @staticmethod
    def fp8x23():
        x = np.random.uniform(-3, 3, (1, 4, 2, 2)).astype(np.float64)
        y = depth_to_space(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "depth_to_space_fp8x23"
        make_test([x], y, "NNTrait::depth_to_space(@input_0, 2, 'DCR')",
                    name, Trait.NN)
    @staticmethod
    def fp16x16():
        x = np.random.uniform(-3, 3, (1, 4, 2, 2)).astype(np.float16)
        y = depth_to_space(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "depth_to_space_fp16x16"
        make_test([x], y, "NNTrait::depth_to_space(@input_0, 2, 'DCR')",
                    name, Trait.NN)
        
    # @staticmethod
    # def fp64x64():
    #     x = np.random.uniform(-3, 3, (1, 4, 2, 2)).astype(np.float64)
    #     y = depth_to_space(x)
    #     x = Tensor(Dtype.FP64x64, x.shape, to_fp(
    #         x.flatten(), FixedImpl.FP64x64))
    #     y = Tensor(Dtype.FP64x64, y.shape, to_fp(
    #         y.flatten(), FixedImpl.FP64x64))
    #     name = "depth_to_space_fp64x64"
    #     make_test([x], y, "NNTrait::depth_to_space(@input_0, 2, 'DCR')",
    #                 name, Trait.NN)
    @staticmethod
    def fpi8():
        x = np.random.randint(-3, 3, (1, 4, 2, 2)).astype(np.int8)
        y = depth_to_space(x)
        x = Tensor(Dtype.I8, x.shape, x.flatten())
        y = Tensor(Dtype.I8, y.shape, y.flatten())
        name = "depth_to_space_i8"
        make_test([x], y, "NNTrait::depth_to_space(@input_0, 2, 'DCR')",
                    name, Trait.NN)
    @staticmethod
    def fpi32():
        x = np.random.randint(-3, 3, (1, 4, 2, 2)).astype(np.int32)
        y = depth_to_space(x)
        x = Tensor(Dtype.I32, x.shape, x.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "depth_to_space_i32"
        make_test([x], y, "NNTrait::depth_to_space(@input_0, 2, 'CRD')",
                    name, Trait.NN)
    @staticmethod
    def fpu32():
        x = np.random.randint(-3, 3, (1, 4, 2, 2)).astype(np.uint32)
        y = depth_to_space(x)
        x = Tensor(Dtype.U32, x.shape, x.flatten())
        y = Tensor(Dtype.U32, y.shape, y.flatten())
        name = "depth_to_space_u32"
        make_test([x], y, "NNTrait::depth_to_space(@input_0, 2, 'CRD')",
                    name, Trait.NN)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/div.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Div(RunAll):
    @staticmethod
    def div_u32():
        def default():
            x = np.random.randint(3, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(1, 3, (3, 3, 3)).astype(np.uint32)
            z = x / y
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "div_u32"
            make_test([x, y], z, "input_0 / input_1", name)
        def broadcast():
            x = np.random.randint(3, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(1, 3, (1, 3, 1)).astype(np.uint32)
            z = x / y
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "div_u32_broadcast"
            make_test([x, y], z, "input_0 / input_1", name)
        default()
        broadcast()
    @staticmethod
    def div_i32():
        def default():
            x = np.random.randint(1, 3, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(1, 3, (3, 3, 3)).astype(np.int32)
            z = x / y
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "div_i32"
            make_test([x, y], z, "input_0 / input_1", name)
        def broadcast():
            x = np.random.randint(1, 3, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(1, 3, (1, 3, 1)).astype(np.int32)
            z = x / y
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "div_i32_broadcast"
            make_test([x, y], z, "input_0 / input_1", name)
        default()
        broadcast()
    @staticmethod
    def div_i8():
        def default():
            x = np.random.randint(1, 3, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(1, 3, (3, 3, 3)).astype(np.int8)
            z = x / y
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I8, z.shape, z.flatten())
            name = "div_i8"
            make_test([x, y], z, "input_0 / input_1", name)
        def broadcast():
            x = np.random.randint(1, 3, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(1, 3, (1, 3, 1)).astype(np.int8)
            z = x / y
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I8, z.shape, z.flatten())
            name = "div_i8_broadcast"
            make_test([x, y], z, "input_0 / input_1", name)
        default()
        broadcast()
    @staticmethod
    def div_fp8x23():
        def default():
            x = np.random.randint(1, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(1, 3, (3, 3, 3)).astype(np.float64)
            z = x / y
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape, to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "div_fp8x23"
            make_test([x, y], z, "input_0 / input_1", name)
        def broadcast():
            x = np.random.randint(1, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(1, 3, (1, 3, 1)).astype(np.float64)
            z = x / y
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape, to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "div_fp8x23_broadcast"
            make_test([x, y], z, "input_0 / input_1", name)
        default()
        broadcast()
    @staticmethod
    def div_fp16x16():
        def default():
            x = np.random.randint(1, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(1, 3, (3, 3, 3)).astype(np.float64)
            z = x / y
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape, to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "div_fp16x16"
            make_test([x, y], z, "input_0 / input_1", name)
        def broadcast():
            x = np.random.randint(1, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(1, 3, (1, 3, 1)).astype(np.float64)
            z = x / y
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape, to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "div_fp16x16_broadcast"
            make_test([x, y], z, "input_0 / input_1", name)
        default()
        broadcast()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/equal.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Equal(RunAll):
    @staticmethod
    def equal_u32():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            z = np.equal(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "equal_u32"
            make_test([x, y], z, "input_0.equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.uint32)
            y = np.random.randint(0, 6, (1, 2)).astype(np.uint32)
            z = np.equal(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "equal_u32_broadcast"
            make_test([x, y], z, "input_0.equal(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def equal_i32():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            z = np.equal(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "equal_i32"
            make_test([x, y], z, "input_0.equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.int32)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.int32)
            z = np.equal(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "equal_i32_broadcast"
            make_test([x, y], z, "input_0.equal(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def equal_i8():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            z = np.equal(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "equal_i8"
            make_test([x, y], z, "input_0.equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.int8)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.int8)
            z = np.equal(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "equal_i8_broadcast"
            make_test([x, y], z, "input_0.equal(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def equal_fp8x23():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.equal(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "equal_fp8x23"
            make_test([x, y], z, "input_0.equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.equal(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "equal_fp8x23_broadcast"
            make_test([x, y], z, "input_0.equal(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def equal_fp16x16():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.equal(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "equal_fp16x16"
            make_test([x, y], z, "input_0.equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.equal(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "equal_fp16x16_broadcast"
            make_test([x, y], z, "input_0.equal(@input_1)", name)
        default()
        broadcast()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/erf.py 
 | 
	import numpy as np
from math import erf
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Erf(RunAll):
    @staticmethod
    def erf_fp8x23():
        x = np.asarray([0.12, -1.66, 3.4, 4.8, 2.7]).astype(np.float64).reshape(1,5)
        y = np.asarray([erf(value) for value in x[0]]).astype(np.float64).reshape(1,5)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "erf_fp8x23"
        make_test([x], y, "input_0.erf()", name)
        
    @staticmethod
    def erf_fp16x16():
        x = np.asarray([0.12, -1.66, 3.4, 4.8, 2.7]).astype(np.float64).reshape(1,5)
        y = np.asarray([erf(value) for value in x[0]]).astype(np.float64).reshape(1,5)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "erf_fp16x16"
        make_test([x], y, "input_0.erf()", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/exp.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Exp(RunAll):
    @staticmethod
    def exp_fp8x23():
        x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64)
        y = np.exp(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "exp_fp8x23"
        make_test([x], y, "input_0.exp()", name)
    @staticmethod
    def exp_fp16x16():
        x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64)
        y = np.exp(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "exp_fp16x16"
        make_test([x], y, "input_0.exp()", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/gather.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
class Gather(RunAll):
    @staticmethod
    def gather_fp16x16():
            
        def default():
            x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
            x2 = np.array([[0,1], [2,1], [0, 2]]).astype(np.uint32)
            y = x1.take(x2, axis=0)
            x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
            x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) 
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16)) 
            name = "gather_fp16x16_3d_default"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "input_0.gather(indices:input_1, axis:Option::Some(0))", 
                name= name)
            
        def axis1():
            x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
            x2 = np.array([[0,1], [2,1], [0, 2]]).astype(np.int64)
            y = x1.take(x2, axis=1)
            x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
            x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) 
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16)) 
            name = "gather_fp16x16_3d_axis1"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "input_0.gather(indices:input_1, axis:Option::Some(1))", 
                name= name)
            
        def axis2():
            x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
            x2 = np.array([[0,1], [2,1], [0, 2]]).astype(np.int64)
            y = x1.take(x2, axis=2)
            x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
            x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) 
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16)) 
            name = "gather_fp16x16_3d_axis2"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "input_0.gather(indices:input_1, axis:Option::Some(2))", 
                name= name)
        
        def negative_indices():
            x1 = np.arange(10).astype(np.float32)
            x2 = np.array([0, -9, -10]).astype(np.int64)
            y = np.take(x1, x2, axis=0)
            x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
            x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) 
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16)) 
            name = "gather_negative_indices"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "input_0.gather(indices:input_1, axis:Option::Some(0))", 
                name= name)
        
        def negative_axis():
            x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
            x2 = np.array([[0,1], [2,1], [0, 2]]).astype(np.uint32)
            y = x1.take(x2, axis=-1)
            x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
            x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) 
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16)) 
            name = "gather_negative_axis"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "input_0.gather(indices:input_1, axis:Option::Some(-1))", 
                name= name)
            
        default()
        axis1()
        axis2()
        negative_indices()
        negative_axis()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/gather_elements.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
def gather_elements(data, indices, axis=0):  # type: ignore
    data_swaped = np.swapaxes(data, 0, axis)
    index_swaped = np.swapaxes(indices, 0, axis)
    gathered = np.choose(index_swaped, data_swaped, mode="wrap")
    y = np.swapaxes(gathered, 0, axis)
    return y
class Gather_elements(RunAll):
    @staticmethod
    def gather_elements_fp16x16():
        def default():
            x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
            x2 = np.random.randint(low = 0,high=2, size=(3,3,3)).astype(np.uint32)
            y = gather_elements(x1, x2, axis=0)
            x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
            x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) 
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16)) 
            name = "gather_elements_default"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(0))", 
                name= name)
            
        def axis1():
            x1 = np.array([[1, 2], [3, 4]], dtype=np.float32)
            x2 = np.array([[0, 0], [1, 0]], dtype=np.int32)
            y = gather_elements(x1, x2, axis=1)
            x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
            x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) 
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16)) 
            name = "gather_elements_axis1"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(1))", 
                name= name)
            
        def axis2():
            x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
            x2 = np.random.randint(low = 0,high=3, size=(3,3,3)).astype(np.uint32)
            y = gather_elements(x1, x2, axis=2)
            x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
            x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) 
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16)) 
            name = "gather_elements_axis2"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(2))", 
                name= name)
        
        def negative_indices():
            x1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32)
            x2 = np.array([[-1, -2, 0], [-2, 0, 0]], dtype=np.int32)
            y = gather_elements(x1, x2, axis=0)
            x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
            x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) 
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16)) 
            name = "gather_elements_negative_indices"
            make_test(
                inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(0))", 
                name= name)
            
        default()
        axis1()
        axis2()
        negative_indices()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/gather_nd.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
def gather_nd_impl(
    data: np.ndarray, indices: np.ndarray, batch_dims: int
) -> np.ndarray:
    # Note the data rank - will be reused multiple times later
    data_rank = len(data.shape)
    # Check input tensors' shape/rank condition
    assert indices.shape[-1] <= data_rank
    # The list of data/indice shape of batch_dims
    batch_dims_shape = []
    # The number of elements in the batch_dims for data/indice array
    batch_dims_size = 1
    # Check the shape of indice and data are identicial for batch dims.
    for i in range(batch_dims):
        batch_dims_shape.append(indices.shape[i])
        batch_dims_size *= indices.shape[i]
    # Compute output of the op as below
    # Compute shape of output array
    output_shape = (
        batch_dims_shape + list(indices.shape)[batch_dims:-1]
        if (indices.shape[-1] == data_rank - batch_dims)
        else batch_dims_shape
        + list(indices.shape)[batch_dims:-1]
        + list(data.shape)[batch_dims + indices.shape[-1] :]
    )
    # Placeholder for output data
    output_data_buffer = []
    # Flatten 'indices' to 2D array
    reshaped_indices = indices.reshape(batch_dims_size, -1, indices.shape[-1])
    # Flatten 'data' to array of shape (batch_dim_size, data.shape[batch_dimes:])
    reshaped_data = data.reshape((batch_dims_size,) + data.shape[batch_dims:])
    # gather each scalar value from 'data'
    for batch_dim in range(reshaped_indices.shape[0]):
        for outer_dim in range(reshaped_indices.shape[1]):
            gather_index = tuple(reshaped_indices[batch_dim][outer_dim])
            output_data_buffer.append(reshaped_data[(batch_dim, *gather_index)])
    return np.asarray(output_data_buffer, dtype=data.dtype).reshape(output_shape)
        
class Gather_nd(RunAll):
    @staticmethod
    def gather_nd_fp16x16():
        def gather_nd_3D():
            def default():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
                x2 = np.random.randint(low = 0,high=2, size=(3,3,3)).astype(np.uint32)
                y = gather_nd_impl(x1, x2, batch_dims=0)
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "gather_nd_fp16x16_3d_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.gather_nd(indices:input_1, batch_dims:Option::Some(0))", 
                    name= name)
                
            def batch_dims1():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
                x2 = np.random.randint(low = 0,high=2, size=(3,3,2)).astype(np.uint32)
                y = gather_nd_impl(x1, x2, batch_dims=1)
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "gather_nd_fp16x16_3d_batch_dims1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.gather_nd(indices:input_1, batch_dims:Option::Some(1))", 
                    name= name)
                
            def batch_dims2():
                x1 = np.arange(0,54).reshape(3,3,3,2).astype(np.int64)
                x2 = np.random.randint(low = 0,high=2, size=(3,3,2)).astype(np.uint32)
                y = gather_nd_impl(x1, x2, batch_dims=2)
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "gather_nd_fp16x16_3d_batch_dims2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.gather_nd(indices:input_1, batch_dims:Option::Some(2))", 
                    name= name)
                
            default()
            batch_dims1()
            batch_dims2()
        gather_nd_3D()
    @staticmethod
    def gather_nd_fp8x23():
        def gather_nd_3D():
            def default():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
                x2 = np.random.randint(low = 0,high=2, size=(3,3,3)).astype(np.int64)
                y = gather_nd_impl(x1, x2, batch_dims=0)
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
                name = "gather_nd_fp8x23_3d_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.gather_nd(indices:input_1, batch_dims:Option::Some(0))", 
                    name= name)
                
            def batch_dims1():
                x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
                x2 = np.random.randint(low = 0,high=2, size=(3,3,2)).astype(np.int64)
                y = gather_nd_impl(x1, x2, batch_dims=1)
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
                name = "gather_nd_fp8x23_3d_batch_dims1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.gather_nd(indices:input_1, batch_dims:Option::Some(1))", 
                    name= name)
                
            def batch_dims2():
                x1 = np.arange(0,54).reshape(3,3,3,2).astype(np.int64)
                x2 = np.random.randint(low = 0,high=2, size=(3,3,2)).astype(np.uint32)
                y = gather_nd_impl(x1, x2, batch_dims=2)
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
                name = "gather_nd_fp8x23_3d_batch_dims2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.gather_nd(indices:input_1, batch_dims:Option::Some(2))", 
                    name= name)
                
            default()
            batch_dims1()
            batch_dims2()
        gather_nd_3D()
    @staticmethod
    def gather_nd_i8():
        def gather_nd_3D():
            def default():
                x1 = np.arange(0,9).reshape(3,3).astype(np.int8)
                x2 = np.random.randint(low = 0,high=2, size=(3,2)).astype(np.int8)
                y = gather_nd_impl(x1, x2, batch_dims=0)
                x1 =  Tensor(Dtype.I8, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y =  Tensor(Dtype.I8, y.shape, y.flatten()) 
                name = "gather_nd_i8_3d_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.gather_nd(indices:input_1, batch_dims:Option::Some(0))", 
                    name= name)
                
            def batch_dims1():
                x1 = np.arange(0,9).reshape(3,3).astype(np.int8)
                x2 = np.random.randint(low = 0,high=2, size=(3,1)).astype(np.int8)
                y = gather_nd_impl(x1, x2, batch_dims=1)
                x1 =  Tensor(Dtype.I8, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y =  Tensor(Dtype.I8, y.shape, y.flatten()) 
                name = "gather_nd_i8_3d_batch_dims1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.gather_nd(indices:input_1, batch_dims:Option::Some(1))", 
                    name= name)
                
           
            default()
            batch_dims1()
        gather_nd_3D()
    @staticmethod
    def gather_nd_i32():
        def gather_nd_3D():
            def default():
                x1 = np.arange(0,24).reshape(4,2,3).astype(np.int32)
                x2 = np.random.randint(low = 0,high=2, size=(3,2)).astype(np.int32)
                y = gather_nd_impl(x1, x2, batch_dims=0)
                x1 =  Tensor(Dtype.I32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y =  Tensor(Dtype.I32, y.shape, y.flatten()) 
                name = "gather_nd_i32_3d_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.gather_nd(indices:input_1, batch_dims:Option::Some(0))", 
                    name= name)
                
            def batch_dims1():
                x1 = np.arange(0,108).reshape(4,3,3,3).astype(np.int32)
                x2 = np.random.randint(low = 0,high=3, size=(4,2,3)).astype(np.uint32)
                y = gather_nd_impl(x1, x2, batch_dims=1)
                x1 =  Tensor(Dtype.I32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y =  Tensor(Dtype.I32, y.shape, y.flatten()) 
                name = "gather_nd_i32_3d_batch_dims1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.gather_nd(indices:input_1, batch_dims:Option::Some(1))", 
                    name= name)
                
            def batch_dims2():
                x1 = np.arange(0,54).reshape(3,3,3,2).astype(np.int64)
                x2 = np.random.randint(low = 0,high=2, size=(3,3,2)).astype(np.uint32)
                y = gather_nd_impl(x1, x2, batch_dims=2)
                x1 =  Tensor(Dtype.I32, x1.shape, x1.flatten())
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                y =  Tensor(Dtype.I32, y.shape, y.flatten()) 
                name = "gather_nd_i32_3d_batch_dims2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.gather_nd(indices:input_1, batch_dims:Option::Some(2))", 
                    name= name)
                
            default()
            batch_dims1()
            batch_dims2()
        gather_nd_3D()
    @staticmethod
    def gather_nd_u32():
        def gather_nd_3D():
            def default():
                x1 = np.arange(0,108).reshape(3,3,4,3).astype(np.int32)
                x2 = np.random.randint(low = 0,high=2, size=(3,3,2)).astype(np.uint32)
                y = gather_nd_impl(x1, x2, batch_dims=0)
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                y =  Tensor(Dtype.U32, y.shape, y.flatten()) 
                name = "gather_nd_u32_default"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.gather_nd(indices:input_1, batch_dims:Option::Some(0))", 
                    name= name)
                
            def batch_dims1():
                x1 = np.arange(0,108).reshape(3,3,4,3).astype(np.int32)
                x2 = np.random.randint(low = 0,high=2, size=(3,3,2)).astype(np.uint32)
                y = gather_nd_impl(x1, x2, batch_dims=1)
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                y =  Tensor(Dtype.U32, y.shape, y.flatten()) 
                name = "gather_nd_u32_batch_dims1"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.gather_nd(indices:input_1, batch_dims:Option::Some(1))", 
                    name= name)
                
            def batch_dims2():
                x1 = np.arange(0,108).reshape(3,3,4,3).astype(np.int32)
                x2 = np.random.randint(low = 0,high=2, size=(3,3,2)).astype(np.uint32)
                y = gather_nd_impl(x1, x2, batch_dims=2)
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                y =  Tensor(Dtype.U32, y.shape, y.flatten()) 
                name = "gather_nd_u32_batch_dims2"
                make_test(
                    inputs = [x1, x2], output = y, func_sig = "input_0.gather_nd(indices:input_1, batch_dims:Option::Some(2))", 
                    name= name)
                
            
            default()
            batch_dims1()
            batch_dims2()
        gather_nd_3D() 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/gemm.py 
 | 
	from typing import Optional
import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
def gemm_reference_implementation(
    A: np.ndarray,
    B: np.ndarray,
    C: Optional[np.ndarray] = None,
    alpha: float = 1.0,
    beta: float = 1.0,
    transA: int = 0,
    transB: int = 0,
) -> np.ndarray:
    A = A if transA == 0 else A.T
    B = B if transB == 0 else B.T
    C = C if C is not None else np.array(0)
    Y = alpha * np.dot(A, B) + beta * C
    return Y
class Gemm(RunAll):
    @staticmethod
    def gemm_default_zero_bias():
        a = np.random.ranf([3, 5]).astype(np.float32)
        b = np.random.ranf([5, 4]).astype(np.float32)
        c = np.zeros([1, 4]).astype(np.float32)
        y = gemm_reference_implementation(a, b, c)
        a = Tensor(Dtype.FP16x16, a.shape, to_fp(
            a.flatten(), FixedImpl.FP16x16))
        b = Tensor(Dtype.FP16x16, b.shape, to_fp(
            b.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "gemm_default_no_bias"
        make_test(
            [a, b], y, "NNTrait::gemm(input_0, input_1, Option::None(()), Option::None(()), Option::None(()), false, false)", name, Trait.NN)
        
    @staticmethod
    def gemm_default_vector_bias():
        a = np.random.ranf([2, 7]).astype(np.float32)
        b = np.random.ranf([7, 4]).astype(np.float32)
        c = np.random.ranf([1, 4]).astype(np.float32)
        y = gemm_reference_implementation(a, b, c)
        a = Tensor(Dtype.FP16x16, a.shape, to_fp(
            a.flatten(), FixedImpl.FP16x16))
        b = Tensor(Dtype.FP16x16, b.shape, to_fp(
            b.flatten(), FixedImpl.FP16x16))
        c = Tensor(Dtype.FP16x16, c.shape, to_fp(
            c.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "gemm_default_vector_bias"
        make_test(
            [a, b, c], y, "NNTrait::gemm(input_0, input_1, Option::Some(input_2), Option::None(()), Option::None(()), false, false)", name, Trait.NN)
        
    @staticmethod
    def gemm_default_matrix_bias():
        a = np.random.ranf([3, 6]).astype(np.float32)
        b = np.random.ranf([6, 4]).astype(np.float32)
        c = np.random.ranf([3, 4]).astype(np.float32)
        y = gemm_reference_implementation(a, b, c)
        a = Tensor(Dtype.FP16x16, a.shape, to_fp(
            a.flatten(), FixedImpl.FP16x16))
        b = Tensor(Dtype.FP16x16, b.shape, to_fp(
            b.flatten(), FixedImpl.FP16x16))
        c = Tensor(Dtype.FP16x16, c.shape, to_fp(
            c.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "gemm_default_matrix_bias"
        make_test(
            [a, b, c], y, "NNTrait::gemm(input_0, input_1, Option::Some(input_2), Option::None(()), Option::None(()), false, false)", name, Trait.NN)
    @staticmethod
    def gemm_transposeA():
        a = np.random.ranf([6, 3]).astype(np.float32)
        b = np.random.ranf([6, 4]).astype(np.float32)
        c = np.zeros([1, 4]).astype(np.float32)
        y = gemm_reference_implementation(a, b, c, transA=1)
        a = Tensor(Dtype.FP16x16, a.shape, to_fp(
            a.flatten(), FixedImpl.FP16x16))
        b = Tensor(Dtype.FP16x16, b.shape, to_fp(
            b.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "gemm_transposeA"
        make_test(
            [a, b], y, "NNTrait::gemm(input_0, input_1, Option::None(()), Option::None(()), Option::None(()), true, false)", name, Trait.NN)
    @staticmethod
    def gemm_transposeB():
        a = np.random.ranf([3, 6]).astype(np.float32)
        b = np.random.ranf([4, 6]).astype(np.float32)
        c = np.zeros([1, 4]).astype(np.float32)
        y = gemm_reference_implementation(a, b, c, transB=1)
        a = Tensor(Dtype.FP16x16, a.shape, to_fp(
            a.flatten(), FixedImpl.FP16x16))
        b = Tensor(Dtype.FP16x16, b.shape, to_fp(
            b.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "gemm_transposeB"
        make_test(
            [a, b], y, "NNTrait::gemm(input_0, input_1, Option::None(()), Option::None(()), Option::None(()), false, true)", name, Trait.NN)
    @staticmethod
    def gemm_alpha():
        a = np.random.ranf([3, 5]).astype(np.float32)
        b = np.random.ranf([5, 4]).astype(np.float32)
        c = np.zeros([1, 4]).astype(np.float32)
        y = gemm_reference_implementation(a, b, c, alpha=0.5)
        a = Tensor(Dtype.FP16x16, a.shape, to_fp(
            a.flatten(), FixedImpl.FP16x16))
        b = Tensor(Dtype.FP16x16, b.shape, to_fp(
            b.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "gemm_alpha"
        make_test(
            [a, b], y, "NNTrait::gemm(input_0, input_1, Option::None(()), Option::Some(FixedTrait::new(32768, false)), Option::None(()), false, false)", name, Trait.NN)
    @staticmethod
    def gemm_beta():
        a = np.random.ranf([2, 7]).astype(np.float32)
        b = np.random.ranf([7, 4]).astype(np.float32)
        c = np.random.ranf([1, 4]).astype(np.float32)
        y = gemm_reference_implementation(a, b, c, beta=0.5)
        a = Tensor(Dtype.FP16x16, a.shape, to_fp(
            a.flatten(), FixedImpl.FP16x16))
        b = Tensor(Dtype.FP16x16, b.shape, to_fp(
            b.flatten(), FixedImpl.FP16x16))
        c = Tensor(Dtype.FP16x16, c.shape, to_fp(
            c.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "gemm_beta"
        make_test(
            [a, b, c], y, "NNTrait::gemm(input_0, input_1, Option::Some(input_2), Option::None(()), Option::Some(FixedTrait::new(32768, false)), false, false)", name, Trait.NN)
    @staticmethod
    def gemm_all_attributes():
        a = np.random.ranf([4, 3]).astype(np.float32)
        b = np.random.ranf([5, 4]).astype(np.float32)
        c = np.random.ranf([1, 5]).astype(np.float32)
        y = gemm_reference_implementation(
            a, b, c, transA=1, transB=1, alpha=0.25, beta=0.35
        )
        a = Tensor(Dtype.FP16x16, a.shape, to_fp(
            a.flatten(), FixedImpl.FP16x16))
        b = Tensor(Dtype.FP16x16, b.shape, to_fp(
            b.flatten(), FixedImpl.FP16x16))
        c = Tensor(Dtype.FP16x16, c.shape, to_fp(
            c.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "gemm_all_attributes"
        make_test(
            [a, b, c], y, "NNTrait::gemm(input_0, input_1, Option::Some(input_2), Option::Some(FixedTrait::new(16384, false)), Option::Some(FixedTrait::new(22938, false)), true, true)", name, Trait.NN)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/greater.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Greater(RunAll):
    @staticmethod
    def greater_u32():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            z = np.greater(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_u32"
            make_test([x, y], z, "input_0.greater(@input_1)", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.uint32)
            y = np.random.randint(0, 6, (1, 2)).astype(np.uint32)
            z = np.greater(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_u32_broadcast"
            make_test([x, y], z, "input_0.greater(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def greater_i32():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            z = np.greater(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_i32"
            make_test([x, y], z, "input_0.greater(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.int32)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.int32)
            z = np.greater(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_i32_broadcast"
            make_test([x, y], z, "input_0.greater(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def greater_i8():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            z = np.greater(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_i8"
            make_test([x, y], z, "input_0.greater(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.int8)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.int8)
            z = np.greater(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_i8_broadcast"
            make_test([x, y], z, "input_0.greater(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def greater_fp8x23():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.greater(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_fp8x23"
            make_test([x, y], z, "input_0.greater(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.greater(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_fp8x23_broadcast"
            make_test([x, y], z, "input_0.greater(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def greater_fp16x16():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.greater(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_fp16x16"
            make_test([x, y], z, "input_0.greater(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.greater(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_fp16x16_broadcast"
            make_test([x, y], z, "input_0.greater(@input_1)", name)
        default()
        broadcast()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/greater_equal.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Greater_equal(RunAll):
    @staticmethod
    def greater_equal_u32():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            z = np.greater_equal(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_equal_u32"
            make_test([x, y], z, "input_0.greater_equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 6, (1, 3, 1)).astype(np.uint32)
            z = np.greater_equal(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_equal_u32_broadcast"
            make_test([x, y], z, "input_0.greater_equal(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def greater_equal_i32():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            z = np.greater_equal(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_equal_i32"
            make_test([x, y], z, "input_0.greater_equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.int32)
            z = np.greater_equal(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_equal_i32_broadcast"
            make_test([x, y], z, "input_0.greater_equal(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def greater_equal_i8():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            z = np.greater_equal(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_equal_i8"
            make_test([x, y], z, "input_0.greater_equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.int8)
            z = np.greater_equal(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_equal_i8_broadcast"
            make_test([x, y], z, "input_0.greater_equal(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def greater_equal_fp8x23():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.greater_equal(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_equal_fp8x23"
            make_test([x, y], z, "input_0.greater_equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.float64)
            z = np.greater_equal(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_equal_fp8x23_broadcast"
            make_test([x, y], z, "input_0.greater_equal(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def greater_equal_fp16x16():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.greater_equal(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_equal_fp16x16"
            make_test([x, y], z, "input_0.greater_equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.float64)
            z = np.greater_equal(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "greater_equal_fp16x16_broadcast"
            make_test([x, y], z, "input_0.greater_equal(@input_1)", name)
        default()
        broadcast()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/grid_sample.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
from .resize import _get_all_coords
import numbers
from typing import List
import numpy as np
#from onnx.reference.ops.op_resize import _get_all_coords
def grid_sample(X, grid, mode='linear', padding_mode='zeros', align_corners=0):
    x_dims = X.shape
    grid_dims = grid.shape
    N = x_dims[0]
    C = x_dims[1]
    y_dims = (N, C, *grid_dims[1:-1])
    if np.prod(y_dims) == 0:
        return np.array([], dtype=X.dtype)
    Y = np.empty(y_dims, dtype=X.dtype)
    for n in range(N):
        grid_data = grid[n]
        for c in range(C):
            X_data = X[n, c]
            num_dims = len(x_dims[2:])
            dims = x_dims[2:]
            border = _prepare_border(dims, align_corners=align_corners)
            for ox in _get_all_coords(Y[n, c]):
                nx = grid_data[tuple(ox)]
                nx = nx[::-1]
                x = _gs_denormalize_coordinates(
                    n=nx, dims=dims, align_corners=align_corners
                )
                if mode == "nearest":
                    x = np.rint(x)
                for i, v in enumerate(x):
                    x_min = border[i]
                    x_max = border[i + num_dims]
                    if v < x_min or v > x_max:
                        if padding_mode == "border":
                            x[i] = _clamp(v, 0, dims[i] - 1)
                        elif padding_mode == "reflection":
                            x[i] = _gs_reflect(v, x_min, x_max)
                if mode == "nearest":
                    x = x.astype(np.int32)
                    Y[n][c][tuple(ox)] = _pixel_at_ndarray(
                        ndarray=X_data,
                        x=x,
                        border=border,
                        padding_mode=padding_mode,
                    )
                    
                elif mode == "linear":
                    Y[n][c][tuple(ox)] = _gs_linear_interpolation_nd_with_x(
                        data=X_data, x=x, border=border, padding_mode=padding_mode
                    )
                elif mode == "cubic":
                    Y[n][c][tuple(ox)] = _gs_cubic_interpolation_nd_with_x(
                        data=X_data, x=x, border=border, padding_mode=padding_mode
                    )
                else:
                    raise RuntimeError(
                        "GridSample interpolation only supports nearest, linear, and cubic modes."
                    )
    return (Y.astype(X.dtype),)
def _gs_denormalize(n, length: int, align_corners: bool):  
    if align_corners:
        x = (n + 1) / 2.0 * (length - 1)
    else:
        x = ((n + 1) * length - 1) / 2.0
    return x
def _gs_denormalize_coordinates(n, dims, align_corners: bool):
    x = np.zeros(len(n), dtype=np.float32)
    for i, (v, dim) in enumerate(zip(n, dims)):
        x[i] = _gs_denormalize(n=v, length=dim, align_corners=align_corners)
    return x
def _gs_reflect(x, x_min, x_max):  # type: ignore
    """Reflect by the near border till within the borders
    Use float for borders to avoid potential issues with integer T
    """
    fx = x
    rng = x_max - x_min
    if fx < x_min:           
        dx = x_min - fx
        n = int(dx / rng)
        r = dx - n * rng
        if n % 2 == 0:
            fx = x_min + r
        else:
            fx = x_max - r
    elif fx > x_max:
        dx = fx - x_max
        n = int(dx / rng)
        r = dx - n * rng
        if n % 2 == 0:
            fx = x_max - r
        else:
            fx = x_min + r
    return fx
def _gs_get_cubic_coeffs(x, coeffs):  # type: ignore
    """Calculate cubic convolution interpolation coefficients
    ROBERT G. KEYS https://ieeexplore.ieee.org/document/1163711
    Use float to avoid potential issues with integer.
    """
    cubic_alpha = -0.75
    x = abs(x)
    coeffs[0] = (
        (cubic_alpha * (x + 1) - 5 * cubic_alpha) * (x + 1) + 8 * cubic_alpha
    ) * (x + 1) - 4 * cubic_alpha
    coeffs[1] = ((cubic_alpha + 2) * x - (cubic_alpha + 3)) * x * x + 1
    coeffs[2] = ((cubic_alpha + 2) * (1 - x) - (cubic_alpha + 3)) * (1 - x) * (
        1 - x
    ) + 1
    coeffs[3] = (
        (cubic_alpha * (2 - x) - 5 * cubic_alpha) * (2 - x) + 8 * cubic_alpha
    ) * (2 - x) - 4 * cubic_alpha
    
def _gs_get_linear_coeffs(x, coeffs):
    x = abs(x)
    coeffs[0] = 1 - x
    coeffs[1] = x
    
def _gs_bicubic_interpolate(p, x, y):  # type: ignore
    v = np.empty((4,), dtype=p.dtype)
    coeffs = np.empty((4,), dtype=p.dtype)
    _gs_get_cubic_coeffs(x, coeffs)
    for i in range(4):
        v[i] = coeffs @ p[i, :]
    _gs_get_cubic_coeffs(y, coeffs)
    return coeffs @ v
def _gs_cubic_interpolation_1d_with_x(data, x, border, padding_mode):
    v = np.empty((4,), dtype=data.dtype)
    coeffs = np.empty((4,), dtype=data.dtype)
    x_0 = int(np.floor(x))
    x_1 = x_0 + 1
    x_2 = x_0 + 2
    x_minus_1 = x_0 - 1
    _gs_get_cubic_coeffs(x - x_0, coeffs)
    v[0] = _pixel_at_array(
        array=data, i=x_minus_1, border=border, padding_mode=padding_mode
    )
    v[1] = _pixel_at_array(
        array=data, i=x_0, border=border, padding_mode=padding_mode
    )
    v[2] = _pixel_at_array(
        array=data, i=x_1, border=border, padding_mode=padding_mode
    )
    v[3] = _pixel_at_array(
        array=data, i=x_2, border=border, padding_mode=padding_mode
    )
    return coeffs @ v
def _gs_linear_interpolation_1d_with_x(data, x, border, padding_mode):
    v = np.empty((2,), dtype=data.dtype)
    coeffs = np.empty((2,), dtype=data.dtype)
    x_0 = int(np.floor(x))
    x_1 = x_0 + 1
    _gs_get_linear_coeffs(x - x_0, coeffs)
    v[0] = _pixel_at_array(
        array=data, i=x_0, border=border, padding_mode=padding_mode
    )
    v[1] = _pixel_at_array(
        array=data, i=x_1, border=border, padding_mode=padding_mode
    )
    return coeffs @ v
def _gs_linear_interpolation_nd_with_x(data, x, border, padding_mode):
    num_dims = data.ndim
    assert num_dims == len(x) == int(len(border) / 2)
    if num_dims == 1:
        return _gs_linear_interpolation_1d_with_x(
            data=data, x=x[0], border=border, padding_mode=padding_mode
        )
    res1d = []
    for i in range(data.shape[0]):
        r = _gs_linear_interpolation_nd_with_x(
            data=data[i],
            x=x[1:],
            border=list(border[1:num_dims])
            + list(border[1 + num_dims : 2 * num_dims]),
            padding_mode=padding_mode,
        )
        res1d.append(r)
    res1d = np.array(res1d)
    return _gs_linear_interpolation_1d_with_x(
        data=res1d,
        x=x[0],
        border=[border[0], border[num_dims]],
        padding_mode=padding_mode,
    )
    
def _gs_cubic_interpolation_nd_with_x(data, x, border, padding_mode):
    num_dims = data.ndim
    assert num_dims == len(x) == int(len(border) / 2)
    if num_dims == 1:
        return _gs_cubic_interpolation_1d_with_x(
            data=data, x=x[0], border=border, padding_mode=padding_mode
        )
    res1d = []
    for i in range(data.shape[0]):
        r = _gs_cubic_interpolation_nd_with_x(
            data=data[i],
            x=x[1:],
            border=list(border[1:num_dims])
            + list(border[1 + num_dims : 2 * num_dims]),
            padding_mode=padding_mode,
        )
        res1d.append(r)
    res1d = np.array(res1d)
    return _gs_cubic_interpolation_1d_with_x(
        data=res1d,
        x=x[0],
        border=[border[0], border[num_dims]],
        padding_mode=padding_mode,
    )
    
def _clamp(val, lo, hi):  # type: ignore
    if val < lo:
        return lo
    if val > hi:
        return hi
    return val
def _pixel_at_ndarray(ndarray, x: List, border, padding_mode):  # type: ignore
    # boarder: [x_1_min, x_2_min, ..., x_1_max, x_2_max, ...]
    num_dims = ndarray.ndim
    assert num_dims == len(x) == int(len(border) / 2)
    if num_dims == 1:
        return _pixel_at_array(
            array=ndarray, i=x[0], border=border, padding_mode=padding_mode
        )
    i = x[0]
    d = ndarray.shape[0]
    if padding_mode == "zeros":
        if i >= 0 and i < d:
            ndarray = ndarray[i]
        else:
            # Trick
            i = 0
            ndarray = np.zeros_like(ndarray[i])
    elif padding_mode == "border":
        i = _clamp(i, 0, d - 1)
        ndarray = ndarray[i]
    else: 
        i = int(_gs_reflect(i, border[0], border[num_dims]))
        ndarray = ndarray[i]
    return _pixel_at_ndarray(
        ndarray=ndarray,
        x=x[1:],
        border=list(border[1:num_dims]) + list(border[1 + num_dims : 2 * num_dims]),
        padding_mode=padding_mode,
    )
def _pixel_at_array(array, i: int, border, padding_mode):  # type: ignore
    assert array.ndim == 1
    d = array.shape[0]
    if padding_mode == "zeros":
        if i >= 0 and i < d:
            pixel = array[i]
        else:
            pixel = 0
    elif padding_mode == "border":
        i = _clamp(i, 0, d - 1)
        pixel = array[i]
    else: 
        i = int(_gs_reflect(i, border[0], border[1]))
        pixel = array[i]
    return pixel
def _prepare_border(dims, align_corners: bool):
    # boarder: [x_1_min, x_2_min, ..., x_1_max, x_2_max, ...]
    num_dims = len(dims)
    borders = np.zeros(num_dims * 2)
    for i in range(num_dims):
        # min
        borders[i] = -0.5
        # max
        borders[i + num_dims] = dims[i] - 0.5
        if align_corners:
            # min
            borders[i] = 0.0
            # max
            borders[i + num_dims] = dims[i] - 1.0
    return borders
class Grid_sample(RunAll):
    
    @staticmethod
    def export_gridsample() -> None:
        x = np.array(
            [
                [
                    [
                        [0.0, 1.0, 2.0, 3.0],
                        [4.0, 5.0, 6.0, 7.0],
                        [8.0, 9.0, 10.0, 11.0],
                        [12.0, 13.0, 14.0, 15.0],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        
        grid = np.array(
            [
                [
                    [
                        [-1.0000, -1.0000],
                        [-0.6000, -1.0000],
                        [-0.2000, -1.0000],
                        [0.2000, -1.0000],
                        [0.6000, -1.0000],
                        [1.0000, -1.0000],
                    ],
                    [
                        [-1.0000, -0.6000],
                        [-0.6000, -0.6000],
                        [-0.2000, -0.6000],
                        [0.2000, -0.6000],
                        [0.6000, -0.6000],
                        [1.0000, -0.6000],
                    ],
                    [
                        [-1.0000, -0.2000],
                        [-0.6000, -0.2000],
                        [-0.2000, -0.2000],
                        [0.2000, -0.2000],
                        [0.6000, -0.2000],
                        [1.0000, -0.2000],
                    ],
                    [
                        [-1.0000, 0.2000],
                        [-0.6000, 0.2000],
                        [-0.2000, 0.2000],
                        [0.2000, 0.2000],
                        [0.6000, 0.2000],
                        [1.0000, 0.2000],
                    ],
                    [
                        [-1.0000, 0.6000],
                        [-0.6000, 0.6000],
                        [-0.2000, 0.6000],
                        [0.2000, 0.6000],
                        [0.6000, 0.6000],
                        [1.0000, 0.6000],
                    ],
                    [
                        [-1.0000, 1.0000],
                        [-0.6000, 1.0000],
                        [-0.2000, 1.0000],
                        [0.2000, 1.0000],
                        [0.6000, 1.0000],
                        [1.0000, 1.0000],
                    ],
                ]
            ],
            dtype=np.float32,
        )
        
        y = grid_sample(x, grid, mode ="linear")
        y = np.array(y[0])
        
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        grid = Tensor(Dtype.FP16x16, grid.shape, to_fp(grid.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "grid_sample"
        func_sig = "NNTrait::grid_sample("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x, grid], y, func_sig, name, Trait.NN)
        
    @staticmethod
    def export_gridsample_paddingmode_zeros() -> None:
        x = np.array(
            [[[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]]]],
            dtype=np.float32,
        )
        grid = np.array(
            [
                [
                    [
                        [-10.0000, -10.0000],
                        [-5.0000, -5.0000],
                        [-0.2000, -0.2000],
                        [10.0000, 10.0000],
                    ],
                    [
                        [10.0000, 10.0000],
                        [-0.2000, -0.2000],
                        [5.0000, 5.0000],
                        [10.0000, 10.0000],
                    ],
                ]
            ],
            dtype=np.float32,
        )
        y = grid_sample(x, grid, mode ="linear")
        y = np.array(y[0])
        
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        grid = Tensor(Dtype.FP16x16, grid.shape, to_fp(grid.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "grid_sample_padding_zeros"
        func_sig = "NNTrait::grid_sample("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x, grid], y, func_sig, name, Trait.NN)
        
    @staticmethod
    def export_gridsample_paddingmode_border() -> None:
        x = np.array(
            [[[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]]]],
            dtype=np.float32,
        )
        grid = np.array(
            [
                [
                    [
                        [-10.0000, -10.0000],
                        [-5.0000, -5.0000],
                        [-0.2000, -0.2000],
                        [10.0000, 10.0000],
                    ],
                    [
                        [10.0000, 10.0000],
                        [-0.2000, -0.2000],
                        [5.0000, 5.0000],
                        [10.0000, 10.0000],
                    ],
                ]
            ],
            dtype=np.float32,
        )
        y = grid_sample(x, grid, mode ="linear", padding_mode="border")
        y = np.array(y[0])
        
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        grid = Tensor(Dtype.FP16x16, grid.shape, to_fp(grid.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "grid_sample_padding_border"
        func_sig = "NNTrait::grid_sample("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(PADDING_MODE::BORDER))"
        make_test(
            [x, grid], y, func_sig, name, Trait.NN)
        
    @staticmethod
    def export_gridsample_paddingmode_reflection() -> None:
        x = np.array(
            [[[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]]]],
            dtype=np.float32,
        )
        grid = np.array(
            [
                [
                    [
                        [-10.0000, -10.0000],
                        [-5.0000, -5.0000],
                        [-0.2000, -0.2000],
                        [10.0000, 10.0000],
                    ],
                    [
                        [10.0000, 10.0000],
                        [-0.2000, -0.2000],
                        [5.0000, 5.0000],
                        [10.0000, 10.0000],
                    ],
                ]
            ],
            dtype=np.float32,
        )
        
        y = grid_sample(x, grid, mode ="linear", padding_mode="reflection")
        y = np.array(y[0])
        
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        grid = Tensor(Dtype.FP16x16, grid.shape, to_fp(grid.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "grid_sample_padding_reflection"
        func_sig = "NNTrait::grid_sample("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(PADDING_MODE::REFLECTION))"
        make_test(
            [x, grid], y, func_sig, name, Trait.NN)
        
    @staticmethod
    def export_gridsample_mode_aligncorners() -> None:
        x = np.array(
            [[[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]]]],
            dtype=np.float32,
        )
        grid = np.array(
            [
                [
                    [
                        [-1.0000, -1.0000],
                        [-0.5000, -0.5000],
                        [-0.2000, -0.2000],
                        [0.0000, 0.0000],
                    ],
                    [
                        [0.0000, 0.0000],
                        [-0.2000, -0.2000],
                        [0.5000, 0.5000],
                        [1.0000, 1.0000],
                    ],
                ]
            ],
            dtype=np.float32,
        )
        y = grid_sample(x, grid, mode ="linear", align_corners=1)
        y = np.array(y[0])
        
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        grid = Tensor(Dtype.FP16x16, grid.shape, to_fp(grid.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "grid_sample_aligncorners"
        func_sig = "NNTrait::grid_sample("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::Some(1),"
        func_sig += "Option::None,"
        func_sig += "Option::None)"
        make_test(
            [x, grid], y, func_sig, name, Trait.NN)
              
        
    @staticmethod
    def export_gridsample_nearest() -> None:
        x = np.array(
            [[[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]]]],
            dtype=np.float32,
        )
        grid = np.array(
            [
                [
                    [
                        [-1.0000, -1.0000],
                        [-0.5000, -0.5000],
                        [-0.2000, -0.2000],
                        [0.0000, 0.0000],
                    ],
                    [
                        [0.0000, 0.0000],
                        [-0.2000, -0.2000],
                        [0.5000, 0.5000],
                        [1.0000, 1.0000],
                    ],
                ]
            ],
            dtype=np.float32,
        )
        y = grid_sample(x, grid, mode ="nearest", align_corners=0)
        y = np.array(y[0])
        
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        grid = Tensor(Dtype.FP16x16, grid.shape, to_fp(grid.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "grid_sample_nearest"
        func_sig = "NNTrait::grid_sample("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::Some(0),"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::None)"
        make_test(
            [x, grid], y, func_sig, name, Trait.NN)
        
  
    @staticmethod
    def export_gridsample_nearest_align_corner() -> None:
        x = np.array(
            [[[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]]]],
            dtype=np.float32,
        )
        grid = np.array(
            [
                [
                    [
                        [-1.0000, -1.0000],
                        [-0.5000, -0.5000],
                        [-0.2000, -0.2000],
                        [0.0000, 0.0000],
                    ],
                    [
                        [0.0000, 0.0000],
                        [-0.2000, -0.2000],
                        [0.5000, 0.5000],
                        [1.0000, 1.0000],
                    ],
                ]
            ],
            dtype=np.float32,
        )
        y = grid_sample(x, grid, mode ="nearest", align_corners=1)
        y = np.array(y[0])
        
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        grid = Tensor(Dtype.FP16x16, grid.shape, to_fp(grid.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "grid_sample_nearest_aligncorner"
        func_sig = "NNTrait::grid_sample("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::Some(1),"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::None)"
        make_test(
            [x, grid], y, func_sig, name, Trait.NN)
        
    @staticmethod
    def export_gridsample_cubic() -> None:
        x = np.array(
            [[[[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]]]],
            dtype=np.float32,
        )
        grid = np.array(
            [
                [
                    [
                        [-1.0000, -1.0000],
                        [-0.5000, -0.5000],
                        [-0.2000, -0.2000],
                        [0.0000, 0.0000],
                    ],
                    [
                        [0.0000, 0.0000],
                        [-0.2000, -0.2000],
                        [0.5000, 0.5000],
                        [1.0000, 1.0000],
                    ],
                ]
            ],
            dtype=np.float32,
        )
        y = grid_sample(x, grid, mode ="cubic", align_corners=0)
        y = np.array(y[0])
        
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        grid = Tensor(Dtype.FP16x16, grid.shape, to_fp(grid.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "grid_sample_cubic"
        func_sig = "NNTrait::grid_sample("
        func_sig += "@input_0,"
        func_sig += "@input_1,"
        func_sig += "Option::Some(0),"
        func_sig += "Option::Some(MODE::CUBIC),"
        func_sig += "Option::None)"
        make_test(
            [x, grid], y, func_sig, name, Trait.NN)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/hamming_window.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait, get_data_statement
def hamming_window(size, output_datatype=None, periodic=None) -> np.ndarray:  # type: ignore
    if periodic == 1:
        N_1 = size
    else:
        N_1 = size - 1
    ni = np.arange(size, dtype=output_datatype)
    alpha = 25.0 / 46.0
    beta = 1 - alpha
    res = alpha - np.cos(ni * np.float64(np.pi).astype(output_datatype) * 2 / N_1).astype(output_datatype) * beta
    return res.astype(output_datatype)
class Hamming_window(RunAll):
     
    @staticmethod
    # We test here with fp8x23 implementation.
    def fp8x23():
        args = [4]
        # x = np.float64(4)
        args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP8x23), Dtype.FP8x23)
        y = hamming_window(*args, np.float64)
        
        # Convert the floats values in `y` to fixed points with `to_fp` method:
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
        
        # Define the name of the generated folder. 
        name = "hamming_window_fp8x23"
        # Invoke `make_test` method to generate corresponding Cairo tests:
        make_test(
            [], # List of input tensors.
            y, # The expected output result.
            f"TensorTrait::hamming_window({','.join(args_str)}, Option::Some(0))", # The code signature.
            name # The name of the generated folder.
        )
     
    @staticmethod
    # We test here with fp16x16 implementation.
    def fp16x16():
        args = [10]
        # x = np.float64(4)
        args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP16x16), Dtype.FP16x16)
        y = hamming_window(*args, np.float16)
        
        # Convert the floats values in `y` to fixed points with `to_fp` method:
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        
        # Define the name of the generated folder. 
        name = "hamming_window_fp16x16"
        # Invoke `make_test` method to generate corresponding Cairo tests:
        make_test(
            [], # List of input tensors.
            y, # The expected output result.
            f"TensorTrait::hamming_window({','.join(args_str)}, Option::Some(0))", # The code signature.
            name # The name of the generated folder.
        )
     
    # @staticmethod
    # # We test here with i8 implementation.
    # def i8():
    #     print(get_data_statement(np.array([np.pi]).flatten(), Dtype.I8))
    #     args = [5]
    #     # x = np.float64(4)
    #     args_str = get_data_statement(np.array(args).flatten(), Dtype.I8)
    #     y = hamming_window(*args, np.int8)
    #     print(y)
        
    #     # Convert the floats values in `y` to fixed points with `to_fp` method:
    #     y = Tensor(Dtype.I8, y.shape, y.flatten())
        
    #     # Define the name of the generated folder. 
    #     name = "hamming_window_i8"
    #     # Invoke `make_test` method to generate corresponding Cairo tests:
    #     make_test(
    #         [], # List of input tensors.
    #         y, # The expected output result.
    #         f"TensorTrait::hamming_window({','.join(args_str)}, Option::Some(1))", # The code signature.
    #         name # The name of the generated folder.
    #     )
    
    # @staticmethod
    # # We test here with i32 implementation.
    # def i32():
    #     print(get_data_statement(np.array([np.pi]).flatten(), Dtype.I32))
    #     args = [4]
    #     # x = np.float64(4)
    #     args_str = get_data_statement(np.array(args).flatten(), Dtype.I32)
    #     y = hamming_window(*args, np.int32)
    #     print(y)
        
    #     # Convert the floats values in `y` to fixed points with `to_fp` method:
    #     y = Tensor(Dtype.I32, y.shape, y.flatten())
        
    #     # Define the name of the generated folder. 
    #     name = "hamming_window_i32"
    #     # Invoke `make_test` method to generate corresponding Cairo tests:
    #     make_test(
    #         [], # List of input tensors.
    #         y, # The expected output result.
    #         f"TensorTrait::hamming_window({','.join(args_str)}, Option::Some(0))", # The code signature.
    #         name # The name of the generated folder.
    #     )
     
    # @staticmethod
    # # We test here with u32 implementation.
    # def u32():
    #     print(get_data_statement(np.array([np.pi]).flatten(), Dtype.U32))
    #     args = [4]
    #     # x = np.float64(4)
    #     args_str = get_data_statement(np.array(args).flatten(), Dtype.U32)
    #     y = hamming_window(*args, np.uint32)
    #     print(y)
        
    #     # Convert the floats values in `y` to fixed points with `to_fp` method:
    #     y = Tensor(Dtype.U32, y.shape, y.flatten())
        
    #     # Define the name of the generated folder. 
    #     name = "hamming_window_u32"
    #     # Invoke `make_test` method to generate corresponding Cairo tests:
    #     make_test(
    #         [], # List of input tensors.
    #         y, # The expected output result.
    #         f"TensorTrait::hamming_window({','.join(args_str)}, Option::Some(0))", # The code signature.
    #         name # The name of the generated folder.
    #     )
         
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/hann_window.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait, get_data_statement
def hann_window(size, output_datatype=None, periodic=None) -> np.ndarray:  # type: ignore
    if periodic == 1:
        N_1 = size
    else:
        N_1 = size - 1
    ni = np.arange(size, dtype=output_datatype)
    res = np.sin((ni * np.float64(np.pi).astype(output_datatype) / N_1).astype(output_datatype)) ** 2
    return res.astype(output_datatype)
class Hann_window(RunAll):
     
    @staticmethod
    # We test here with fp8x23 implementation.
    def fp8x23():
        print(get_data_statement(to_fp(np.array([np.pi]).flatten(), FixedImpl.FP8x23), Dtype.FP8x23))
        args = [4]
        # x = np.float64(4)
        args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP8x23), Dtype.FP8x23)
        y = hann_window(*args, np.float64)
        print(y)
        
        # Convert the floats values in `y` to fixed points with `to_fp` method:
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
        
        # Define the name of the generated folder. 
        name = "hann_window_fp8x23"
        # Invoke `make_test` method to generate corresponding Cairo tests:
        make_test(
            [], # List of input tensors.
            y, # The expected output result.
            f"TensorTrait::hann_window({','.join(args_str)}, Option::Some(0))", # The code signature.
            name # The name of the generated folder.
        )
     
    @staticmethod
    # We test here with fp16x16 implementation.
    def fp16x16():
        print(get_data_statement(to_fp(np.array([np.pi]).flatten(), FixedImpl.FP16x16), Dtype.FP16x16))
        args = [10]
        # x = np.float64(4)
        args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP16x16), Dtype.FP16x16)
        y = hann_window(*args, np.float16)
        print(y)
        
        # Convert the floats values in `y` to fixed points with `to_fp` method:
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        
        # Define the name of the generated folder. 
        name = "hann_window_fp16x16"
        # Invoke `make_test` method to generate corresponding Cairo tests:
        make_test(
            [], # List of input tensors.
            y, # The expected output result.
            f"TensorTrait::hann_window({','.join(args_str)}, Option::Some(0))", # The code signature.
            name # The name of the generated folder.
        )
     
    # @staticmethod
    # # We test here with i8 implementation.
    # def i8():
    #     print(get_data_statement(np.array([np.pi]).flatten(), Dtype.I8))
    #     args = [5]
    #     # x = np.float64(4)
    #     args_str = get_data_statement(np.array(args).flatten(), Dtype.I8)
    #     y = hann_window(*args, np.int8)
    #     print(y)
        
    #     # Convert the floats values in `y` to fixed points with `to_fp` method:
    #     y = Tensor(Dtype.I8, y.shape, y.flatten())
        
    #     # Define the name of the generated folder. 
    #     name = "hann_window_i8"
    #     # Invoke `make_test` method to generate corresponding Cairo tests:
    #     make_test(
    #         [], # List of input tensors.
    #         y, # The expected output result.
    #         f"TensorTrait::hann_window({','.join(args_str)}, Option::Some(1))", # The code signature.
    #         name # The name of the generated folder.
    #     )
    
    # @staticmethod
    # # We test here with i32 implementation.
    # def i32():
    #     print(get_data_statement(np.array([np.pi]).flatten(), Dtype.I32))
    #     args = [4]
    #     # x = np.float64(4)
    #     args_str = get_data_statement(np.array(args).flatten(), Dtype.I32)
    #     y = hann_window(*args, np.int32)
    #     print(y)
        
    #     # Convert the floats values in `y` to fixed points with `to_fp` method:
    #     y = Tensor(Dtype.I32, y.shape, y.flatten())
        
    #     # Define the name of the generated folder. 
    #     name = "hann_window_i32"
    #     # Invoke `make_test` method to generate corresponding Cairo tests:
    #     make_test(
    #         [], # List of input tensors.
    #         y, # The expected output result.
    #         f"TensorTrait::hann_window({','.join(args_str)}, Option::Some(0))", # The code signature.
    #         name # The name of the generated folder.
    #     )
     
    # @staticmethod
    # # We test here with u32 implementation.
    # def u32():
    #     print(get_data_statement(np.array([np.pi]).flatten(), Dtype.U32))
    #     args = [4]
    #     # x = np.float64(4)
    #     args_str = get_data_statement(np.array(args).flatten(), Dtype.U32)
    #     y = hann_window(*args, np.uint32)
    #     print(y)
        
    #     # Convert the floats values in `y` to fixed points with `to_fp` method:
    #     y = Tensor(Dtype.U32, y.shape, y.flatten())
        
    #     # Define the name of the generated folder. 
    #     name = "hann_window_u32"
    #     # Invoke `make_test` method to generate corresponding Cairo tests:
    #     make_test(
    #         [], # List of input tensors.
    #         y, # The expected output result.
    #         f"TensorTrait::hann_window({','.join(args_str)}, Option::Some(0))", # The code signature.
    #         name # The name of the generated folder.
    #     )
         
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/hard_sigmoid.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
class Hard_sigmoid(RunAll):
    @staticmethod
    def fp8x23():
        alpha = 0.2
        beta = 0.5
        x = np.random.uniform(-3, 3, (2, 2)).astype(np.float32)
        y = np.maximum(0, np.minimum(1, alpha * x + beta))
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "hard_sigmoid_fp8x23"
        make_test([x], y, "NNTrait::hard_sigmoid(@input_0, @FixedTrait::new(1677721, false), @FixedTrait::new(4194304, false))",
                    name, Trait.NN)
    @staticmethod
    def fp16x16():
        alpha = 0.2
        beta = 0.5
        x = np.random.uniform(-3, 3, (2, 2)).astype(np.float32)
        y = np.maximum(0, np.minimum(1, alpha * x + beta)) 
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "hard_sigmoid_fp16x16"
        make_test([x], y, "NNTrait::hard_sigmoid(@input_0, @FixedTrait::new(13107, false), @FixedTrait::new(32768, false))",
                    name, Trait.NN)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/identity.py 
 | 
	import numpy as np 
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Identity(RunAll):
    @staticmethod
    def identity_fP8x23():
        def identity():
            x = np.array([[1, 2], [3, 4]])
            y = x
           
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "identity_fP8x23"
            make_test(
                [x], y, "input_0.identity()", name)
        identity()
    @staticmethod
    def identity_fP16x16():
        def identity():
            x = np.array([[1, 2], [3, 4]])
            y = x
           
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "identity_fP16x16"
            make_test(
                [x], y, "input_0.identity()", name)
        identity()
    @staticmethod
    def identity_i8():
        def identity():
            x = np.array([[1, 2], [3, 4]])
            y = x
           
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "identity_i8"
            make_test(
                [x], y, "input_0.identity()", name)
        identity()
    @staticmethod
    def identity_i32():
        def identity():
            x = np.array([[1, 2], [3, 4]])
            y = x
           
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "identity_i32"
            make_test(
                [x], y, "input_0.identity()", name)
        identity()
    @staticmethod
    def identity_u32():
        def identity():
            x = np.array([[1, 2], [3, 4]])
            y = x
           
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "identity_u32"
            make_test(
                [x], y, "input_0.identity()", name)
        identity()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/is_inf.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
INF = 2**32 - 1
class Is_inf(RunAll):
    @staticmethod
    def is_inf_u32():
        def default():
            input_0 = np.array([1, 0, INF, 8, -INF, INF], dtype=np.uint32)
            output = np.array([False, False, True, False, True, True], dtype=bool)
            input_0 = Tensor(Dtype.U32, input_0.shape, input_0.flatten())
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            name = "is_inf_u32"
            make_test([input_0], output, "TensorTrait::is_inf(@input_0, Option::None, Option::None)", name)
        default()
    @staticmethod
    def is_inf_i32():
        def default():
            input_0 = np.array([-1, 0, INF, 8, -INF, INF], dtype=np.int32)
            output = np.array([False, False, True, False, True, True], dtype=bool)
            input_0 = Tensor(Dtype.I32, input_0.shape, input_0.flatten())
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            
            name = "is_inf_i32"
            make_test([input_0], output, "TensorTrait::is_inf(@input_0, Option::None, Option::None)", name)
        def positive():
            input_0 = np.array([-1, 0, INF, 8, -INF, INF], dtype=np.int32)
            output = np.array([False, False, True, False, False, True], dtype=bool)
            input_0 = Tensor(Dtype.I32, input_0.shape, input_0.flatten())
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            
            name = "is_pos_inf_i32"
            make_test([input_0], output, "TensorTrait::is_inf(@input_0, Option::Some(0), Option::Some(1))", name)
        def negative():
            input_0 = np.array([-1, 0, INF, 8, -INF, INF], dtype=np.int32)
            output = np.array([False, False, False, False, True, False], dtype=bool)
            input_0 = Tensor(Dtype.I32, input_0.shape, input_0.flatten())
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            
            name = "is_neg_inf_i32"
            make_test([input_0], output, "TensorTrait::is_inf(@input_0, Option::Some(1), Option::Some(0))", name)
        default()
        positive()
        negative()
    @staticmethod
    def is_inf_i8():
        def default():
            input_0 = np.array([-1, 0, INF, 8, -INF, INF], dtype=np.int8)
            output = np.array([False, False, True, False, True, True], dtype=bool)
            input_0 = Tensor(Dtype.I8, input_0.shape, input_0.flatten())
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            
            name = "is_inf_i8"
            make_test([input_0], output, "TensorTrait::is_inf(@input_0, Option::None, Option::None)", name)
        def positive():
            input_0 = np.array([-1, 0, INF, 8, -INF, INF], dtype=np.int32)
            output = np.array([False, False, True, False, False, True], dtype=bool)
            input_0 = Tensor(Dtype.I8, input_0.shape, input_0.flatten())
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            
            name = "is_pos_inf_i8"
            make_test([input_0], output, "TensorTrait::is_inf(@input_0, Option::Some(0), Option::Some(1))", name)
        def negative():
            input_0 = np.array([-1, 0, INF, 8, -INF, INF], dtype=np.int32)
            output = np.array([False, False, False, False, True, False], dtype=bool)
            input_0 = Tensor(Dtype.I8, input_0.shape, input_0.flatten())
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            
            name = "is_neg_inf_i8"
            make_test([input_0], output, "TensorTrait::is_inf(@input_0, Option::Some(1), Option::Some(0))", name)
        default()
        positive()
        negative()
    @staticmethod
    def is_inf_fp8x23():
        def default():
            input_0 = np.array([-1.2, 0, INF, 2.8, -INF, INF], dtype=np.float64)
            output = np.array([False, False, True, False, True, True], dtype=bool)
            input_0 = Tensor(Dtype.FP8x23, input_0.shape, to_fp(
                input_0.flatten(), FixedImpl.FP8x23))
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            
            name = "is_inf_fp8x23"
            make_test([input_0], output, "TensorTrait::is_inf(@input_0, Option::None, Option::None)", name)
        def positive():
            input_0 = np.array([-1.2, 0, INF, 2.8, -INF, INF], dtype=np.float64)
            output = np.array([False, False, True, False, False, True], dtype=bool)
            input_0 = Tensor(Dtype.FP8x23, input_0.shape, input_0.flatten())
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            
            name = "is_pos_inf_fp8x23"
            make_test([input_0], output, "TensorTrait::is_inf(@input_0, Option::Some(0), Option::Some(1))", name)
        def negative():
            input_0 = np.array([-1.2, 0, INF, 2.8, -INF, INF], dtype=np.float64)
            output = np.array([False, False, False, False, True, False], dtype=bool)
            input_0 = Tensor(Dtype.FP8x23, input_0.shape, input_0.flatten())
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            
            name = "is_neg_inf_fp8x23"
            make_test([input_0], output, "TensorTrait::is_inf(@input_0, Option::Some(1), Option::Some(0))", name)
        default()
        positive()
        negative()
    @staticmethod
    def is_inf_fp16x16():
        def default():
            input_0 = np.array([-1.2, 0, INF, 2.8, -INF, INF], dtype=np.float64)
            output = np.array([False, False, True, False, True, True], dtype=bool)
            input_0 = Tensor(Dtype.FP16x16, input_0.shape, to_fp(
                input_0.flatten(), FixedImpl.FP16x16))
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            
            name = "is_inf_fp16x16"
            make_test([input_0], output, "TensorTrait::is_inf(@input_0, Option::None, Option::None)", name)
        def positive():
            input_0 = np.array([-1.2, 0, INF, 2.8, -INF, INF], dtype=np.float64)
            output = np.array([False, False, True, False, False, True], dtype=bool)
            input_0 = Tensor(Dtype.FP16x16, input_0.shape, input_0.flatten())
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            
            name = "is_pos_inf_fp16x16"
            make_test([input_0], output, "TensorTrait::is_inf(@input_0, Option::Some(0), Option::Some(1))", name)
        def negative():
            input_0 = np.array([-1.2, 0, INF, 2.8, -INF, INF], dtype=np.float64)
            output = np.array([False, False, False, False, True, False], dtype=bool)
            input_0 = Tensor(Dtype.FP16x16, input_0.shape, input_0.flatten())
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            
            name = "is_neg_inf_fp16x16"
            make_test([input_0], output, "TensorTrait::is_inf(@input_0, Option::Some(1), Option::Some(0))", name)
        default()
        positive()
        negative()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/is_nan.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
# NaN is represented with -0
NaN = -0
class Is_nan(RunAll):
    @staticmethod
    def is_nan_fp8x23():
        def default():
            input_0 = np.array([-1.2, 0, NaN, 2.8, NaN, NaN], dtype=np.float64)
            output = np.array([False, False, True, False, True, True], dtype=bool)
            input_0 = Tensor(Dtype.FP8x23, input_0.shape, to_fp(
                input_0.flatten(), FixedImpl.FP8x23))
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            
            name = "is_nan_fp8x23"
            make_test([input_0], output, "TensorTrait::is_nan(@input_0)", name)
        default()
    @staticmethod
    def is_nan_fp16x16():
        def default():
            input_0 = np.array([-1.2, 0, NaN, 2.8, NaN, NaN], dtype=np.float64)
            output = np.array([False, False, True, False, True, True], dtype=bool)
            input_0 = Tensor(Dtype.FP16x16, input_0.shape, to_fp(
                input_0.flatten(), FixedImpl.FP16x16))
            output = Tensor(Dtype.BOOL, output.shape, output.flatten())
            
            name = "is_nan_fp16x16"
            make_test([input_0], output, "TensorTrait::is_nan(@input_0)", name)
        default()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/label_encoder.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
# Copyright (c) ONNX Project Contributors
# SPDX-License-Identifier: Apache-2.0
# pylint: disable=R0913,R0914,W0221
def labelEncoder(  # type: ignore
    x,
    default_float=None,
    default_int64=None,
    default_string=None,
    keys_floats=None,
    keys_int64s=None,
    keys_strings=None,
    values_floats=None,
    values_int64s=None,
    values_strings=None,
):
    keys = keys_floats if keys_floats is not None else (keys_int64s if np.any(keys_int64s) else keys_strings)
    values = values_floats if values_floats is not None else (values_int64s if np.any(values_int64s) else values_strings)
    classes = dict(zip(keys, values))
    if id(keys) == id(keys_floats):
        cast = float
    elif id(keys) == id(keys_int64s):
        cast = int  # type: ignore
    else:
        cast = str  # type: ignore
    if id(values) == id(values_floats):
        defval = default_float
        dtype = np.float32
    elif id(values) == id(values_int64s):
        defval = default_int64
        dtype = np.int64  # type: ignore
    else:
        defval = default_string
        if not isinstance(defval, str):
            defval = ""
        dtype = np.str_  # type: ignore
    shape = x.shape
    if len(x.shape) > 1:
        x = x.flatten()
    res = []
    for i in range(0, x.shape[0]):
        v = classes.get(cast(x[i]), defval)
        res.append(v)
    return np.array(res, dtype=dtype).reshape(shape)
class Label_encoder(RunAll):
    @staticmethod
    def label_encoder_fp16x16():
            
        def labelencoder():
            def default():
                x = np.array([1, 2, 3, 4, 5, 6, 1, 2, 3]).astype(np.int64)
                keys = np.array([1, 2, 5, 6, ]).astype(np.int64)
                values = np.array([11, 22, 55, 66]).astype(np.int64)
                default = np.array(99).astype(np.int64)
                y = labelEncoder(x=x, keys_int64s=keys, values_int64s=values, default_int64=default)
                x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
                default = Tensor(Dtype.FP16x16, default.shape, to_fp(default.flatten(), FixedImpl.FP16x16))
                keys = Tensor(Dtype.FP16x16, keys.shape, to_fp(keys.flatten(), FixedImpl.FP16x16))
                values = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) 
                name = "label_encoder_fp16x16_3d_default"
                make_test(
                    inputs = [x, default, keys, values], output = y, func_sig = """input_0.label_encoder(default_list:Option::None, default_tensor: Option::Some(input_1), 
                    keys:Option::None, keys_tensor: Option::Some(input_2),
                    values: Option::None, values_tensor: Option::Some(input_3))""", 
                    name= name)
            
            default()
        labelencoder()
    @staticmethod
    def label_encoder_fp8x23():
            
        def label_encoder():
            def default():
                
                x = np.array([1, 2, 3, 4, 5, 6, 1, 2, 3, 7, 8]).astype(np.int64)
                keys = np.array([1, 2, 5, 6, 7]).astype(np.int64)
                values = np.array([11, 22, 55, 66, 77]).astype(np.int64)
                default = np.array(99).astype(np.int64)
                y = labelEncoder(x=x, keys_int64s=keys, values_int64s=values, default_int64=default)
                x = Tensor(Dtype.FP8x23, x.shape, to_fp(x.flatten(), FixedImpl.FP8x23))
                default = Tensor(Dtype.FP8x23, default.shape, to_fp(default.flatten(), FixedImpl.FP8x23))
                keys = Tensor(Dtype.FP8x23, keys.shape, to_fp(keys.flatten(), FixedImpl.FP8x23))
                values = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) 
                name = "label_encoder_fp8x23_default"
                make_test(
                    inputs = [x, default, keys, values], output = y, func_sig = """input_0.label_encoder(default_list:Option::None, default_tensor: Option::Some(input_1), 
                    keys:Option::None, keys_tensor: Option::Some(input_2),
                    values: Option::None, values_tensor: Option::Some(input_3))""", 
                    name= name)
          
                
            default()
        label_encoder()
    @staticmethod
    def label_encoder_i8():
            
        def label_encoder_3D():
            def default():
                x = np.array([1, 2, 3, 4, 5, 6, 1, 2, 3, 7, 8]).astype(np.int8)
                keys = np.array([1, 2, 5, 6, 7]).astype(np.int8)
                values = np.array([11, 22, 55, 66, 77]).astype(np.int8)
                default = np.array(99).astype(np.int8)
                y = labelEncoder(x=x, keys_int64s=keys, values_int64s=values, default_int64=default)
                x =  Tensor(Dtype.I8, x.shape, x.flatten())
                default =  Tensor(Dtype.I8, default.shape, default.flatten())
                keys =  Tensor(Dtype.I8, keys.shape, keys.flatten())
                values =  Tensor(Dtype.I8, values.shape, values.flatten())
                y =  Tensor(Dtype.I8, y.shape, y.flatten())
                name = "label_encoder_i8_default"
                make_test(
                    inputs = [x, default, keys, values], output = y, func_sig = """input_0.label_encoder(default_list:Option::None, default_tensor: Option::Some(input_1), 
                    keys:Option::None, keys_tensor: Option::Some(input_2),
                    values: Option::None, values_tensor: Option::Some(input_3))""", 
                    name= name)
                
           
            default()
        label_encoder_3D()
    @staticmethod
    def label_encoder_i32():
        def label_encoder_3D():
            def default():
                x = np.array([1, 2, 3, 4, 5, 6, 1, 2, 3, 7, 8]).astype(np.int32)
                keys = np.array([1, 2, 5, 6, 7]).astype(np.int32)
                values = np.array([11, 22, 55, 66, 77]).astype(np.int32)
                default = np.array(99).astype(np.int32)
                y = labelEncoder(x=x, keys_int64s=keys, values_int64s=values, default_int64=default)
                x =  Tensor(Dtype.I32, x.shape, x.flatten())
                default =  Tensor(Dtype.I32, default.shape, default.flatten())
                keys =  Tensor(Dtype.I32, keys.shape, keys.flatten())
                values =  Tensor(Dtype.I32, values.shape, values.flatten())
                y =  Tensor(Dtype.I32, y.shape, y.flatten())
                name = "label_encoder_i32_default"
                make_test(
                    inputs = [x, default, keys, values], output = y, func_sig = """input_0.label_encoder(default_list:Option::None, default_tensor: Option::Some(input_1), 
                    keys:Option::None, keys_tensor: Option::Some(input_2),
                    values: Option::None, values_tensor: Option::Some(input_3))""", 
                    name= name)
                
                
           
                
            default()
        label_encoder_3D()
    @staticmethod
    def label_encoder_u32():
            
        def label_encoder_3D():
            def default():
                x = np.array([1, 2, 3, 4, 5, 6, 1, 2, 3, 7, 8]).astype(np.uint32)
                keys = np.array([1, 2, 5, 6, 7]).astype(np.uint32)
                values = np.array([11, 22, 55, 66, 77]).astype(np.uint32)
                default = np.array(99).astype(np.uint32)
                y = labelEncoder(x=x, keys_int64s=keys, values_int64s=values, default_int64=default)
                x =  Tensor(Dtype.U32, x.shape, x.flatten())
                default =  Tensor(Dtype.U32, default.shape, default.flatten())
                keys =  Tensor(Dtype.U32, keys.shape, keys.flatten())
                values =  Tensor(Dtype.U32, values.shape, values.flatten())
                y =  Tensor(Dtype.U32, y.shape, y.flatten())
                
                name = "label_encoder_u32_default"
                make_test(
                    inputs = [x, default, keys, values], output = y, func_sig = """input_0.label_encoder(default_list:Option::None, default_tensor: Option::Some(input_1), 
                    keys:Option::None, keys_tensor: Option::Some(input_2),
                    values: Option::None, values_tensor: Option::Some(input_3))""", 
                    name= name)
                
           
            default()
        label_encoder_3D()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/layer_normalization.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
import numpy as np
import onnx
from onnx.backend.test.case.base import Base
from onnx.backend.test.case.node import expect
def _layer_normalization(X, W, B, axis=-1, epsilon=1e-5): 
    X_shape = X.shape
    X_rank = len(X_shape)
    if axis < 0:
        axis = axis + X_rank
    unsqueezed_rank = X_rank - axis
    reduction_shape = X_shape[0:axis] + (1,) * unsqueezed_rank
    row_number = 1
    col_number = 1
    for i in range(X_rank):
        if i < axis:
            row_number *= X_shape[i]
        else:
            col_number *= X_shape[i]
    x_mat = np.reshape(X, (row_number, col_number))
    x_mean = np.sum(x_mat, axis=1, keepdims=True) / col_number
    x_diff = x_mat - x_mean
    x_squared_diff = x_diff * x_diff
    variance = np.sum(x_squared_diff, axis=1, keepdims=True) / col_number
    variance_eps = variance + epsilon
    std_dev = np.sqrt(variance_eps)
    inv_std_dev = np.reciprocal(std_dev)
    y_mat = x_diff * inv_std_dev
    Y = np.reshape(y_mat, X_shape) * W + B
    X_mean = np.reshape(x_mean, reduction_shape)
    X_inv_std_dev = np.reshape(inv_std_dev, reduction_shape)
    return Y, X_mean, X_inv_std_dev
def calculate_normalized_shape(X_shape, axis):  
    X_rank = len(X_shape)
    if axis < 0:
        axis = axis + X_rank
    return X_shape[axis:]
class Layer_normalization(RunAll):
    @staticmethod
    def export4d() -> None:
        X = np.random.randn(2, 3, 4, 5).astype(np.float32)
        def case(axis: int) -> None:
            normalized_shape = calculate_normalized_shape(X.shape, axis)
            W = np.random.randn(*normalized_shape).astype(np.float32)
            B = np.random.randn(*normalized_shape).astype(np.float32)
            Y, mean, inv_std_dev = _layer_normalization(X, W, B, axis)
            if axis < 0:
                name = f"layer_normalization_4d_axis_negative_{-axis}"
                func_sig = f"input_0.layer_normalization(@input_1,Option::Some(@input_2),Option::Some({-axis}),Option::None,Option::None)"
            else:
                name = f"layer_normalization_4d_axis{axis}"
                func_sig = f"input_0.layer_normalization(@input_1,Option::Some(@input_2),Option::Some({axis}),Option::None,Option::None)"
            x = Tensor(Dtype.FP8x23, X.shape, to_fp(X.flatten(), FixedImpl.FP8x23))
            w = Tensor(Dtype.FP8x23, W.shape, to_fp(W.flatten(), FixedImpl.FP8x23))
            b = Tensor(Dtype.FP8x23, B.shape, to_fp(B.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, Y.shape, to_fp(Y.flatten(), FixedImpl.FP8x23))
            
            make_test([x,w,b], y, func_sig, name)
        for i in range(len(X.shape)):
            case(i)
            case(i - len(X.shape))
    @staticmethod
    def export_default_axis() -> None:
        X = np.random.randn(2, 3, 4, 5).astype(np.float32)
        normalized_shape = calculate_normalized_shape(X.shape, -1)
        W = np.random.randn(*normalized_shape).astype(np.float32)
        B = np.random.randn(*normalized_shape).astype(np.float32)
        Y, mean, inv_std_dev = _layer_normalization(X, W, B)
        x = Tensor(Dtype.FP16x16, X.shape, to_fp(X.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, W.shape, to_fp(W.flatten(), FixedImpl.FP16x16))
        b = Tensor(Dtype.FP16x16, B.shape, to_fp(B.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, Y.shape, to_fp(Y.flatten(), FixedImpl.FP16x16))
        
        name = "layer_normalization_default_axis"
        make_test([x,w,b], y, "input_0.layer_normalization(@input_1,Option::Some(@input_2),Option::None,Option::None,Option::None)", name)
    @staticmethod
    def export3d_epsilon() -> None:
        epsilon = 1e-1
        X = np.random.randn(2, 3, 5).astype(np.float32)
        def case(axis: int) -> None:
            normalized_shape = calculate_normalized_shape(X.shape, axis)
            W = np.random.randn(*normalized_shape).astype(np.float32)
            B = np.random.randn(*normalized_shape).astype(np.float32)
            Y, mean, inv_std_dev = _layer_normalization(X, W, B, axis, epsilon)
            if axis < 0:
                name = f"layer_normalization_3d_axis_negative_{-axis}_epsilon"
                func_sig = f"input_0.layer_normalization(@input_1,Option::Some(@input_2),Option::Some({-axis}),Option::Some(FixedTrait::new(6554, false)),Option::None)"
            else:
                name = f"layer_normalization_3d_axis{axis}_epsilon"
                func_sig = f"input_0.layer_normalization(@input_1,Option::Some(@input_2),Option::Some({axis}),Option::Some(FixedTrait::new(6554, false)),Option::None)"
            x = Tensor(Dtype.FP16x16, X.shape, to_fp(X.flatten(), FixedImpl.FP16x16))
            w = Tensor(Dtype.FP16x16, W.shape, to_fp(W.flatten(), FixedImpl.FP16x16))
            b = Tensor(Dtype.FP16x16, B.shape, to_fp(B.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, Y.shape, to_fp(Y.flatten(), FixedImpl.FP16x16))
            
            make_test([x,w,b], y, func_sig, name)
        for i in range(len(X.shape)):
            case(i)
            case(i - len(X.shape))
    @staticmethod
    def test_2d_example() -> None:
        X = np.random.randn(3, 4).astype(np.float32)
        def case(axis: int) -> None:
            normalized_shape = calculate_normalized_shape(X.shape, axis)
            W = np.random.randn(*normalized_shape).astype(np.float32)
            B = np.random.randn(*normalized_shape).astype(np.float32)
            Y, mean, inv_std_dev = _layer_normalization(X, W, B, axis=axis)
            node = onnx.helper.make_node(
                "LayerNormalization",
                inputs=["X", "W", "B"],
                outputs=["Y", "Mean", "InvStdDev"],
                axis=axis,
            )
            x = Tensor(Dtype.FP16x16, X.shape, to_fp(X.flatten(), FixedImpl.FP16x16))
            w = Tensor(Dtype.FP16x16, W.shape, to_fp(W.flatten(), FixedImpl.FP16x16))
            b = Tensor(Dtype.FP16x16, B.shape, to_fp(B.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, Y.shape, to_fp(Y.flatten(), FixedImpl.FP16x16))
            name = "layer_normalization_test"
            make_test([x,w,b], y, "input_0.layer_normalization(@input_1,Option::Some(@input_2),Option::None,Option::None,Option::None)", name)
        case(-1) 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/leaky_relu.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
import tensorflow as tf
class Leaky_relu(RunAll):
    @staticmethod
    def leaky_relu_fp8x23():
        x = np.random.uniform(-5, 7, (2, 2)).astype(np.float64)
        layer = tf.keras.layers.LeakyReLU(alpha=0.1)
        y = layer(x).numpy()
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "leaky_relu_fp8x23"
        make_test([x], y, "NNTrait::leaky_relu(@input_0, @FixedTrait::new(838861, false))",
                  name, Trait.NN)
    @staticmethod
    def leaky_relu_fp16x16():
        x = np.random.uniform(-5, 7, (2, 2)).astype(np.float64)
        layer = tf.keras.layers.LeakyReLU(alpha=0.1)
        y = layer(x).numpy()
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "leaky_relu_fp16x16"
        make_test([x], y, "NNTrait::leaky_relu(@input_0, @FixedTrait::new(6554, false))",
                  name, Trait.NN)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/less.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Less(RunAll):
    @staticmethod
    def less_u32():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            z = np.less(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_u32"
            make_test([x, y], z, "input_0.less(@input_1)", name)
        def broadcast():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 6, (1, 3, 1)).astype(np.uint32)
            z = np.less(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_u32_broadcast"
            make_test([x, y], z, "input_0.less(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def less_i32():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            z = np.less(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_i32"
            make_test([x, y], z, "input_0.less(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.int32)
            z = np.less(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_i32_broadcast"
            make_test([x, y], z, "input_0.less(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def less_i8():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            z = np.less(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_i8"
            make_test([x, y], z, "input_0.less(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.int8)
            z = np.less(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_i8_broadcast"
            make_test([x, y], z, "input_0.less(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def less_fp8x23():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.less(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_fp8x23"
            make_test([x, y], z, "input_0.less(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.float64)
            z = np.less(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_fp8x23_broadcast"
            make_test([x, y], z, "input_0.less(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def less_fp16x16():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.less(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_fp16x16"
            make_test([x, y], z, "input_0.less(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.float64)
            z = np.less(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_fp16x16_broadcast"
            make_test([x, y], z, "input_0.less(@input_1)", name)
        default()
        broadcast()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/less_equal.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Less_equal(RunAll):
    @staticmethod
    def less_equal_u32():
        def default():
            x = np.random.randint(0, 6, (2, 2)).astype(np.uint32)
            y = np.random.randint(0, 6, (2, 2)).astype(np.uint32)
            z = np.less_equal(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_equal_u32"
            make_test([x, y], z, "input_0.less_equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.uint32)
            y = np.random.randint(0, 6, (1, 2)).astype(np.uint32)
            z = np.less_equal(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_equal_u32_broadcast"
            make_test([x, y], z, "input_0.less_equal(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def less_equal_i32():
        def default():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.int32)
            y = np.random.randint(-3, 3, (2, 2)).astype(np.int32)
            z = np.less_equal(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_equal_i32"
            make_test([x, y], z, "input_0.less_equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.int32)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.int32)
            z = np.less_equal(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_equal_i32_broadcast"
            make_test([x, y], z, "input_0.less_equal(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def less_equal_i8():
        def default():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.int8)
            y = np.random.randint(-3, 3, (2, 2)).astype(np.int8)
            z = np.less_equal(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_equal_i8"
            make_test([x, y], z, "input_0.less_equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.int8)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.int8)
            z = np.less_equal(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_equal_i8_broadcast"
            make_test([x, y], z, "input_0.less_equal(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def less_equal_fp8x23():
        def default():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            z = np.less_equal(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_equal_fp8x23"
            make_test([x, y], z, "input_0.less_equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.less_equal(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_equal_fp8x23_broadcast"
            make_test([x, y], z, "input_0.less_equal(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def less_equal_fp16x16():
        def default():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            z = np.less_equal(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_equal_fp16x16"
            make_test([x, y], z, "input_0.less_equal(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.less_equal(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "less_equal_fp16x16_broadcast"
            make_test([x, y], z, "input_0.less_equal(@input_1)", name)
        default()
        broadcast()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/linear.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
from typing import Optional
def linear(
    i: np.ndarray,
    w: np.ndarray,
    b: Optional[np.ndarray] = None,
) -> np.ndarray:
    return np.dot(i, w.T) + b
class Linear(RunAll):
    @staticmethod
    def linear_i32():
        i = np.random.randint(-5, 9, (3)).astype(np.int32)
        w = np.random.randint(-5, 9, (2, 3)).astype(np.int32)
        b = np.random.randint(-5, 9, (2)).astype(np.int32)
        y = linear(i, w, b)
        i = Tensor(Dtype.I32, i.shape, i.flatten())
        w = Tensor(Dtype.I32, w.shape, w.flatten())
        b = Tensor(Dtype.I32, b.shape, b.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "linear_i32"
        make_test([i, w, b], y, "NNTrait::linear(input_0, input_1, input_2)",
                  name, Trait.NN)
    @staticmethod
    def linear_i8():
        i = np.random.randint(-3, 3, (3)).astype(np.int8)
        w = np.random.randint(-3, 3, (2, 3)).astype(np.int8)
        b = np.random.randint(-3, 3, (2)).astype(np.int8)
        y = linear(i, w, b)
        i = Tensor(Dtype.I8, i.shape, i.flatten())
        w = Tensor(Dtype.I8, w.shape, w.flatten())
        b = Tensor(Dtype.I8, b.shape, b.flatten())
        y = Tensor(Dtype.I8, y.shape, y.flatten())
        name = "linear_i8"
        make_test([i, w, b], y, "NNTrait::linear(input_0, input_1, input_2)",
                  name, Trait.NN)
    @staticmethod
    def linear_u32():
        i = np.random.randint(0, 6, (3)).astype(np.uint32)
        w = np.random.randint(0, 6, (2, 3)).astype(np.uint32)
        b = np.random.randint(0, 6, (2)).astype(np.uint32)
        y = linear(i, w, b)
        i = Tensor(Dtype.U32, i.shape, i.flatten())
        w = Tensor(Dtype.U32, w.shape, w.flatten())
        b = Tensor(Dtype.U32, b.shape, b.flatten())
        y = Tensor(Dtype.U32, y.shape, y.flatten())
        name = "linear_u32"
        make_test([i, w, b], y, "NNTrait::linear(input_0, input_1, input_2)",
                  name, Trait.NN)
    @staticmethod
    def linear_fp8x23():
        i = np.random.uniform(-5, 7, (3)).astype(np.float64)
        w = np.random.uniform(-5, 7, (2, 3)).astype(np.float64)
        b = np.random.uniform(-5, 7, (2)).astype(np.float64)
        y = linear(i, w, b)
        i = Tensor(Dtype.FP8x23, i.shape, to_fp(
            i.flatten(), FixedImpl.FP8x23))
        w = Tensor(Dtype.FP8x23, w.shape, to_fp(
            w.flatten(), FixedImpl.FP8x23))
        b = Tensor(Dtype.FP8x23, b.shape, to_fp(
            b.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "linear_fp8x23"
        make_test([i, w, b], y, "NNTrait::linear(input_0, input_1, input_2)",
                  name, Trait.NN)
    @staticmethod
    def linear_fp16x16():
        i = np.random.uniform(-5, 7, (3)).astype(np.float64)
        w = np.random.uniform(-5, 7, (2, 3)).astype(np.float64)
        b = np.random.uniform(-5, 7, (2)).astype(np.float64)
        y = linear(i, w, b)
        i = Tensor(Dtype.FP16x16, i.shape, to_fp(
            i.flatten(), FixedImpl.FP16x16))
        w = Tensor(Dtype.FP16x16, w.shape, to_fp(
            w.flatten(), FixedImpl.FP16x16))
        b = Tensor(Dtype.FP16x16, b.shape, to_fp(
            b.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "linear_fp16x16"
        make_test([i, w, b], y, "NNTrait::linear(input_0, input_1, input_2)",
                  name, Trait.NN)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/log.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Log(RunAll):
    @staticmethod
    def log_fp8x23():
        x = np.random.uniform(1, 127, (2, 2)).astype(np.float64)
        y = np.log(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "log_fp8x23"
        make_test([x], y, "input_0.log()", name)
    @staticmethod
    def log_fp16x16():
        x = np.random.uniform(1, 127, (2, 2)).astype(np.float64)
        y = np.log(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "log_fp16x16"
        make_test([x], y, "input_0.log()", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/logsoftmax.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
def logsoftmax(x: np.ndarray, axis: int = -1) -> np.ndarray:
    x_max = np.max(x, axis=axis, keepdims=True)
    tmp = np.exp(x - x_max)
    s = np.sum(tmp, axis=axis, keepdims=True)
    return (x - x_max) - np.log(s)
class Logsoftmax(RunAll):
    def logsoftmax_fp8x23():
        def axis_0():
            x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64)
            y = logsoftmax(x, 0)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23))
            name = "logsoftmax_fp8x23_axis_0"
            make_test([x], y, "NNTrait::logsoftmax(@input_0, 0)",
                      name, Trait.NN)
        def axis_1():
            x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64)
            y = logsoftmax(x, 1)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23))
            name = "logsoftmax_fp8x23_axis_1"
            make_test([x], y, "NNTrait::logsoftmax(@input_0, 1)",
                      name, Trait.NN)
        axis_0()
        axis_1()
    def logsoftmax_fp16x16():
        def axis_0():
            x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64)
            y = logsoftmax(x, 0)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16))
            name = "logsoftmax_fp16x16_axis_0"
            make_test([x], y, "NNTrait::logsoftmax(@input_0, 0)",
                      name, Trait.NN)
        def axis_1():
            x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64)
            y = logsoftmax(x, 1)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16))
            name = "logsoftmax_fp16x16_axis_1"
            make_test([x], y, "NNTrait::logsoftmax(@input_0, 1)",
                      name, Trait.NN)
        axis_0()
        axis_1()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/matmul.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Matmul(RunAll):
    @staticmethod
    def matmul_u32():
        def matmul_1D():
            a = np.random.randint(0, 255, (3)).astype(np.uint32)
            b = np.random.randint(0, 255, (3)).astype(np.uint32)
            y = np.matmul(a, b).reshape((1))
            a = Tensor(Dtype.U32, a.shape, a.flatten())
            b = Tensor(Dtype.U32, b.shape, b.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "matmul_u32_1d"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_2x2():
            a = np.random.randint(0, 255, (2, 2)).astype(np.uint32)
            b = np.random.randint(0, 255, (2, 2)).astype(np.uint32)
            y = np.matmul(a, b)
            a = Tensor(Dtype.U32, a.shape, a.flatten())
            b = Tensor(Dtype.U32, b.shape, b.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "matmul_u32_2x2"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_2x1():
            a = np.random.randint(0, 255, (2, 1)).astype(np.uint32)
            b = np.random.randint(0, 255, (1, 2)).astype(np.uint32)
            y = np.matmul(a, b)
            a = Tensor(Dtype.U32, a.shape, a.flatten())
            b = Tensor(Dtype.U32, b.shape, b.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "matmul_u32_2x1"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_1x2():
            a = np.random.randint(0, 255, (1, 2)).astype(np.uint32)
            b = np.random.randint(0, 255, (2, 1)).astype(np.uint32)
            y = np.matmul(a, b)
            a = Tensor(Dtype.U32, a.shape, a.flatten())
            b = Tensor(Dtype.U32, b.shape, b.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "matmul_u32_1x2"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        matmul_1D()
        matmul_2x2()
        matmul_2x1()
        matmul_1x2()
    @staticmethod
    def matmul_i32():
        def matmul_1D():
            a = np.random.randint(-127, 127, (3)).astype(np.int32)
            b = np.random.randint(-127, 127, (3)).astype(np.int32)
            y = np.matmul(a, b).reshape((1))
            a = Tensor(Dtype.I32, a.shape, a.flatten())
            b = Tensor(Dtype.I32, b.shape, b.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "matmul_i32_1d"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_2x2():
            a = np.random.randint(-127, 127, (2, 2)).astype(np.int32)
            b = np.random.randint(-127, 127, (2, 2)).astype(np.int32)
            y = np.matmul(a, b)
            a = Tensor(Dtype.I32, a.shape, a.flatten())
            b = Tensor(Dtype.I32, b.shape, b.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "matmul_i32_2x2"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_2x1():
            a = np.random.randint(-127, 127, (2, 1)).astype(np.int32)
            b = np.random.randint(-127, 127, (1, 2)).astype(np.int32)
            y = np.matmul(a, b)
            a = Tensor(Dtype.I32, a.shape, a.flatten())
            b = Tensor(Dtype.I32, b.shape, b.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "matmul_i32_2x1"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_1x2():
            a = np.random.randint(-127, 127, (1, 2)).astype(np.int32)
            b = np.random.randint(-127, 127, (2, 1)).astype(np.int32)
            y = np.matmul(a, b)
            a = Tensor(Dtype.I32, a.shape, a.flatten())
            b = Tensor(Dtype.I32, b.shape, b.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "matmul_i32_1x2"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        matmul_1D()
        matmul_2x2()
        matmul_2x1()
        matmul_1x2()
    @staticmethod
    def matmul_i8():
        def matmul_1D():
            a = np.random.randint(-4, 5, (3)).astype(np.int8)
            b = np.random.randint(-4, 5, (3)).astype(np.int8)
            y = np.matmul(a, b).reshape((1))
            a = Tensor(Dtype.I8, a.shape, a.flatten())
            b = Tensor(Dtype.I8, b.shape, b.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "matmul_i8_1d"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_2x2():
            a = np.random.randint(-4, 5, (2, 2)).astype(np.int8)
            b = np.random.randint(-4, 5, (2, 2)).astype(np.int8)
            y = np.matmul(a, b)
            a = Tensor(Dtype.I8, a.shape, a.flatten())
            b = Tensor(Dtype.I8, b.shape, b.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "matmul_i8_2x2"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_2x1():
            a = np.random.randint(-4, 5, (2, 1)).astype(np.int8)
            b = np.random.randint(-4, 5, (1, 2)).astype(np.int8)
            y = np.matmul(a, b)
            a = Tensor(Dtype.I8, a.shape, a.flatten())
            b = Tensor(Dtype.I8, b.shape, b.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "matmul_i8_2x1"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_1x2():
            a = np.random.randint(-4, 5, (1, 2)).astype(np.int8)
            b = np.random.randint(-4, 5, (2, 1)).astype(np.int8)
            y = np.matmul(a, b)
            a = Tensor(Dtype.I8, a.shape, a.flatten())
            b = Tensor(Dtype.I8, b.shape, b.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "matmul_i8_1x2"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        matmul_1D()
        matmul_2x2()
        matmul_2x1()
        matmul_1x2()
    @staticmethod
    def matmul_fp8x23():
        def matmul_1D():
            a = np.random.randint(-3, 4, (3)).astype(np.int64)
            b = np.random.randint(-3, 4, (3)).astype(np.int64)
            y = np.matmul(a, b).reshape((1))
            a = Tensor(Dtype.FP8x23, a.shape, to_fp(
                a.flatten(), FixedImpl.FP8x23))
            b = Tensor(Dtype.FP8x23, b.shape, to_fp(
                b.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23))
            name = "matmul_fp8x23_1d"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_2x2():
            a = np.random.randint(-3, 4, (2, 2)).astype(np.int64)
            b = np.random.randint(-3, 4, (2, 2)).astype(np.int64)
            y = np.matmul(a, b)
            a = Tensor(Dtype.FP8x23, a.shape, to_fp(
                a.flatten(), FixedImpl.FP8x23))
            b = Tensor(Dtype.FP8x23, b.shape, to_fp(
                b.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23))
            name = "matmul_fp8x23_2x2"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_2x1():
            a = np.random.randint(-3, 4, (2, 1)).astype(np.int64)
            b = np.random.randint(-3, 4, (1, 2)).astype(np.int64)
            y = np.matmul(a, b)
            a = Tensor(Dtype.FP8x23, a.shape, to_fp(
                a.flatten(), FixedImpl.FP8x23))
            b = Tensor(Dtype.FP8x23, b.shape, to_fp(
                b.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23))
            name = "matmul_fp8x23_2x1"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_1x2():
            a = np.random.randint(-3, 4, (1, 2)).astype(np.int64)
            b = np.random.randint(-3, 4, (2, 1)).astype(np.int64)
            y = np.matmul(a, b)
            a = Tensor(Dtype.FP8x23, a.shape, to_fp(
                a.flatten(), FixedImpl.FP8x23))
            b = Tensor(Dtype.FP8x23, b.shape, to_fp(
                b.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23))
            name = "matmul_fp8x23_1x2"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        matmul_1D()
        matmul_2x2()
        matmul_2x1()
        matmul_1x2()
    @staticmethod
    def matmul_fp16x16():
        def matmul_1D():
            a = np.random.randint(-3, 4, (3)).astype(np.int64)
            b = np.random.randint(-3, 4, (3)).astype(np.int64)
            y = np.matmul(a, b).reshape((1))
            a = Tensor(Dtype.FP16x16, a.shape, to_fp(
                a.flatten(), FixedImpl.FP16x16))
            b = Tensor(Dtype.FP16x16, b.shape, to_fp(
                b.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16))
            name = "matmul_fp16x16_1d"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_2x2():
            a = np.random.randint(-3, 4, (2, 2)).astype(np.int64)
            b = np.random.randint(-3, 4, (2, 2)).astype(np.int64)
            y = np.matmul(a, b)
            a = Tensor(Dtype.FP16x16, a.shape, to_fp(
                a.flatten(), FixedImpl.FP16x16))
            b = Tensor(Dtype.FP16x16, b.shape, to_fp(
                b.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16))
            name = "matmul_fp16x16_2x2"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_2x1():
            a = np.random.randint(-3, 4, (2, 1)).astype(np.int64)
            b = np.random.randint(-3, 4, (1, 2)).astype(np.int64)
            y = np.matmul(a, b)
            a = Tensor(Dtype.FP16x16, a.shape, to_fp(
                a.flatten(), FixedImpl.FP16x16))
            b = Tensor(Dtype.FP16x16, b.shape, to_fp(
                b.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16))
            name = "matmul_fp16x16_2x1"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        def matmul_1x2():
            a = np.random.randint(-3, 4, (1, 2)).astype(np.int64)
            b = np.random.randint(-3, 4, (2, 1)).astype(np.int64)
            y = np.matmul(a, b)
            a = Tensor(Dtype.FP16x16, a.shape, to_fp(
                a.flatten(), FixedImpl.FP16x16))
            b = Tensor(Dtype.FP16x16, b.shape, to_fp(
                b.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16))
            name = "matmul_fp16x16_1x2"
            make_test(
                [a, b], y, "input_0.matmul(@input_1)", name)
        matmul_1D()
        matmul_2x2()
        matmul_2x1()
        matmul_1x2()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/max.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
class Max(RunAll):
    @staticmethod
    def max_u32_two_tensors():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            z = np.maximum(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "max_u32_two_tensors"
            make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.uint32)
            y = np.random.randint(0, 6, (1, 2)).astype(np.uint32)
            z = np.maximum(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "max_u32_broadcast_two_tensors"
            make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name)
        default()
        broadcast()
    @staticmethod
    def max_i32_two_tensors():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32)
            z = np.maximum(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "max_i32_two_tensors"
            make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.int32)
            y = np.random.randint(0, 6, (1, 2)).astype(np.int32)
            z = np.maximum(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "max_i32_broadcast_two_tensors"
            make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name)
        default()
        broadcast()
    @staticmethod
    def max_i8_two_tensors():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8)
            z = np.maximum(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I8, z.shape, z.flatten())
            name = "max_i8_two_tensors"
            make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.int8)
            y = np.random.randint(0, 6, (1, 2)).astype(np.int8)
            z = np.maximum(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I8, z.shape, z.flatten())
            name = "max_i8_broadcast_two_tensors"
            make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name)
        default()
        broadcast()
    @staticmethod
    def max_fp8x23_two_tensors():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.maximum(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "max_fp8x23_two_tensors"
            make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.maximum(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "max_fp8x23_broadcast_two_tensors"
            make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name)
        default()
        broadcast()
    @staticmethod
    def max_fp16x16_two_tensors():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.maximum(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "max_fp16x16_two_tensors"
            make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.maximum(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "max_fp16x16_broadcast_two_tensors"
            make_test([x, y], z, "TensorTrait::max(array![input_0, input_1].span())", name)
        default()
        broadcast()
    @staticmethod
    def max_u32_three_tensors():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            z = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            m = np.maximum(np.maximum(x, y), z)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            m = Tensor(Dtype.U32, m.shape, m.flatten())
            name = "max_u32_three_tensors"
            make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.uint32)
            y = np.random.randint(0, 6, (1, 2)).astype(np.uint32)
            z = np.random.randint(0, 6, (1, 1)).astype(np.uint32)
            m = np.maximum(np.maximum(x, y), z)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            m = Tensor(Dtype.U32, m.shape, m.flatten())
            name = "max_u32_broadcast_three_tensors"
            make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name)
        default()
        broadcast()
    @staticmethod
    def max_i32_three_tensors():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32)
            z = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32)
            m = np.maximum(np.maximum(x, y), z)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            m = Tensor(Dtype.I32, m.shape, m.flatten())
            name = "max_i32_three_tensors"
            make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.int32)
            y = np.random.randint(0, 6, (1, 2)).astype(np.int32)
            z = np.random.randint(0, 6, (1, 1)).astype(np.int32)
            m = np.maximum(np.maximum(x, y), z)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            m = Tensor(Dtype.I32, m.shape, m.flatten())
            name = "max_i32_broadcast_three_tensors"
            make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name)
        default()
        broadcast()
    @staticmethod
    def max_i8_three_tensors():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8)
            z = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8)
            m = np.maximum(np.maximum(x, y), z)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I8, z.shape, z.flatten())
            m = Tensor(Dtype.I8, m.shape, m.flatten())
            name = "max_i8_three_tensors"
            make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.int8)
            y = np.random.randint(0, 6, (1, 2)).astype(np.int8)
            z = np.random.randint(0, 6, (1, 1)).astype(np.int8)
            m = np.maximum(np.maximum(x, y), z)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I8, z.shape, z.flatten())
            m = Tensor(Dtype.I8, m.shape, m.flatten())
            name = "max_i8_broadcast_three_tensors"
            make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name)
        default()
        broadcast()
    @staticmethod
    def max_fp8x23_three_tensors():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            m = np.maximum(np.maximum(x, y), z)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP8x23))  
            m = Tensor(Dtype.FP8x23, m.shape,  to_fp(
                m.flatten(), FixedImpl.FP8x23)) 
            name = "max_fp8x23_three_tensors"
            make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.random.randint(-3, 3, (1, 1)).astype(np.float64)
            m = np.maximum(np.maximum(x, y), z)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP8x23))  
            m = Tensor(Dtype.FP8x23, m.shape,  to_fp(
                m.flatten(), FixedImpl.FP8x23))
            name = "max_fp8x23_broadcast_three_tensors"
            make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name)
        default()
        broadcast()
    @staticmethod
    def max_fp16x16_three_tensors():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            m = np.maximum(np.maximum(x, y), z)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP16x16))    
            m = Tensor(Dtype.FP16x16, m.shape,  to_fp(
                m.flatten(), FixedImpl.FP16x16))   
            name = "max_fp16x16_three_tensors"
            make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.random.randint(-3, 3, (1, 1)).astype(np.float64)
            m = np.maximum(np.maximum(x, y), z)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP16x16))    
            m = Tensor(Dtype.FP16x16, m.shape,  to_fp(
                m.flatten(), FixedImpl.FP16x16)) 
            name = "max_fp16x16_broadcast_three_tensors"
            make_test([x, y, z], m, "TensorTrait::max(array![input_0, input_1, input_2].span())", name)
        default()
        broadcast()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/min.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
class Min(RunAll):
    @staticmethod
    def min_u32_two_tensors():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            z = np.minimum(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "min_u32_two_tensors"
            make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.uint32)
            y = np.random.randint(0, 6, (1, 2)).astype(np.uint32)
            z = np.minimum(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "min_u32_broadcast_two_tensors"
            make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name)
        default()
        broadcast()
    @staticmethod
    def min_i32_two_tensors():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32)
            z = np.minimum(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "min_i32_two_tensors"
            make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.int32)
            y = np.random.randint(0, 6, (1, 2)).astype(np.int32)
            z = np.minimum(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "min_i32_broadcast_two_tensors"
            make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name)
        default()
        broadcast()
    @staticmethod
    def min_i8_two_tensors():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8)
            z = np.minimum(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I8, z.shape, z.flatten())
            name = "min_i8_two_tensors"
            make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.int8)
            y = np.random.randint(0, 6, (1, 2)).astype(np.int8)
            z = np.minimum(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I8, z.shape, z.flatten())
            name = "min_i8_broadcast_two_tensors"
            make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name)
        default()
        broadcast()
    @staticmethod
    def min_fp8x23_two_tensors():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.minimum(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "min_fp8x23_two_tensors"
            make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.minimum(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "min_fp8x23_broadcast_two_tensors"
            make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name)
        default()
        broadcast()
    @staticmethod
    def min_fp16x16_two_tensors():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.minimum(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "min_fp16x16_two_tensors"
            make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.minimum(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "min_fp16x16_broadcast_two_tensors"
            make_test([x, y], z, "TensorTrait::min(array![input_0, input_1].span())", name)
        default()
        broadcast()
    @staticmethod
    def min_u32_three_tensors():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            z = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            m = np.minimum(np.minimum(x, y), z)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            m = Tensor(Dtype.U32, m.shape, m.flatten())
            name = "min_u32_three_tensors"
            make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.uint32)
            y = np.random.randint(0, 6, (1, 2)).astype(np.uint32)
            z = np.random.randint(0, 6, (1, 1)).astype(np.uint32)
            m = np.minimum(np.minimum(x, y), z)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            m = Tensor(Dtype.U32, m.shape, m.flatten())
            name = "min_u32_broadcast_three_tensors"
            make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name)
        default()
        broadcast()
    @staticmethod
    def min_i32_three_tensors():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32)
            z = np.random.randint(0, 6, (3, 3, 3)).astype(np.int32)
            m = np.minimum(np.minimum(x, y), z)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            m = Tensor(Dtype.I32, m.shape, m.flatten())
            name = "min_i32_three_tensors"
            make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.int32)
            y = np.random.randint(0, 6, (1, 2)).astype(np.int32)
            z = np.random.randint(0, 6, (1, 1)).astype(np.int32)
            m = np.minimum(np.minimum(x, y), z)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            m = Tensor(Dtype.I32, m.shape, m.flatten())
            name = "min_i32_broadcast_three_tensors"
            make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name)
        default()
        broadcast()
    @staticmethod
    def min_i8_three_tensors():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8)
            z = np.random.randint(0, 6, (3, 3, 3)).astype(np.int8)
            m = np.minimum(np.minimum(x, y), z)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I8, z.shape, z.flatten())
            m = Tensor(Dtype.I8, m.shape, m.flatten())
            name = "min_i8_three_tensors"
            make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.int8)
            y = np.random.randint(0, 6, (1, 2)).astype(np.int8)
            z = np.random.randint(0, 6, (1, 1)).astype(np.int8)
            m = np.minimum(np.minimum(x, y), z)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I8, z.shape, z.flatten())
            m = Tensor(Dtype.I8, m.shape, m.flatten())
            name = "min_i8_broadcast_three_tensors"
            make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name)
        default()
        broadcast()
    @staticmethod
    def min_fp8x23_three_tensors():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            m = np.minimum(np.minimum(x, y), z)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP8x23))  
            m = Tensor(Dtype.FP8x23, m.shape,  to_fp(
                m.flatten(), FixedImpl.FP8x23)) 
            name = "min_fp8x23_three_tensors"
            make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.random.randint(-3, 3, (1, 1)).astype(np.float64)
            m = np.minimum(np.minimum(x, y), z)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP8x23))  
            m = Tensor(Dtype.FP8x23, m.shape,  to_fp(
                m.flatten(), FixedImpl.FP8x23))
            name = "min_fp8x23_broadcast_three_tensors"
            make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name)
        default()
        broadcast()
    @staticmethod
    def min_fp16x16_three_tensors():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            m = np.minimum(np.minimum(x, y), z)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP16x16))    
            m = Tensor(Dtype.FP16x16, m.shape,  to_fp(
                m.flatten(), FixedImpl.FP16x16))   
            name = "min_fp16x16_three_tensors"
            make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.random.randint(-3, 3, (1, 1)).astype(np.float64)
            m = np.minimum(np.minimum(x, y), z)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape,  to_fp(
                z.flatten(), FixedImpl.FP16x16))    
            m = Tensor(Dtype.FP16x16, m.shape,  to_fp(
                m.flatten(), FixedImpl.FP16x16)) 
            name = "min_fp16x16_broadcast_three_tensors"
            make_test([x, y, z], m, "TensorTrait::min(array![input_0, input_1, input_2].span())", name)
        default()
        broadcast()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/mul.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Mul(RunAll):
    @staticmethod
    def mul_u32():
        def default():
            x = np.random.randint(3, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 3, (3, 3, 3)).astype(np.uint32)
            z = x * y
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "mul_u32"
            make_test([x, y], z, "input_0 * input_1", name)
        def broadcast():
            x = np.random.randint(3, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 3, (1, 3, 1)).astype(np.uint32)
            z = x * y
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "mul_u32_broadcast"
            make_test([x, y], z, "input_0 * input_1", name)
        default()
        broadcast()
    @staticmethod
    def mul_i32():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            z = x * y
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "mul_i32"
            make_test([x, y], z, "input_0 * input_1", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.int32)
            z = x * y
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.I32, z.shape, z.flatten())
            name = "mul_i32_broadcast"
            make_test([x, y], z, "input_0 * input_1", name)
        default()
        broadcast()
    @staticmethod
    def mul_i8():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            z = x * y
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I8, z.shape, z.flatten())
            name = "mul_i8"
            make_test([x, y], z, "input_0 * input_1", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.int8)
            z = x * y
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.I8, z.shape, z.flatten())
            name = "mul_i8_broadcast"
            make_test([x, y], z, "input_0 * input_1", name)
        default()
        broadcast()
    @staticmethod
    def mul_fp8x23():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = x * y
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape, to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "mul_fp8x23"
            make_test([x, y], z, "input_0 * input_1", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.float64)
            z = x * y
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape, to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "mul_fp8x23_broadcast"
            make_test([x, y], z, "input_0 * input_1", name)
        default()
        broadcast()
    @staticmethod
    def mul_fp16x16():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = x * y
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape, to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "mul_fp16x16"
            make_test([x, y], z, "input_0 * input_1", name)
        def broadcast():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.float64)
            z = x * y
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape, to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "mul_fp16x16_broadcast"
            make_test([x, y], z, "input_0 * input_1", name)
        default()
        broadcast()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/neg.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Neg(RunAll):
    @staticmethod
    def neg_i32():
        x = np.random.randint(-127, 127, (2, 2)).astype(np.int32)
        y = np.negative(x)
        x = Tensor(Dtype.I32, x.shape, x.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "neg_i32"
        make_test([x], y, "input_0.neg()", name)
    @staticmethod
    def neg_i8():
        x = np.random.randint(-127, 127, (2, 2)).astype(np.int8)
        y = np.negative(x)
        x = Tensor(Dtype.I8, x.shape, x.flatten())
        y = Tensor(Dtype.I8, y.shape, y.flatten())
        name = "neg_i8"
        make_test([x], y, "input_0.neg()", name)
    @staticmethod
    def neg_fp8x23():
        x = to_fp(np.random.randint(-127, 127, (2, 2)
                                    ).astype(np.int64), FixedImpl.FP8x23)
        y = np.negative(x)
        x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
        y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
        name = "neg_fp8x23"
        make_test([x], y, "input_0.neg()", name)
    @staticmethod
    def neg_fp16x16():
        x = to_fp(np.random.randint(-127, 127, (2, 2)
                                    ).astype(np.int64), FixedImpl.FP16x16)
        y = np.negative(x)
        x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
        y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
        name = "neg_fp16x16"
        make_test([x], y, "input_0.neg()", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/nonzero.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Nonzero(RunAll):
    @staticmethod
    def nonzero_u32():
        def nonzero_2D():
            x = np.random.randint(0, 255, (2, 4)).astype(np.uint32)
            y = np.array(np.nonzero(x), dtype=np.int64)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "nonzero_u32_2d"
            make_test(
                [x], y, "input_0.nonzero()", name)
        def nonzero_3D():
            x = np.random.randint(0, 255, (20, 10, 5)).astype(np.uint32)
            y = np.array(np.nonzero(x), dtype=np.int64)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "nonzero_u32_3d"
            make_test(
                [x], y, "input_0.nonzero()", name)
        nonzero_2D()
        nonzero_3D()
    @staticmethod
    def nonzero_i32():
        def nonzero_2D():
            x = np.random.randint(-127, 127, (2, 4)).astype(np.int32)
            y = np.array(np.nonzero(x), dtype=np.int64)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "nonzero_i32_2d"
            make_test(
                [x], y, "input_0.nonzero()", name)
        def nonzero_3D():
            x = np.random.randint(-127, 127, (20, 10, 5)).astype(np.int32)
            y = np.array(np.nonzero(x), dtype=np.int64)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "nonzero_i32_3d"
            make_test(
                [x], y, "input_0.nonzero()", name)
        nonzero_2D()
        nonzero_3D()
    @staticmethod
    def nonzero_i8():
        def nonzero_2D():
            x = np.random.randint(-127, 127, (2, 4)).astype(np.int8)
            y = np.array(np.nonzero(x), dtype=np.int64)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "nonzero_i8_2d"
            make_test(
                [x], y, "input_0.nonzero()", name)
        def nonzero_3D():
            x = np.random.randint(-127, 127, (20, 10, 5)).astype(np.int8)
            y = np.array(np.nonzero(x), dtype=np.int64)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "nonzero_i8_3d"
            make_test(
                [x], y, "input_0.nonzero()", name)
        nonzero_2D()
        nonzero_3D()
    @staticmethod
    def nonzero_fp8x23():
        def nonzero_2D():
            x = to_fp(np.random.randint(-127, 127, (2, 4)
                                        ).astype(np.int64), FixedImpl.FP8x23)
            y = np.array(np.nonzero(x), dtype=np.int64)
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            
            name = "nonzero_fp8x23_2d"
            make_test(
                [x], y, "input_0.nonzero()", name)
        def nonzero_3D():
            x = to_fp(np.random.randint(-127, 127, (20, 10, 5)
                                        ).astype(np.int64), FixedImpl.FP8x23)
            y = np.array(np.nonzero(x), dtype=np.int64)
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            
            name = "nonzero_fp8x23_3d"
            make_test(
                [x], y, "input_0.nonzero()", name)
        nonzero_2D()
        nonzero_3D()
    @staticmethod
    def nonzero_fp16x16():
        def nonzero_2D():
            x = to_fp(np.random.randint(-127, 127, (2, 4)
                                        ).astype(np.int64), FixedImpl.FP16x16)
            y = np.array(np.nonzero(x), dtype=np.int64)
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "nonzero_fp16x16_2d"
            make_test(
                [x], y, "input_0.nonzero()", name)
        def nonzero_3D():
            x = to_fp(np.random.randint(-127, 127, (20, 10, 5)
                                        ).astype(np.int64), FixedImpl.FP16x16)
            y = np.array(np.nonzero(x), dtype=np.int64)
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "nonzero_fp16x16_3d"
            make_test(
                [x], y, "input_0.nonzero()", name)
        nonzero_2D()
        nonzero_3D()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/not.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_node, make_test, Tensor, Dtype
class Not(RunAll):
    @staticmethod
    def not_bool():
        x = np.random.uniform(True, False, (1, 1)).astype(bool)
        y = ~(x)
        x = Tensor(Dtype.Bool, x.shape, x.flatten())
        y = Tensor(Dtype.Bool, y.shape, y.flatten())
        name = "not_bool"
        make_node([x], [y], name)
        make_test([x], y, "input_0", name) 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/or.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Or(RunAll):
    @staticmethod
    def or_u32():
        def default():
            x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
            z = np.logical_or(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "or_u32"
            make_test([x, y], z, "input_0.or(@input_1)", name)
        def broadcast():
            x = np.random.randint(0, 6, (2, 2)).astype(np.uint32)
            y = np.random.randint(0, 6, (1, 2)).astype(np.uint32)
            z = np.logical_or(x, y)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "or_u32_broadcast"
            make_test([x, y], z, "input_0.or(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def or_i32():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
            z = np.logical_or(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "or_i32"
            make_test([x, y], z, "input_0.or(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.int32)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.int32)
            z = np.logical_or(x, y)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "or_i32_broadcast"
            make_test([x, y], z, "input_0.or(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def or_i8():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
            z = np.logical_or(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "or_i8"
            make_test([x, y], z, "input_0.or(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.int8)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.int8)
            z = np.logical_or(x, y)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "or_i8_broadcast"
            make_test([x, y], z, "input_0.or(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def or_fp8x23():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.logical_or(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "or_fp8x23"
            make_test([x, y], z, "input_0.or(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.logical_or(x, y)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "or_fp8x23_broadcast"
            make_test([x, y], z, "input_0.or(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def or_fp16x16():
        def default():
            x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
            z = np.logical_or(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "or_fp16x16"
            make_test([x, y], z, "input_0.or(@input_1)", name)
        def broadcast():
            x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
            y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
            z = np.logical_or(x, y)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.U32, z.shape, z.flatten())
            name = "or_fp16x16_broadcast"
            make_test([x, y], z, "input_0.or(@input_1)", name)
        default()
        broadcast()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/pow.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Pow(RunAll):
    @staticmethod
    def pow_fp8x23():
        def default():
            x = np.array([1, 2, 3]).astype(np.float64)
            y = np.array([1, 2, 3]).astype(np.float64)
            z = np.array(pow(x, y), dtype=np.float64)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape, to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "pow_fp8x23"
            make_test([x, y], z, "input_0.pow(@input_1)", name)
        def broadcast():
            x = np.array([1, 2, 3]).astype(np.float64)
            y = np.array([2]).astype(np.float64)
            z = np.array(pow(x, y), dtype=np.float64)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP8x23))
            z = Tensor(Dtype.FP8x23, z.shape, to_fp(
                z.flatten(), FixedImpl.FP8x23))
            name = "pow_fp8x23_broadcast"
            make_test([x, y], z, "input_0.pow(@input_1)", name)
        default()
        broadcast()
    @staticmethod
    def and_fp16x16():
        def default():
            x = np.array([1, 2, 3]).astype(np.float64)
            y = np.array([1, 2, 3]).astype(np.float64)
            z = np.array(pow(x, y), dtype=np.float64)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape, to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "pow_fp16x16"
            make_test([x, y], z, "input_0.pow(@input_1)", name)
        def broadcast():
            x = np.array([1, 2, 3]).astype(np.float64)
            y = np.array([2]).astype(np.float64)
            z = np.array(pow(x, y), dtype=np.float64)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape,  to_fp(
                y.flatten(), FixedImpl.FP16x16))
            z = Tensor(Dtype.FP16x16, z.shape, to_fp(
                z.flatten(), FixedImpl.FP16x16))
            name = "pow_fp16x16_broadcast"
            make_test([x, y], z, "input_0.pow(@input_1)", name)
        default()
        broadcast()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/random_uniform_like.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
def random_uniform_like(x: np.ndarray, high: int=1,low: int=0,seed: int=25) ->np.ndarray:
    dtype = np.float64
    if seed is None or np.isnan(seed):  # type: ignore
        state = np.random.RandomState()
    else:
        state = np.random.RandomState(seed=int(seed))  # type: ignore
    res = state.rand(*x.shape).astype(dtype)
    res *= high - low  # type: ignore
    res += low  # type: ignore
    return (res.astype(dtype),)
def get_data_statement(data: np.ndarray, dtype: Dtype) -> list[str]:
    match dtype:
        case Dtype.FP8x23:
            return ["Option::Some(FP8x23 { "+f"mag: {abs(int(x))}, sign: {str(x < 0).lower()} "+"})" for x in data.flatten()]
        case Dtype.FP16x16:
            return ["Option::Some(FP16x16 { "+f"mag: {abs(int(x))}, sign: {str(x < 0).lower()} "+"})" for x in data.flatten()]
        case Dtype.U32:
            return [f"Option::Some({int(x)})" for x in data.flatten()]
class Random_uniform_like(RunAll):
    @staticmethod
    def fp8x23():
        x = np.random.uniform(1, 10, (1, 2, 2, 4)).astype(np.float64)
        y = random_uniform_like(x)
        args = [10, 1]
        args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP8x23), Dtype.FP8x23)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y[0].shape, to_fp(
            y[0].flatten(), FixedImpl.FP8x23))
        name = "random_uniform_like_fp8x23"
        make_test(
            [x], # List of input tensors.
            y, # The expected output result.
            f"TensorTrait::random_uniform_like(@input_0, {','.join(args_str)}, Option::Some(354145))", # The code signature.
            name # The name of the generated folder.
        )
    @staticmethod
    def fp16x16():
        x = np.random.uniform(1, 10, (1, 2, 2, 4)).astype(np.float16)
        y = random_uniform_like(x)
        args = [10, 1]
        args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP16x16), Dtype.FP16x16)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y[0].shape, to_fp(
            y[0].flatten(), FixedImpl.FP16x16))
        name = "random_uniform_like_fp16x16"
        make_test(
            [x], # List of input tensors.
            y, # The expected output result.
            f"TensorTrait::random_uniform_like(@input_0, {','.join(args_str)}, Option::Some(354145))", # The code signature.
            name # The name of the generated folder.
        )
    # @staticmethod
    # def fp64x64():
    #     x = np.random.uniform(-3, 3, (1, 2, 2, 4)).astype(np.float64)
    #     y = random_uniform_like(x)
    #     x = Tensor(Dtype.FP64x64, x.shape, to_fp(
    #         x.flatten(), FixedImpl.FP64x64))
    #     y = Tensor(Dtype.FP64x64, y[0].shape, to_fp(
    #         y[0].flatten(), FixedImpl.FP64x64))
    #     name = "random_uniform_like_fp64x64"
    #     make_test([x], y, "TensorTrait::random_uniform_like(@input_0, 5, 1, 10)",
    #                 name)
    # @staticmethod
    # def fpi8():
    #     x = np.random.randint(-3, 3, (1, 2, 2, 4)).astype(np.int8)
    #     y = random_uniform_like(x)
    #     x = Tensor(Dtype.I8, x.shape, x.flatten())
    #     y = Tensor(Dtype.I8, y[0].shape, y[0].flatten())
    #     name = "random_uniform_like_i8"
    #     make_test([x], y, "TensorTrait::random_uniform_like(@input_0, 5, 1, 10)",
    #                 name)
    # @staticmethod
    # def fpi32():
    #     x = np.random.randint(-3, 3, (1, 2, 2, 4)).astype(np.int32)
    #     y = random_uniform_like(x)
    #     x = Tensor(Dtype.I32, x.shape, x.flatten())
    #     y = Tensor(Dtype.I32, y[0].shape, y[0].flatten())
    #     name = "random_uniform_like_i32"
    #     make_test([x], y, "TensorTrait::random_uniform_like(@input_0, 5, 1, 10)",
    #                 name)
    # @staticmethod
    # def fpu32():
    #     x = np.random.randint(-3, 3, (1, 2, 2, 4)).astype(np.uint32)
    #     y = random_uniform_like(x)
    #     args = [5, 1, 10]
    #     args_str = get_data_statement(np.array(args).flatten(), Dtype.U32)
    #     x = Tensor(Dtype.U32, x.shape, x.flatten())
    #     y = Tensor(Dtype.U32, y[0].shape, y[0].flatten())
    #     name = "random_uniform_like_u32"
    #     make_test(
    #         [x], # List of input tensors.
    #         y, # The expected output result.
    #         f"TensorTrait::random_uniform_like(@input_0, {','.join(args_str)})", # The code signature.
    #         name # The name of the generated folder.
    #     )
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/range.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait, get_data_statement
class Range(RunAll):
     
    @staticmethod
    # We test here with fp8x23 implementation.
    def fp8x23():
        args = [1, 5, 0.3]
        args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP8x23), Dtype.FP8x23)
        y = np.arange(*args)
        print(y)
        # Convert the floats values in `y` to fixed points with `to_fp` method:
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
        
        # Define the name of the generated folder. 
        name = "range_fp8x23"
        # Invoke `make_test` method to generate corresponding Cairo tests:
        make_test(
            [], # List of input tensors.
            y, # The expected output result.
            f"TensorTrait::range({','.join(args_str)})", # The code signature.
            name, # The name of the generated folder.
        )
     
    @staticmethod
    # We test here with fp16x16 implementation.
    def fp16x16():
        args = [1, 25, 3]
        args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP16x16), Dtype.FP16x16)
        y = np.arange(*args)
        print(y)
        # Convert the floats values in `y` to fixed points with `to_fp` method:
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        
        # Define the name of the generated folder. 
        name = "range_fp16x16"
        # Invoke `make_test` method to generate corresponding Cairo tests:
        make_test(
            [], # List of input tensors.
            y, # The expected output result.
            f"TensorTrait::range({','.join(args_str)})", # The code signature.
            name, # The name of the generated folder.
        )
     
    @staticmethod
    # We test here with i8 implementation.
    def i8():
        args = [-1, 25, 3]
        args_str = get_data_statement(np.array(args).flatten(), Dtype.I8)
        y = np.arange(*args)
        print(y)
        # Convert the floats values in `y` to fixed points with `to_fp` method:
        y = Tensor(Dtype.I8, y.shape, y.flatten())
        
        # Define the name of the generated folder. 
        name = "range_i8"
        # Invoke `make_test` method to generate corresponding Cairo tests:
        make_test(
            [], # List of input tensors.
            y, # The expected output result.
            f"TensorTrait::range({','.join(args_str)})", # The code signature.
            name, # The name of the generated folder.
        )
     
    @staticmethod
    # We test here with i32 implementation.
    def i32():
        args = [21, 2, -3]
        args_str = get_data_statement(np.array(args).flatten(), Dtype.I32)
        y = np.arange(*args)
        print(y)
        # Convert the floats values in `y` to fixed points with `to_fp` method:
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        
        # Define the name of the generated folder. 
        name = "range_i32"
        # Invoke `make_test` method to generate corresponding Cairo tests:
        make_test(
            [], # List of input tensors.
            y, # The expected output result.
            f"TensorTrait::range({','.join(args_str)})", # The code signature.
            name, # The name of the generated folder.
        )
     
    @staticmethod
    # We test here with u32 implementation.
    def u32():
        args = [1, 25, 3]
        args_str = get_data_statement(np.array(args).flatten(), Dtype.U32)
        y = np.arange(*args)
        print(y)
        # Convert the floats values in `y` to fixed points with `to_fp` method:
        y = Tensor(Dtype.U32, y.shape, y.flatten())
        
        # Define the name of the generated folder. 
        name = "range_u32"
        # Invoke `make_test` method to generate corresponding Cairo tests:
        make_test(
            [], # List of input tensors.
            y, # The expected output result.
            f"TensorTrait::range({','.join(args_str)})", # The code signature.
            name, # The name of the generated folder.
        )
         
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/reduce_l1.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
import numpy as np
class Reduce_l1(RunAll):
    @staticmethod
    def reduce_l1_fp8x23():
        def reduce_l1_export_do_not_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=False).astype(np.int64)
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "reduce_l1_fp8x23_export_do_not_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(2, false)", name)
            
        def reduce_l1_export_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int64)
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "reduce_l1_fp8x23_export_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(2, true)", name)
            
        def reduce_l1_axis_0():
            shape = [3, 3, 3]
            axes = np.array([0], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int64)
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "reduce_l1_fp8x23_export_negative_axes_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(0, true)", name)
        
        reduce_l1_export_do_not_keepdims()
        reduce_l1_export_keepdims()
        reduce_l1_axis_0()
    @staticmethod
    def reduce_l1_fp16x16():
        def reduce_l1_export_do_not_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=False).astype(np.int64)
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "reduce_l1_fp16x16_export_do_not_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(2, false)", name)
            
        def reduce_l1_export_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int64)
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "reduce_l1_fp16x16_export_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(2, true)", name)
            
        def reduce_l1_axis_0():
            shape = [3, 3, 3]
            axes = np.array([0], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int64)
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "reduce_l1_fp16x16_export_negative_axes_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(0, true)", name)
        
        reduce_l1_export_do_not_keepdims()
        reduce_l1_export_keepdims()
        reduce_l1_axis_0()
    @staticmethod
    def reduce_l1_i8():
        def reduce_l1_export_do_not_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int8)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int8)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=False).astype(np.int8)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "reduce_l1_i8_export_do_not_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(2, false)", name)
            
        def reduce_l1_export_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int8)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int8)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int8)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "reduce_l1_i8_export_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(2, true)", name)
            
        def reduce_l1_axis_0():
            shape = [3, 3, 3]
            axes = np.array([0], dtype=np.int8)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int8)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int8)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "reduce_l1_i8_export_negative_axes_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(0, true)", name)
        
        reduce_l1_export_do_not_keepdims()
        reduce_l1_export_keepdims()
        reduce_l1_axis_0()
    @staticmethod
    def reduce_l1_i32():
        def reduce_l1_export_do_not_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int32)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int32)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=False).astype(np.int32)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "reduce_l1_i32_export_do_not_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(2, false)", name)
            
        def reduce_l1_export_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int32)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int32)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int32)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "reduce_l1_i32_export_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(2, true)", name)
            
        def reduce_l1_axis_0():
            shape = [3, 3, 3]
            axes = np.array([0], dtype=np.int32)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int32)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.int32)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "reduce_l1_i32_export_negative_axes_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(0, true)", name)
        
        reduce_l1_export_do_not_keepdims()
        reduce_l1_export_keepdims()
        reduce_l1_axis_0()
    @staticmethod
    def reduce_l1_u32():
        def reduce_l1_export_do_not_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.uint32)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.uint32)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=False).astype(np.uint32)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reduce_l1_u32_export_do_not_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(2, false)", name)
            
        def reduce_l1_export_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.uint32)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.uint32)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.uint32)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reduce_l1_u32_export_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(2, true)", name)
            
        def reduce_l1_axis_0():
            shape = [3, 3, 3]
            axes = np.array([0], dtype=np.uint32)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.uint32)
            y = np.sum(a=np.abs(x), axis=tuple(axes), keepdims=True).astype(np.uint32)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reduce_l1_u32_export_negative_axes_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_l1(0, true)", name)
        
        reduce_l1_export_do_not_keepdims()
        reduce_l1_export_keepdims()
        reduce_l1_axis_0() 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/reduce_l2.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_node, make_test, to_fp, Tensor, Dtype, FixedImpl
import numpy as np
class Reduce_l2(RunAll):
    @staticmethod
    def reduce_l2_fp8x23():
        def reduce_l2_export_do_not_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sqrt(np.sum(a=np.square(x), axis=tuple(axes), keepdims=False)).astype(np.int64)
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "reduce_l2_fp8x23_export_do_not_keepdims"
            make_node([x], [y], name)
            make_test(
                [x], y, "input_0.reduce_l2(2, false)", name)
            
        def reduce_l2_export_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sqrt(np.sum(a=np.square(x), axis=tuple(axes), keepdims=True)).astype(np.int64)
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "reduce_l2_fp8x23_export_keepdims"
            make_node([x], [y], name)
            make_test(
                [x], y, "input_0.reduce_l2(2, true)", name)
            
        def reduce_l2_axis_0():
            shape = [3, 3, 3]
            axes = np.array([0], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sqrt(np.sum(a=np.square(x), axis=tuple(axes), keepdims=True)).astype(np.int64)
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "reduce_l2_fp8x23_export_negative_axes_keepdims"
            make_node([x], [y], name)
            make_test(
                [x], y, "input_0.reduce_l2(0, true)", name)
        
        reduce_l2_export_do_not_keepdims()
        reduce_l2_export_keepdims()
        reduce_l2_axis_0()
    @staticmethod
    def reduce_l2_fp16x16():
        def reduce_l2_export_do_not_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sqrt(np.sum(a=np.square(x), axis=tuple(axes), keepdims=False)).astype(np.int64)
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "reduce_l2_fp16x16_export_do_not_keepdims"
            make_node([x], [y], name)
            make_test(
                [x], y, "input_0.reduce_l2(2, false)", name)
            
        def reduce_l2_export_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sqrt(np.sum(a=np.square(x), axis=tuple(axes), keepdims=True)).astype(np.int64)
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "reduce_l2_fp16x16_export_keepdims"
            make_node([x], [y], name)
            make_test(
                [x], y, "input_0.reduce_l2(2, true)", name)
            
        def reduce_l2_axis_0():
            shape = [3, 3, 3]
            axes = np.array([0], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sqrt(np.sum(a=np.square(x), axis=tuple(axes), keepdims=True)).astype(np.int64)
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "reduce_l2_fp16x16_export_negative_axes_keepdims"
            make_node([x], [y], name)
            make_test(
                [x], y, "input_0.reduce_l2(0, true)", name)
        
        reduce_l2_export_do_not_keepdims()
        reduce_l2_export_keepdims()
        reduce_l2_axis_0()
    @staticmethod
    def reduce_l2_complex64():
        
        def reduce_l2_axis_0():
            shape = [2, 3]
            axes = np.array([0], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.array([1.+2.j,  2.-1.j,  3.-3.j,  3.-2.j,  3.+5.j, 4.- 1.j]), shape)
            y = np.sqrt(np.sum(a=np.square(abs(x)), axis=tuple(axes), keepdims=True))
            print(to_fp(x.flatten(), FixedImpl.FP64x64))
            x = Tensor(Dtype.COMPLEX64, x.shape, to_fp(
            x.flatten(), FixedImpl.FP64x64))
            
            y = Tensor(Dtype.COMPLEX64, y.shape, to_fp(
            y.flatten(), FixedImpl.FP64x64))
            name = "reduce_l2_complex64_axis_0"
            make_test(
                [x], y, "input_0.reduce_l2(0, true)", name)
        reduce_l2_axis_0() 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/reduce_log_sum.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import  make_test, to_fp, Tensor, Dtype, FixedImpl
class Reduce_log_sum(RunAll):
    @staticmethod
    def reduce_log_sum_fp8x23():
        def reduce_log_sum_export_do_not_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
            y = np.log(np.sum(x, axis=tuple(axes), keepdims=False))
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
            name = "reduce_log_sum_fp8x23_export_do_not_keepdims"
            make_test(
                [x], y, "input_0.reduce_log_sum(2, false)", name)
            
        def reduce_log_sum_export_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.log(np.sum(x, axis=tuple(axes), keepdims=True))
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
            name = "reduce_log_sum_fp8x23_export_keepdims"
            make_test(
                [x], y, "input_0.reduce_log_sum(2, true)", name)
            
        def reduce_log_sum_axis_0():
            shape = [3, 3, 3]
            axes = np.array([0], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1), shape)
            y = np.log(np.sum(x, axis=tuple(axes), keepdims=True))
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
            name = "reduce_log_sum_fp8x23_export_negative_axes_keepdims"
            make_test(
                [x], y, "input_0.reduce_log_sum(0, true)", name)
        
        reduce_log_sum_export_do_not_keepdims()
        reduce_log_sum_export_keepdims()
        reduce_log_sum_axis_0()
    @staticmethod
    def reduce_log_sum_fp16x16():
        def reduce_log_sum_export_do_not_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.log(np.sum(x, axis=tuple(axes), keepdims=False))
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
            name = "reduce_log_sum_fp16x16_export_do_not_keepdims"
            make_test(
                [x], y, "input_0.reduce_log_sum(2, false)", name)
            
        def reduce_log_sum_export_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.log(np.sum(x, axis=tuple(axes), keepdims=True))
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
            name = "reduce_log_sum_fp16x16_export_keepdims"
            make_test(
                [x], y, "input_0.reduce_log_sum(2, true)", name)
            
        def reduce_log_sum_axis_0():
            shape = [2, 2, 2]
            axes = np.array([0], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.log(np.sum(x, axis=tuple(axes), keepdims=True))
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
            name = "reduce_log_sum_fp16x16_export_negative_axes_keepdims"
            make_test(
                [x], y, "input_0.reduce_log_sum(0, true)", name)
        
        reduce_log_sum_export_do_not_keepdims()
        reduce_log_sum_export_keepdims()
        reduce_log_sum_axis_0() 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/reduce_log_sum_exp.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, Tensor, Dtype, FixedImpl, to_fp
class Reduce_log_sum_exp(RunAll):
    @staticmethod
    def reduce_log_sum_exp_fp32x32():
        def reduce_log_sum_exp_export_do_not_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1), shape)
            y = np.log(np.sum(np.exp(x), axis=tuple(axes), keepdims=False)).astype(np.float64)
            x = Tensor(Dtype.FP32x32, x.shape, to_fp(
            x.flatten(), FixedImpl.FP32x32))
            y = Tensor(Dtype.FP32x32, y.shape, to_fp(
            y.flatten(), FixedImpl.FP32x32))
            name = "reduce_log_sum_exp_fp32x32_export_do_not_keepdims"
            make_test(
                [x], y, "input_0.reduce_log_sum_exp(2, false)", name)
            
        def reduce_log_sum_exp_export_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1), shape)
            y = np.log(np.sum(np.exp(x), axis=tuple(axes), keepdims=True)).astype(np.float64)
            x = Tensor(Dtype.FP32x32, x.shape, to_fp(
            x.flatten(), FixedImpl.FP32x32))
            y = Tensor(Dtype.FP32x32, y.shape, to_fp(
            y.flatten(), FixedImpl.FP32x32))
            name = "reduce_log_sum_exp_fp32x32_export_keepdims"
            make_test(
                [x], y, "input_0.reduce_log_sum_exp(2, true)", name)
            
        def reduce_log_sum_exp_axis_0():
            shape = [3, 2, 2]
            axes = np.array([0], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1), shape)
            y = np.log(np.sum(np.exp(x), axis=tuple(axes), keepdims=True)).astype(np.float64)
            x = Tensor(Dtype.FP32x32, x.shape, to_fp(
            x.flatten(), FixedImpl.FP32x32))
            y = Tensor(Dtype.FP32x32, y.shape, to_fp(
            y.flatten(), FixedImpl.FP32x32))
            name = "reduce_log_sum_exp_fp32x32_export_negative_axes_keepdims"
            make_test(
                [x], y, "input_0.reduce_log_sum_exp(0, true)", name)
        
        reduce_log_sum_exp_export_do_not_keepdims()
        reduce_log_sum_exp_export_keepdims()
        reduce_log_sum_exp_axis_0()
  
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/reduce_mean.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Reduce_mean(RunAll):
    @staticmethod
    def reduce_mean_u32():
        def reduce_mean_1D():
            x = np.array([0, 1, 2,]).astype(np.uint32)
            y = np.mean(x, keepdims=True).astype(np.uint32)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reduce_mean_u32_1D"
            make_test(
                [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name)
        def reduce_mean_2D():
            def default():
                x = np.array([0, 1, 2, 3]).astype(np.uint32).reshape(2, 2)
                y = np.mean(x, keepdims=True).astype(np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "reduce_mean_u32_2D_default"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name)
            def keepdims():
                x = np.array([0, 1, 2, 3]).astype(np.uint32).reshape(2, 2)
                y = np.mean(x, keepdims=False).astype(np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "reduce_mean_u32_2D_keepdims"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::None(()), Option::Some(false), Option::None(()))", name)
            def axis_1():
                x = np.array([0, 1, 2, 3]).astype(np.uint32).reshape(2, 2)
                y = np.mean(x, axis=(1), keepdims=True).astype(np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "reduce_mean_u32_2D_axis_1"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name)
            default()
            keepdims()
            axis_1()
        reduce_mean_1D()
        reduce_mean_2D()
    @staticmethod
    def reduce_mean_i32():
        def reduce_mean_1D():
            x = np.array([0, 1, 2,]).astype(np.int32)
            y = np.mean(x, keepdims=True).astype(np.int32)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "reduce_mean_i32_1D"
            make_test(
                [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name)
        def reduce_mean_2D():
            def default():
                x = np.array([0, 1, 2, 3]).astype(np.int32).reshape(2, 2)
                y = np.mean(x, keepdims=True).astype(np.int32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "reduce_mean_i32_2D_default"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name)
            def keepdims():
                x = np.array([0, 1, 2, 3]).astype(np.int32).reshape(2, 2)
                y = np.mean(x, keepdims=False).astype(np.int32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "reduce_mean_i32_2D_keepdims"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::None(()), Option::Some(false), Option::None(()))", name)
            def axis_1():
                x = np.array([0, 1, 2, 3]).astype(np.int32).reshape(2, 2)
                y = np.mean(x, axis=(1), keepdims=True).astype(np.int32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "reduce_mean_i32_2D_axis_1"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name)
            default()
            keepdims()
            axis_1()
        reduce_mean_1D()
        reduce_mean_2D()
    @staticmethod
    def reduce_mean_i8():
        def reduce_mean_1D():
            x = np.array([0, 1, 2,]).astype(np.int8)
            y = np.mean(x, keepdims=True).astype(np.int8)
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "reduce_mean_i8_1D"
            make_test(
                [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name)
        def reduce_mean_2D():
            def default():
                x = np.array([0, 1, 2, 3]).astype(np.int8).reshape(2, 2)
                y = np.mean(x, keepdims=True).astype(np.int8)
                x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
                y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
                name = "reduce_mean_i8_2D_default"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name)
            def keepdims():
                x = np.array([0, 1, 2, 3]).astype(np.int8).reshape(2, 2)
                y = np.mean(x, keepdims=False).astype(np.int8)
                x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
                y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
                name = "reduce_mean_i8_2D_keepdims"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::None(()), Option::Some(false), Option::None(()))", name)
            def axis_1():
                x = np.array([0, 1, 2, 3]).astype(np.int8).reshape(2, 2)
                y = np.mean(x, axis=(1), keepdims=True).astype(np.int8)
                x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
                y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
                name = "reduce_mean_i8_2D_axis_1"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name)
            default()
            keepdims()
            axis_1()
        reduce_mean_1D()
        reduce_mean_2D()
    @staticmethod
    def reduce_mean_fp8x23():
        def reduce_mean_1D():
            x = np.array([0, 1, 2,]).astype(np.int64)
            y = np.mean(x, keepdims=True)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23))
            name = "reduce_mean_fp8x23_1D"
            make_test(
                [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name)
        def reduce_mean_2D():
            def default():
                x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2)
                y = np.mean(x, keepdims=True)
                x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP8x23))
                name = "reduce_mean_fp8x23_2D_default"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name)
            def keepdims():
                x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2)
                y = np.mean(x, keepdims=False)
                x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP8x23))
                name = "reduce_mean_fp8x23_2D_keepdims"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::None(()), Option::Some(false), Option::None(()))", name)
            def axis_1():
                x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2)
                y = np.mean(x, axis=(1), keepdims=True)
                x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP8x23))
                name = "reduce_mean_fp8x23_2D_axis_1"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name)
            default()
            keepdims()
            axis_1()
            
        reduce_mean_1D()
        reduce_mean_2D()
    @staticmethod
    def reduce_mean_fp16x16():
        def reduce_mean_1D():
            x = np.array([0, 1, 2,]).astype(np.int64)
            y = np.mean(x, keepdims=True)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16))
            name = "reduce_mean_fp16x16_1D"
            make_test(
                [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name)
        def reduce_mean_2D():
            def default():
                x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2)
                y = np.mean(x, keepdims=True)
                x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP16x16))
                name = "reduce_mean_fp16x16_2D_default"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::None(()), Option::None(()), Option::None(()))", name)
            def keepdims():
                x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2)
                y = np.mean(x, keepdims=False)
                x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP16x16))
                name = "reduce_mean_fp16x16_2D_keepdims"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::None(()), Option::Some(false), Option::None(()))", name)
            def axis_1():
                x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2)
                y = np.mean(x, axis=(1), keepdims=True)
                x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP16x16))
                name = "reduce_mean_fp16x16_2D_axis_1"
                make_test(
                    [x], y, "input_0.reduce_mean(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name)
            default()
            keepdims()
            axis_1()
        reduce_mean_1D()
        reduce_mean_2D()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/reduce_min.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Reduce_min(RunAll):
    @staticmethod
    def reduce_min_u32():
        def reduce_min_1D():
            x = np.array([0, 1, 2,]).astype(np.uint32)
            y = np.minimum.reduce(x, axis=None, keepdims=True).astype(np.uint32)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reduce_min_u32_1D"
            make_test(
                [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name)
        def reduce_min_2D():
            def default():
                x = np.array([0, 1, 2, 3]).astype(np.uint32).reshape(2, 2)
                y = np.minimum.reduce(x, axis=None, keepdims=True).astype(np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "reduce_min_u32_2D_default"
                make_test(
                    [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name)
            def keepdims():
                x = np.array([0, 1, 2, 3]).astype(np.uint32).reshape(2, 2)
                y = np.minimum.reduce(x, axis=None, keepdims=False).astype(np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "reduce_min_u32_2D_keepdims"
                make_test(
                    [x], y, "input_0.reduce_min(Option::None(()), Option::Some(false), Option::None(()))", name)
            def axis_1():
                x = np.array([0, 1, 2, 3]).astype(np.uint32).reshape(2, 2)
                y = np.minimum.reduce(x, axis=(1), keepdims=True).astype(np.uint32)
                x = Tensor(Dtype.U32, x.shape, x.flatten())
                y = Tensor(Dtype.U32, y.shape, y.flatten())
                name = "reduce_min_u32_2D_axis_1"
                make_test(
                    [x], y, "input_0.reduce_min(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name)
            default()
            keepdims()
            axis_1()
        reduce_min_1D()
        reduce_min_2D()
    @staticmethod
    def reduce_min_i32():
        def reduce_min_1D():
            x = np.array([0, 1, 2,]).astype(np.int32)
            y = np.minimum.reduce(x, axis=None, keepdims=True).astype(np.int32)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "reduce_min_i32_1D"
            make_test(
                [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name)
        def reduce_min_2D():
            def default():
                x = np.array([0, 1, 2, 3]).astype(np.int32).reshape(2, 2)
                y = np.minimum.reduce(x, axis=None, keepdims=True).astype(np.int32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "reduce_min_i32_2D_default"
                make_test(
                    [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name)
            def keepdims():
                x = np.array([0, 1, 2, 3]).astype(np.int32).reshape(2, 2)
                y = np.minimum.reduce(x, axis=None, keepdims=False).astype(np.int32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "reduce_min_i32_2D_keepdims"
                make_test(
                    [x], y, "input_0.reduce_min(Option::None(()), Option::Some(false), Option::None(()))", name)
            def axis_1():
                x = np.array([0, 1, 2, 3]).astype(np.int32).reshape(2, 2)
                y = np.minimum.reduce(x, axis=(1), keepdims=True).astype(np.int32)
                x = Tensor(Dtype.I32, x.shape, x.flatten())
                y = Tensor(Dtype.I32, y.shape, y.flatten())
                name = "reduce_min_i32_2D_axis_1"
                make_test(
                    [x], y, "input_0.reduce_min(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name)
            default()
            keepdims()
            axis_1()
        reduce_min_1D()
        reduce_min_2D()
    @staticmethod
    def reduce_min_i8():
        def reduce_min_1D():
            x = np.array([0, 1, 2,]).astype(np.int8)
            y = np.minimum.reduce(x, axis=None, keepdims=True).astype(np.int8)
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "reduce_min_i8_1D"
            make_test(
                [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name)
        def reduce_min_2D():
            def default():
                x = np.array([0, 1, 2, 3]).astype(np.int8).reshape(2, 2)
                y = np.minimum.reduce(x, axis=None, keepdims=True).astype(np.int8)
                x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
                y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
                name = "reduce_min_i8_2D_default"
                make_test(
                    [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name)
            def keepdims():
                x = np.array([0, 1, 2, 3]).astype(np.int8).reshape(2, 2)
                y = np.minimum.reduce(x, axis=None, keepdims=False).astype(np.int8)
                x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
                y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
                name = "reduce_min_i8_2D_keepdims"
                make_test(
                    [x], y, "input_0.reduce_min(Option::None(()), Option::Some(false), Option::None(()))", name)
            def axis_1():
                x = np.array([0, 1, 2, 3]).astype(np.int8).reshape(2, 2)
                y = np.minimum.reduce(x, axis=(1), keepdims=True).astype(np.int8)
                x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
                y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
                name = "reduce_min_i8_2D_axis_1"
                make_test(
                    [x], y, "input_0.reduce_min(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name)
            default()
            keepdims()
            axis_1()
        reduce_min_1D()
        reduce_min_2D()
    @staticmethod
    def reduce_min_fp8x23():
        def reduce_min_1D():
            x = np.array([0, 1, 2,]).astype(np.int64)
            y = np.minimum.reduce(x, axis=None, keepdims=True)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23))
            name = "reduce_min_fp8x23_1D"
            make_test(
                [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name)
        def reduce_min_2D():
            def default():
                x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2)
                y = np.minimum.reduce(x, axis=None, keepdims=True)
                x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP8x23))
                name = "reduce_min_fp8x23_2D_default"
                make_test(
                    [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name)
            def keepdims():
                x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2)
                y = np.minimum.reduce(x, axis=None, keepdims=False)
                x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP8x23))
                name = "reduce_min_fp8x23_2D_keepdims"
                make_test(
                    [x], y, "input_0.reduce_min(Option::None(()), Option::Some(false), Option::None(()))", name)
            def axis_1():
                x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2)
                y = np.minimum.reduce(x, axis=(1), keepdims=True)
                x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP8x23))
                name = "reduce_min_fp8x23_2D_axis_1"
                make_test(
                    [x], y, "input_0.reduce_min(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name)
            default()
            keepdims()
            axis_1()
            
        reduce_min_1D()
        reduce_min_2D()
    @staticmethod
    def reduce_min_fp16x16():
        def reduce_min_1D():
            x = np.array([0, 1, 2,]).astype(np.int64)
            y = np.minimum.reduce(x, axis=None, keepdims=True)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16))
            name = "reduce_min_fp16x16_1D"
            make_test(
                [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name)
        def reduce_min_2D():
            def default():
                x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2)
                y = np.minimum.reduce(x, axis=None, keepdims=True)
                x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP16x16))
                name = "reduce_min_fp16x16_2D_default"
                make_test(
                    [x], y, "input_0.reduce_min(Option::None(()), Option::None(()), Option::None(()))", name)
            def keepdims():
                x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2)
                y = np.minimum.reduce(x, axis=None, keepdims=False)
                x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP16x16))
                name = "reduce_min_fp16x16_2D_keepdims"
                make_test(
                    [x], y, "input_0.reduce_min(Option::None(()), Option::Some(false), Option::None(()))", name)
            def axis_1():
                x = np.array([0, 1, 2, 3]).astype(np.int64).reshape(2, 2)
                y = np.minimum.reduce(x, axis=(1), keepdims=True)
                x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                    x.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                    y.flatten(), FixedImpl.FP16x16))
                name = "reduce_min_fp16x16_2D_axis_1"
                make_test(
                    [x], y, "input_0.reduce_min(Option::Some(array![1].span()), Option::None(()), Option::None(()))", name)
            default()
            keepdims()
            axis_1()
        reduce_min_1D()
        reduce_min_2D()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/reduce_sum.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Reduce_sum(RunAll):
    @staticmethod
    def reduce_sum_no_keep_dims():
        axes = np.array([1], dtype=np.uint32)
        keepdims = 0
        x = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [
                     [9, 10], [11, 12]]]).astype(np.uint32)
        y = np.sum(x, axis=tuple(axes.tolist()), keepdims=keepdims == 1)
        x = Tensor(Dtype.U32, x.shape, x.flatten())
        y = Tensor(Dtype.U32, y.shape, y.flatten())
        name = "reduce_sum_no_keep_dims"
        make_test(
            [x], y, "input_0.reduce_sum(Option::Some(array![1].span()), Option::Some(false), Option::None)", name)
    @staticmethod
    def reduce_sum_keep_dims():
        axes = np.array([1], dtype=np.uint32)
        keepdims = 1
        x = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [
            [9, 10], [11, 12]]]).astype(np.uint32)
        y = np.sum(x, axis=tuple(axes.tolist()), keepdims=keepdims == 1)
        x = Tensor(Dtype.U32, x.shape, x.flatten())
        y = Tensor(Dtype.U32, y.shape, y.flatten())
        name = "reduce_sum_keep_dims"
        make_test(
            [x], y, "input_0.reduce_sum(Option::Some(array![1].span()), Option::Some(true), Option::None)", name)
    @staticmethod
    def reduce_sum_default_axes_keepdims():
        keepdims = 1
        x = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [
            [9, 10], [11, 12]]]).astype(np.uint32)
        y = np.sum(x, axis=None, keepdims=keepdims == 1)
        x = Tensor(Dtype.U32, x.shape, x.flatten())
        y = Tensor(Dtype.U32, y.shape, y.flatten())
        name = "reduce_sum_default_axes_keepdims"
        make_test(
            [x], y, "input_0.reduce_sum(Option::Some(array![].span()), Option::Some(true), Option::None)", name)
        
    @staticmethod
    def reduce_sum_negative_axes_keepdims():
        axes = np.array([-2], dtype=np.int64)
        keepdims = 1
        x = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [
            [9, 10], [11, 12]]]).astype(np.uint32)
        y = np.sum(x, axis=tuple(axes.tolist()), keepdims=keepdims == 1)
        x = Tensor(Dtype.U32, x.shape, x.flatten())
        y = Tensor(Dtype.U32, y.shape, y.flatten())
        name = "reduce_sum_negative_axes_keepdims"
        make_test(
            [x], y, "input_0.reduce_sum(Option::Some(array![-2].span()), Option::Some(true), Option::None)", name)
    @staticmethod
    def reduce_sum_empty_axes_input_noop():
        x = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [
            [9, 10], [11, 12]]]).astype(np.uint32)
        y = np.array(x)
        x = Tensor(Dtype.U32, x.shape, x.flatten())
        y = Tensor(Dtype.U32, y.shape, y.flatten())
        name = "reduce_sum_empty_axes_input_noop"
        make_test(
            [x], y, "input_0.reduce_sum(Option::None, Option::Some(true), Option::Some(true))", name) 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/reduce_sum_square.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
import numpy as np
class Reduce_sum_square(RunAll):
    @staticmethod
    def reduce_sum_square_fp8x23():
        def reduce_sum_square_export_do_not_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=False).astype(np.int64)
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "reduce_sum_square_fp8x23_export_do_not_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(2, false)", name)
            
        def reduce_sum_square_export_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int64)
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "reduce_sum_square_fp8x23_export_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(2, true)", name)
            
        def reduce_sum_square_axis_0():
            shape = [3, 3, 3]
            axes = np.array([0], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int64)
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "reduce_sum_square_fp8x23_export_negative_axes_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(0, true)", name)
        
        reduce_sum_square_export_do_not_keepdims()
        reduce_sum_square_export_keepdims()
        reduce_sum_square_axis_0()
    @staticmethod
    def reduce_sum_square_fp16x16():
        def reduce_sum_square_export_do_not_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=False).astype(np.int64)
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "reduce_sum_square_fp16x16_export_do_not_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(2, false)", name)
            
        def reduce_sum_square_export_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int64)
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "reduce_sum_square_fp16x16_export_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(2, true)", name)
            
        def reduce_sum_square_axis_0():
            shape = [2, 2, 2]
            axes = np.array([0], dtype=np.int64)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int64)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int64)
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "reduce_sum_square_fp16x16_export_negative_axes_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(0, true)", name)
        
        reduce_sum_square_export_do_not_keepdims()
        reduce_sum_square_export_keepdims()
        reduce_sum_square_axis_0()
    @staticmethod
    def reduce_sum_square_i8():
        def reduce_sum_square_export_do_not_keepdims():
            shape = [2, 2, 2]
            axes = np.array([2], dtype=np.int8)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int8)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=False).astype(np.int8)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "reduce_sum_square_i8_export_do_not_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(2, false)", name)
            
        def reduce_sum_square_export_keepdims():
            shape = [2, 2, 2]
            axes = np.array([2], dtype=np.int8)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int8)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int8)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "reduce_sum_square_i8_export_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(2, true)", name)
            
        def reduce_sum_square_axis_0():
            shape = [2, 2, 2]
            axes = np.array([0], dtype=np.int8)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int8)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int8)
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "reduce_sum_square_i8_export_negative_axes_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(0, true)", name)
        
        reduce_sum_square_export_do_not_keepdims()
        reduce_sum_square_export_keepdims()
        reduce_sum_square_axis_0()
    @staticmethod
    def reduce_sum_square_i32():
        def reduce_sum_square_export_do_not_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int32)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int32)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=False).astype(np.int32)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "reduce_sum_square_i32_export_do_not_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(2, false)", name)
            
        def reduce_sum_square_export_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.int32)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int32)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int32)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "reduce_sum_square_i32_export_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(2, true)", name)
            
        def reduce_sum_square_axis_0():
            shape = [3, 3, 3]
            axes = np.array([0], dtype=np.int32)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.int32)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.int32)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "reduce_sum_square_i32_export_negative_axes_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(0, true)", name)
        
        reduce_sum_square_export_do_not_keepdims()
        reduce_sum_square_export_keepdims()
        reduce_sum_square_axis_0()
    @staticmethod
    def reduce_sum_square_u32():
        def reduce_sum_square_export_do_not_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.uint32)
            keepdims = False
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.uint32)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=False).astype(np.uint32)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reduce_sum_square_u32_export_do_not_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(2, false)", name)
            
        def reduce_sum_square_export_keepdims():
            shape = [3, 2, 2]
            axes = np.array([2], dtype=np.uint32)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.uint32)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.uint32)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reduce_sum_square_u32_export_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(2, true)", name)
            
        def reduce_sum_square_axis_0():
            shape = [3, 3, 3]
            axes = np.array([0], dtype=np.uint32)
            keepdims = True
            x = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape).astype(np.uint32)
            y = np.sum(a=np.square(x), axis=tuple(axes), keepdims=True).astype(np.uint32)
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reduce_sum_square_u32_export_negative_axes_keepdims"
            
            make_test(
                [x], y, "input_0.reduce_sum_square(0, true)", name)
        
        reduce_sum_square_export_do_not_keepdims()
        reduce_sum_square_export_keepdims()
        reduce_sum_square_axis_0() 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/relu.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, Trait, FixedImpl
import tensorflow as tf
class Relu(RunAll):
    @staticmethod
    def relu_i32():
        x = np.random.randint(-5, 9, (2, 2)).astype(np.int32)
        layer = tf.keras.layers.ReLU()
        y = layer(x).numpy()
        x = Tensor(Dtype.I32, x.shape, x.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "relu_i32"
        make_test([x], y, "NNTrait::relu(@input_0)",
                  name, Trait.NN)
    @staticmethod
    def relu_i8():
        x = np.random.randint(-5, 9, (2, 2)).astype(np.int8)
        layer = tf.keras.layers.ReLU()
        y = layer(x).numpy()
        x = Tensor(Dtype.I8, x.shape, x.flatten())
        y = Tensor(Dtype.I8, y.shape, y.flatten())
        name = "relu_i8"
        make_test([x], y, "NNTrait::relu(@input_0)",
                  name, Trait.NN)
    @staticmethod
    def relu_fp8x23():
        x = np.random.uniform(-5, 7, (2, 2)).astype(np.float64)
        layer = tf.keras.layers.ReLU()
        y = layer(x).numpy()
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "relu_fp8x23"
        make_test([x], y, "NNTrait::relu(@input_0)",
                  name, Trait.NN)
    @staticmethod
    def relu_fp16x16():
        x = np.random.uniform(-5, 7, (2, 2)).astype(np.float64)
        layer = tf.keras.layers.ReLU()
        y = layer(x).numpy()
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "relu_fp16x16"
        make_test([x], y, "NNTrait::relu(@input_0)",
                  name, Trait.NN)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/reshape.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, Tensor, Dtype
original_shape = [2, 3, 4]
data = np.random.random_sample(original_shape).astype(np.int32)
def reshape_reference_implementation(
    data: np.ndarray, shape: np.ndarray, allowzero: int = 0
) -> np.ndarray:
    # replace zeros with corresponding dim size
    # we need to do this because np.reshape doesn't support 0 by default unless 'allowzero' is set
    new_shape = np.copy(shape)
    if allowzero == 0:
        zeros_index = np.where(shape == 0)
        new_shape[zeros_index] = np.array(data.shape)[zeros_index]
    reshaped = np.reshape(data, new_shape)
    return reshaped
class Reshape(RunAll):
    @staticmethod
    def reshape_reordered_all_dims():
        y = reshape_reference_implementation(
            data, np.array([4, 2, 3], dtype=np.int64))
        x = Tensor(Dtype.I32, data.shape, data.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "reshape_reordered_all_dims"
        make_test([x], y, "input_0.reshape(array![4,2,3].span(), false)", name)
    @staticmethod
    def reshape_reordered_last_dims():
        y = reshape_reference_implementation(
            data, np.array([2, 4, 3], dtype=np.int64))
        x = Tensor(Dtype.I32, data.shape, data.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "reshape_reordered_last_dims"
        make_test([x], y, "input_0.reshape(array![2,4,3].span(), false)", name)
    @staticmethod
    def reshape_reduced_dims():
        y = reshape_reference_implementation(
            data, np.array([2, 12], dtype=np.int64))
        x = Tensor(Dtype.I32, data.shape, data.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "reshape_reduced_dims"
        make_test([x], y, "input_0.reshape(array![2,12].span(), false)", name)
    @staticmethod
    def reshape_extended_dims():
        y = reshape_reference_implementation(
            data, np.array([2, 3, 2, 2], dtype=np.int64))
        x = Tensor(Dtype.I32, data.shape, data.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "reshape_extended_dims"
        make_test([x], y, "input_0.reshape(array![2, 3, 2, 2].span(), false)", name)
    @staticmethod
    def reshape_one_dim():
        y = reshape_reference_implementation(
            data, np.array([24], dtype=np.int64))
        x = Tensor(Dtype.I32, data.shape, data.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "reshape_one_dim"
        make_test([x], y, "input_0.reshape(array![24].span(), false)", name)
    @staticmethod
    def reshape_negative_dim():
        y = reshape_reference_implementation(
            data, np.array([2, -1, 2], dtype=np.int64))
        x = Tensor(Dtype.I32, data.shape, data.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "reshape_negative_dim"
        make_test([x], y, "input_0.reshape(array![2, -1, 2].span(), false)", name)
    @staticmethod
    def reshape_negative_extended_dims():
        y = reshape_reference_implementation(
            data, np.array([-1, 2, 3, 4], dtype=np.int64))
        x = Tensor(Dtype.I32, data.shape, data.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "reshape_negative_extended_dims"
        make_test([x], y, "input_0.reshape(array![-1, 2, 3, 4].span(), false)", name)
    @staticmethod
    def reshape_zero_dim():
        y = reshape_reference_implementation(
            data, np.array([2, 0, 4, 1], dtype=np.int64))
        x = Tensor(Dtype.I32, data.shape, data.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "reshape_zero_dim"
        make_test([x], y, "input_0.reshape(array![2, 0, 4, 1].span(), false)", name)
    @staticmethod
    def reshape_zero_and_negative_dim():
        y = reshape_reference_implementation(
            data, np.array([2, 0, 1, -1], dtype=np.int64))
        x = Tensor(Dtype.I32, data.shape, data.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "reshape_zero_and_negative_dim"
        make_test([x], y, "input_0.reshape(array![2, 0, 1, -1].span(), false)", name)
    @staticmethod
    def reshape_zero_and_negative_dim():
        original_shape = [0, 3, 4]
        data = np.random.random_sample(original_shape).astype(np.int32)
        y = reshape_reference_implementation(
            data, np.array([3, 4, 0], dtype=np.int64), allowzero=1)
        x = Tensor(Dtype.I32, data.shape, data.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "reshape_zero_and_negative_dim"
        make_test([x], y, "input_0.reshape(array![3, 4, 0].span(), true)", name)
     
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/resize.py 
 | 
	# Python test implementation from ONNX library : https://github.com/onnx/onnx/blob/main/onnx/reference/ops/op_resize.py
import numpy as np
from typing import Any, Callable
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
def _cartesian(arrays: list[np.ndarray], out: np.ndarray | None = None) -> np.ndarray:
    #From https://stackoverflow.com/a/1235363
    arrays = [np.asarray(x) for x in arrays]
    dtype = arrays[0].dtype
    n = np.prod([x.size for x in arrays])
    if out is None:
        out = np.zeros([n, len(arrays)], dtype=dtype)
    m = n // arrays[0].size
    out[:, 0] = np.repeat(arrays[0], m)
    if arrays[1:]:
        _cartesian(arrays[1:], out=out[0:m, 1:])
        for j in range(1, arrays[0].size):
            out[j * m : (j + 1) * m, 1:] = out[0:m, 1:]
    return out
def _get_neighbor_idxes(x: float, n: int, limit: int) -> np.ndarray:
    idxes = sorted(range(limit), key=lambda idx: (abs(x - idx), idx))[:n]
    idxes = sorted(idxes)
    return np.array(idxes)
def _get_neighbor(x: float, n: int, data: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
    pad_width = np.ceil(n / 2).astype(int)
    padded = np.pad(data, pad_width, mode="edge")
    x += pad_width
    idxes = _get_neighbor_idxes(x, n, len(padded))
    ret = padded[idxes]
    return idxes - pad_width, ret
def linear_coeffs(ratio: float, scale: float | None = None) -> np.ndarray:
    del scale  
    return np.array([1 - ratio, ratio])
def linear_coeffs_antialias(ratio: float, scale: float) -> np.ndarray:
    scale = min(scale, 1.0)
    start = int(np.floor(-1 / scale) + 1)
    footprint = 2 - 2 * start
    args = (np.arange(start, start + footprint) - ratio) * scale
    coeffs = np.clip(1 - np.abs(args), 0, 1)
    return np.array(coeffs) / sum(coeffs) 
def cubic_coeffs_antialias(ratio: float, scale: float, A: float = -0.75) -> np.ndarray:
    scale = min(scale, 1.0)
    def compute_coeff(x: float) -> float:
        x = abs(x)
        x_2 = x * x
        x_3 = x * x_2
        if x <= 1:
            return (A + 2) * x_3 - (A + 3) * x_2 + 1
        if x < 2:
            return A * x_3 - 5 * A * x_2 + 8 * A * x - 4 * A
        return 0.0
    i_start = int(np.floor(-2 / scale) + 1)
    i_end = 2 - i_start
    args = [scale * (i - ratio) for i in range(i_start, i_end)]
    coeffs = [compute_coeff(x) for x in args]
    return np.array(coeffs) / sum(coeffs)
def nearest_coeffs(
    ratio: float | int | np.ndarray, mode: str = "round_prefer_floor"
) -> np.ndarray:
    if isinstance(ratio, int) or ratio.is_integer():
        return np.array([0, 1])
    if mode == "round_prefer_floor":
        return np.array([ratio <= 0.5, ratio > 0.5])
    if mode == "round_prefer_ceil":
        return np.array([ratio < 0.5, ratio >= 0.5])
    if mode == "floor":
        return np.array([1, 0])
    if mode == "ceil":
        return np.array([0, 1])
    raise ValueError(f"Unexpected value {mode!r}.")
def _interpolate_1d_with_x(
    data: np.ndarray,
    scale_factor: float,
    output_width_int: int,
    x: float,
    get_coeffs: Callable[[float, float], np.ndarray],
    roi: np.ndarray | None = None,
    extrapolation_value: float = 0.0,
    coordinate_transformation_mode: str = "half_pixel",
    exclude_outside: bool = False,
) -> np.ndarray:
    
    input_width = len(data)
    output_width = scale_factor * input_width
    if coordinate_transformation_mode == "align_corners":
        if output_width == 1:
            x_ori = 0.0
        else:
            x_ori = x * (input_width - 1) / (output_width - 1)
    elif coordinate_transformation_mode == "asymmetric":
        x_ori = x / scale_factor
    elif coordinate_transformation_mode == "tf_crop_and_resize":
        if roi is None:
            raise ValueError("roi cannot be None.")
        if output_width == 1:
            x_ori = (roi[1] - roi[0]) * (input_width - 1) / 2
        else:
            x_ori = x * (roi[1] - roi[0]) * (input_width - 1) / (output_width - 1)
        x_ori += roi[0] * (input_width - 1)
        if x_ori < 0 or x_ori > input_width - 1:
            return np.array(extrapolation_value)
    elif coordinate_transformation_mode == "pytorch_half_pixel":
        if output_width == 1:
            x_ori = -0.5
        else:
            x_ori = (x + 0.5) / scale_factor - 0.5
    elif coordinate_transformation_mode == "half_pixel":
        x_ori = (x + 0.5) / scale_factor - 0.5
    elif coordinate_transformation_mode == "half_pixel_symmetric":
        adjustment = output_width_int / output_width
        center = input_width / 2
        offset = center * (1 - adjustment)
        x_ori = offset + (x + 0.5) / scale_factor - 0.5
    else:
        raise ValueError(
            f"Invalid coordinate_transformation_mode: {coordinate_transformation_mode!r}."
        )
    x_ori_int = np.floor(x_ori).astype(int).item()
    if x_ori.is_integer():
        ratio = 1
    else:
        ratio = x_ori - x_ori_int
    coeffs = get_coeffs(ratio, scale_factor)
    n = len(coeffs)
    idxes, points = _get_neighbor(x_ori, n, data)
    if exclude_outside:
        for i, idx in enumerate(idxes):
            if idx < 0 or idx >= input_width:
                coeffs[i] = 0
        coeffs /= sum(coeffs)
    return np.dot(coeffs, points).item()  
def _interpolate_nd_with_x(
    data: np.ndarray,
    n: int,
    scale_factors: list[float],
    output_size: list[int],
    x: list[float],
    get_coeffs: Callable[[float, float], np.ndarray],
    roi: np.ndarray | None = None,
    exclude_outside: bool = False,
    **kwargs: Any,
) -> np.ndarray:
    
    if n == 1:
        return _interpolate_1d_with_x(
            data,
            scale_factors[0],
            output_size[0],
            x[0],
            get_coeffs,
            roi=roi,
            exclude_outside=exclude_outside,
            **kwargs,
        )
    res1d = []
    for i in range(data.shape[0]):
        r = _interpolate_nd_with_x(
            data[i],
            n - 1,
            scale_factors[1:],
            output_size[1:],
            x[1:],
            get_coeffs,
            roi=None if roi is None else np.concatenate([roi[1:n], roi[n + 1 :]]),
            exclude_outside=exclude_outside,
            **kwargs,
        )
        res1d.append(r)
    
    return _interpolate_1d_with_x(
        res1d, 
        scale_factors[0],
        output_size[0],
        x[0],
        get_coeffs,
        roi=None if roi is None else [roi[0], roi[n]], 
        exclude_outside=exclude_outside,
        **kwargs,
    )
def _get_all_coords(data: np.ndarray) -> np.ndarray:
    return _cartesian(
        [list(range(data.shape[i])) for i in range(len(data.shape))]  
    )
def interpolate_nd(
    data: np.ndarray,
    get_coeffs: Callable[[float, float], np.ndarray],
    output_size: list[int] | None = None,
    scale_factors: list[float] | None = None,
    axes: list[int] | None = None,
    roi: np.ndarray | None = None,
    keep_aspect_ratio_policy: str | None = "stretch",
    exclude_outside: bool = False,
    **kwargs: Any,
) -> np.ndarray:
    if output_size is None and scale_factors is None:
        raise ValueError("output_size is None and scale_factors is None.")
    r = len(data.shape)
    if axes is not None:
        if scale_factors is not None:
            new_scale_factors = [1.0] * r
            for i, d in enumerate(axes):
                new_scale_factors[d] = scale_factors[i]
            scale_factors = new_scale_factors
        if output_size is not None:
            new_output_size = [data.shape[i] for i in range(r)]
            for i, d in enumerate(axes):
                new_output_size[d] = output_size[i]
            output_size = new_output_size
        if roi is not None:
            new_roi = ([0.0] * r) + ([1.0] * r)
            naxes = len(axes)
            for i, d in enumerate(axes):
                new_roi[d] = roi[i]
                new_roi[r + d] = roi[naxes + i]
            roi = new_roi 
    else:
        axes = list(range(r))
    if output_size is not None:
        scale_factors = [output_size[i] / data.shape[i] for i in range(r)]
        if keep_aspect_ratio_policy != "stretch":
            if keep_aspect_ratio_policy == "not_larger":
                scale = np.array(scale_factors)[axes].min()
            elif keep_aspect_ratio_policy == "not_smaller":
                scale = np.array(scale_factors)[axes].max()
            else:
                raise ValueError(
                    f"Invalid keep_aspect_ratio_policy={keep_aspect_ratio_policy!r}"
                )
            scale_factors = [scale if i in axes else 1.0 for i in range(r)]
            def round_half_up(x: float) -> int:
                return int(x + 0.5)
            output_size = [
                round_half_up(scale * data.shape[i]) if i in axes else data.shape[i]
                for i in range(r)
            ]
    else:
        output_size = (scale_factors * np.array(data.shape)).astype(int) 
    if scale_factors is None:
        raise ValueError("scale_factors is None.")
    if output_size is None:
        raise ValueError("output_size is None.")
    ret = np.zeros(output_size)
    for x in _get_all_coords(ret):
        ret[tuple(x)] = _interpolate_nd_with_x(
            data,
            len(data.shape),
            scale_factors,
            output_size,
            x,
            get_coeffs,
            roi=roi,
            exclude_outside=exclude_outside,
            **kwargs,
        )
    return ret
def cubic_coeffs(
    ratio: float, scale: float | None = None, A: float = -0.75
) -> np.ndarray:
    del scale  # Unused
    coeffs = [
        ((A * (ratio + 1) - 5 * A) * (ratio + 1) + 8 * A) * (ratio + 1) - 4 * A,
        ((A + 2) * ratio - (A + 3)) * ratio * ratio + 1,
        ((A + 2) * (1 - ratio) - (A + 3)) * (1 - ratio) * (1 - ratio) + 1,
        ((A * ((1 - ratio) + 1) - 5 * A) * ((1 - ratio) + 1) + 8 * A)
        * ((1 - ratio) + 1)
        - 4 * A,
    ]
    return np.array(coeffs)
    
class Resize(RunAll):
    @staticmethod
    def resize_upsample_scales_nearest() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2],
                        [3, 4],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
        output = interpolate_nd(
            data, lambda x, _: nearest_coeffs(x), scale_factors=scales
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_scales_nearest"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::HALF_PIXEL_SYMMETRIC),"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_downsample_scales_nearest() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
        output = interpolate_nd(
            data, lambda x, _: nearest_coeffs(x), scale_factors=scales
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_scales_nearest"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_upsample_sizes_nearest() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2],
                        [3, 4],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([1, 1, 7, 8], dtype=np.int64)
        output = interpolate_nd(
            data, lambda x, _: nearest_coeffs(x), output_size=sizes
        ).astype(np.float32)
        x = [data, sizes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) 
           
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_sizes_nearest"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_downsample_sizes_nearest() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([1, 1, 1, 3], dtype=np.int64)
        output = interpolate_nd(
            data, lambda x, _: nearest_coeffs(x), output_size=sizes
        ).astype(np.float32)
        x = [data, sizes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_sizes_nearest"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_upsample_scales_linear() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2],
                        [3, 4],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
        output = interpolate_nd(
            data, lambda x, _: linear_coeffs(x, None), scale_factors=scales
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_scales_linear"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::LINEAR),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
        
    @staticmethod
    def resize_upsample_scales_linear_align_corners() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2],
                        [3, 4],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
        output = interpolate_nd(
            data,
            lambda x, _: linear_coeffs(x, None),
            scale_factors=scales,
            coordinate_transformation_mode="align_corners",
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_scales_linear_align_corners"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::ALIGN_CORNERS)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::LINEAR),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_downsample_scales_linear() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
        output = interpolate_nd(
            data, lambda x, _: linear_coeffs(x, None), scale_factors=scales
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_scales_linear"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::LINEAR),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_downsample_scales_linear_align_corners() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
        output = interpolate_nd(
            data,
            lambda x, _: linear_coeffs(x, None),
            scale_factors=scales,
            coordinate_transformation_mode="align_corners",
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_scales_linear_align_corners"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::ALIGN_CORNERS)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::LINEAR),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_upsample_scales_cubic() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
        output = interpolate_nd(
            data, lambda x, _: cubic_coeffs(x, None), scale_factors=scales
        ).astype(np.float32)
        
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_scales_cubic"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::CUBIC),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_upsample_scales_cubic_align_corners() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
        output = interpolate_nd(
            data,
            lambda x, _: cubic_coeffs(x),
            scale_factors=scales,
            coordinate_transformation_mode="align_corners",
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_scales_cubic_align_corners"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::ALIGN_CORNERS)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::CUBIC),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_downsample_scales_cubic() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 0.8, 0.8], dtype=np.float32)
        output = interpolate_nd(
            data, lambda x, _: cubic_coeffs(x), scale_factors=scales
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_scales_cubic"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::CUBIC),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_downsample_scales_cubic_align_corners() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 0.8, 0.8], dtype=np.float32)
        output = interpolate_nd(
            data,
            lambda x, _: cubic_coeffs(x),
            scale_factors=scales,
            coordinate_transformation_mode="align_corners",
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_scales_cubic_align_corners"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::ALIGN_CORNERS)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::CUBIC),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
        
    @staticmethod
    def resize_upsample_sizes_cubic() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([1, 1, 9, 10], dtype=np.int64)
        output = interpolate_nd(
            data, lambda x, _: cubic_coeffs(x), output_size=sizes
        ).astype(np.float32)
        x = [data, sizes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_sizes_cubic"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::CUBIC),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
        
    @staticmethod
    def resize_downsample_sizes_cubic() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([1, 1, 3, 3], dtype=np.int64)
        output = interpolate_nd(
            data, lambda x, _: cubic_coeffs(x), output_size=sizes
        ).astype(np.float32)
        x = [data, sizes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_sizes_cubic"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::CUBIC),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_upsample_scales_cubic_A_n0p5_exclude_outside() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
        output = interpolate_nd(
            data,
            lambda x, _: cubic_coeffs(x, A=-0.5),
            scale_factors=scales,
            exclude_outside=True,
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_scales_cubic_A_n0p5_exclude_outside"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::Some(FixedTrait::<FP16x16>::new(32768, true)),"
        func_sig += "Option::Some(true),"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::CUBIC),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_downsample_scales_cubic_A_n0p5_exclude_outside() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 0.8, 0.8], dtype=np.float32)
        output = interpolate_nd(
            data,
            lambda x, _: cubic_coeffs(x, A=-0.5),
            scale_factors=scales,
            exclude_outside=True,
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_scales_cubic_A_n0p5_exclude_outside"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::Some(FixedTrait::<FP16x16>::new(32768, true)),"
        func_sig += "Option::Some(true),"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::CUBIC),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_upsample_scales_cubic_asymmetric() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
        output = interpolate_nd(
            data,
            lambda x, _: cubic_coeffs(x, A=-0.75),
            scale_factors=scales,
            coordinate_transformation_mode="asymmetric",
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_scales_cubic_asymmetric"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::ASYMMETRIC)," 
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::CUBIC),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_tf_crop_and_resize() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        roi = np.array([0, 0, 0.4, 0.6, 1, 1, 0.6, 0.8], dtype=np.float32)
        sizes = np.array([1, 1, 3, 3], dtype=np.int64)
        output = interpolate_nd(
            data,
            lambda x, _: linear_coeffs(x),
            output_size=sizes,
            roi=roi,
            coordinate_transformation_mode="tf_crop_and_resize",
        ).astype(np.float32)
        x = [data, sizes, roi]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) 
        x[2] = Tensor(Dtype.FP16x16, x[2].shape, to_fp(x[2].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_tf_crop_and_resize"
        func_sig = "data.resize("
        func_sig += "roi,"
        func_sig += "Option::None," 
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::TF_CROP_AND_RESIZE)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::LINEAR),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1], x[2]], y, func_sig, name)
    @staticmethod
    def resize_tf_crop_and_resize_extrapolation_value() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        roi = np.array([0, 0, 0.4, 0.6, 1, 1, 1.2, 1.7], dtype=np.float32)
        sizes = np.array([1, 1, 3, 3], dtype=np.int64)
        
        output = interpolate_nd(
            data,
            lambda x, _: linear_coeffs(x),
            output_size=sizes,
            roi=roi,
            coordinate_transformation_mode="tf_crop_and_resize",
            extrapolation_value=10.0,
        ).astype(np.float32)
        x = [data, sizes, roi]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) 
        x[2] = Tensor(Dtype.FP16x16, x[2].shape, to_fp(x[2].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_tf_crop_and_resize_extrapolation_value"
        func_sig = "data.resize("
        func_sig += "roi,"
        func_sig += "Option::None," 
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::TF_CROP_AND_RESIZE)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(FixedTrait::<FP16x16>::new(655360, false)),"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::LINEAR),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1], x[2]], y, func_sig, name)
    @staticmethod
    def resize_downsample_sizes_linear_pytorch_half_pixel() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([1, 1, 3, 1], dtype=np.int64)
        output = interpolate_nd(
            data,
            lambda x, _: linear_coeffs(x),
            output_size=sizes,
            coordinate_transformation_mode="pytorch_half_pixel",
        ).astype(np.float32)
        x = [data, sizes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten())  
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_sizes_linear_pytorch_half_pixel"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::PYTORCH_HALF_PIXEL)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::LINEAR),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_upsample_sizes_nearest_floor_align_corners() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([1, 1, 8, 8], dtype=np.int64)
        output = interpolate_nd(
            data,
            lambda x, _: nearest_coeffs(x, mode="floor"),
            output_size=sizes,
            coordinate_transformation_mode="align_corners",
        ).astype(np.float32)
        x = [data, sizes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten())  
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_sizes_nearest_floor_align_corners"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::ALIGN_CORNERS)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::Some(NEAREST_MODE::FLOOR),)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_upsample_sizes_nearest_round_prefer_ceil_asymmetric() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([1, 1, 8, 8], dtype=np.int64)
        output = interpolate_nd(
            data,
            lambda x, _: nearest_coeffs(x, mode="round_prefer_ceil"),
            output_size=sizes,
            coordinate_transformation_mode="asymmetric",
        ).astype(np.float32)
        x = [data, sizes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten())  
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_sizes_nearest_round_prefer_ceil_asymmetric"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::ASYMMETRIC)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::Some(NEAREST_MODE::ROUND_PREFER_CEIL),)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_upsample_sizes_nearest_ceil_half_pixel() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([1, 1, 8, 8], dtype=np.int64)
        output = interpolate_nd(
            data, lambda x, _: nearest_coeffs(x, mode="ceil"), output_size=sizes
        ).astype(np.float32)
        x = [data, sizes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten())  
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_sizes_nearest_ceil_half_pixel"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::HALF_PIXEL)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::Some(NEAREST_MODE::CEIL),)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_downsample_scales_linear_antialias() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
        output = interpolate_nd(
            data, linear_coeffs_antialias, scale_factors=scales
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_scales_linear_antialias"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(1),"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::LINEAR),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_downsample_sizes_linear_antialias() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([1, 1, 3, 3], dtype=np.int64)
        output = interpolate_nd(
            data, linear_coeffs_antialias, output_size=sizes
        ).astype(np.float32)
        x = [data, sizes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten())  
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_sizes_linear_pytorch_half_pixel"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "sizes,"
        func_sig += "Option::Some(1),"
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::LINEAR),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_downsample_scales_cubic_antialias() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
        output = interpolate_nd(
            data, cubic_coeffs_antialias, scale_factors=scales
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_scales_cubic_antialias"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(1),"
        func_sig += "Option::None," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::CUBIC),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_downsample_sizes_cubic_antialias() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([1, 1, 3, 3], dtype=np.int64)
        output = interpolate_nd(data, cubic_coeffs_antialias, output_size=sizes).astype(
            np.float32
        )
        x = [data, sizes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten())  
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_sizes_cubic_antialias"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "sizes,"
        func_sig += "Option::Some(1),"
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::CUBIC),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_upsample_scales_nearest_axes_2_3() -> None:
        axes = np.array([2, 3], dtype=np.int64)
        data = np.array(
            [
                [
                    [
                        [1, 2],
                        [3, 4],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        scales = np.array([2.0, 3.0], dtype=np.float32)
        output = interpolate_nd(
            data, lambda x, _: nearest_coeffs(x), scale_factors=scales, axes=axes
        ).astype(np.float32)
        x = [data, scales, axes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.FP16x16, x[1].shape, to_fp(x[1].flatten(), FixedImpl.FP16x16)) 
        x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten())  
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_scales_nearest_axes_2_3"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "axes," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1], x[2]], y, func_sig, name)
    @staticmethod
    def resize_upsample_scales_nearest_axes_3_2() -> None:
        
        axes = np.array([3, 2], dtype=np.int64)
        data = np.array([[[[1, 2],[3, 4],]]],dtype=np.float32,)
        scales = np.array([3.0, 2.0], dtype=np.float32)
        output = interpolate_nd(
            data, lambda x, _: nearest_coeffs(x), scale_factors=scales, axes=axes
        ).astype(np.float32)
        x = [data, scales, axes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.FP16x16, x[1].shape, to_fp(x[1].flatten(), FixedImpl.FP16x16)) 
        x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten())  
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_scales_nearest_axes_3_2"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "axes," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1], x[2]], y, func_sig, name)
    @staticmethod
    def resize_upsample_sizes_nearest_axes_2_3() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2],
                        [3, 4],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([7, 8], dtype=np.int64)
        axes = np.array([2, 3], dtype=np.int64)
        output = interpolate_nd(
            data, lambda x, _: nearest_coeffs(x), output_size=sizes, axes=axes
        ).astype(np.float32)
        x = [data, sizes, axes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) 
        x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten())  
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_sizes_nearest_axes_2_3"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "axes," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1], x[2]], y, func_sig, name)
    @staticmethod
    def resize_upsample_sizes_nearest_axes_3_2() -> None:
        data = np.array(
            [
                [
                    [
                        [1, 2],
                        [3, 4],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([8, 7], dtype=np.int64)
        axes = np.array([3, 2], dtype=np.int64)
        output = interpolate_nd(
            data, lambda x, _: nearest_coeffs(x), output_size=sizes, axes=axes
        ).astype(np.float32)
        x = [data, sizes, axes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) 
        x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten())  
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_sizes_nearest_axes_3_2"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "axes," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1], x[2]], y, func_sig, name)
        
    @staticmethod
    def resize_tf_crop_and_resize_axes_2_3() -> None:
        axes = np.array([2, 3], dtype=np.int64)
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        roi = np.array([0.4, 0.6, 0.6, 0.8], dtype=np.float32)
        sizes = np.array([3, 3], dtype=np.int64)
        output = interpolate_nd(
            data,
            lambda x, _: linear_coeffs(x),
            output_size=sizes,
            roi=roi,
            axes=axes,
            coordinate_transformation_mode="tf_crop_and_resize",
        ).astype(np.float32)
        x = [data, sizes, roi, axes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) 
        x[2] = Tensor(Dtype.FP16x16, x[2].shape, to_fp(x[2].flatten(), FixedImpl.FP16x16)) 
        x[3] = Tensor(Dtype.U32, x[3].shape, x[3].flatten())  
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_tf_crop_and_resize_axes_2_3"
        func_sig = "data.resize("
        func_sig += "roi,"
        func_sig += "Option::None,"
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "axes," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::TF_CROP_AND_RESIZE)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::LINEAR),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1], x[2], x[3]], y, func_sig, name)
    @staticmethod
    def resize_tf_crop_and_resize_axes_3_2() -> None:
        axes = np.array([3, 2], dtype=np.int64)
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                        [9, 10, 11, 12],
                        [13, 14, 15, 16],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        roi = np.array([0.6, 0.4, 0.8, 0.6], dtype=np.float32)
        sizes = np.array([3, 3], dtype=np.int64)
        output = interpolate_nd(
            data,
            lambda x, _: linear_coeffs(x),
            output_size=sizes,
            roi=roi,
            axes=axes,
            coordinate_transformation_mode="tf_crop_and_resize",
        ).astype(np.float32)
        x = [data, sizes, roi, axes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) 
        x[2] = Tensor(Dtype.FP16x16, x[2].shape, to_fp(x[2].flatten(), FixedImpl.FP16x16)) 
        x[3] = Tensor(Dtype.U32, x[3].shape, x[3].flatten())  
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_tf_crop_and_resize_axes_3_2"
        func_sig = "data.resize("
        func_sig += "roi,"
        func_sig += "Option::None,"
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "axes," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::TF_CROP_AND_RESIZE)," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::LINEAR),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1], x[2], x[3]], y, func_sig, name)
    @staticmethod
    def resize_upsample_sizes_nearest_not_larger() -> None:
        keep_aspect_ratio_policy = "not_larger"
        axes = np.array([2, 3], dtype=np.int64)
        data = np.array(
            [
                [
                    [
                        [1, 2],
                        [3, 4],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([7, 8], dtype=np.int64) 
        output = interpolate_nd(
            data,
            lambda x, _: nearest_coeffs(x),
            output_size=sizes,
            axes=axes,
            keep_aspect_ratio_policy=keep_aspect_ratio_policy,
        ).astype(np.float32)
        x = [data, sizes, axes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) 
        x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten())  
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_sizes_nearest_not_larger"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "axes," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(KEEP_ASPECT_RATIO_POLICY::NOT_LARGER),"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1], x[2]], y, func_sig, name)
    @staticmethod
    def resize_upsample_sizes_nearest_not_smaller() -> None:
        keep_aspect_ratio_policy = "not_smaller"
        axes = np.array([2, 3], dtype=np.int64)
        data = np.array(
            [
                [
                    [
                        [1, 2],
                        [3, 4],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([7, 8], dtype=np.int64)  # Results in 8x8
        output = interpolate_nd(
            data,
            lambda x, _: nearest_coeffs(x),
            output_size=sizes,
            axes=axes,
            keep_aspect_ratio_policy=keep_aspect_ratio_policy,
        ).astype(np.float32)
        x = [data, sizes, axes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) 
        x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten())  
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_sizes_nearest_not_smaller"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "axes," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(KEEP_ASPECT_RATIO_POLICY::NOT_SMALLER),"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1], x[2]], y, func_sig, name)
    @staticmethod
    def resize_downsample_sizes_nearest_not_larger() -> None:
        keep_aspect_ratio_policy = "not_larger" 
        axes = np.array([2, 3], dtype=np.int64)
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([1, 3], dtype=np.int64)
        output = interpolate_nd(
            data,
            lambda x, _: nearest_coeffs(x),
            output_size=sizes,
            axes=axes,
            keep_aspect_ratio_policy=keep_aspect_ratio_policy,
        ).astype(np.float32)
        x = [data, sizes, axes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) 
        x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten())  
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_sizes_nearest_not_larger"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "axes," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(KEEP_ASPECT_RATIO_POLICY::NOT_LARGER),"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1], x[2]], y, func_sig, name)
    @staticmethod
    def resize_downsample_sizes_nearest_not_smaller() -> None:
        keep_aspect_ratio_policy = "not_smaller"
        axes = np.array([2, 3], dtype=np.int64)
        
        data = np.array(
            [
                [
                    [
                        [1, 2, 3, 4],
                        [5, 6, 7, 8],
                    ]
                ]
            ],
            dtype=np.float32,
        )
        sizes = np.array([1, 3], dtype=np.int64)  
        output = interpolate_nd(
            data,
            lambda x, _: nearest_coeffs(x),
            output_size=sizes,
            axes=axes,
            keep_aspect_ratio_policy=keep_aspect_ratio_policy,
        ).astype(np.float32)
        x = [data, sizes, axes]
        y = output
        x[0] = Tensor(Dtype.FP16x16, x[0].shape, to_fp(x[0].flatten(), FixedImpl.FP16x16)) 
        x[1] = Tensor(Dtype.U32, x[1].shape, x[1].flatten()) 
        x[2] = Tensor(Dtype.U32, x[2].shape, x[2].flatten())  
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_sizes_nearest_not_smaller"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "sizes,"
        func_sig += "Option::None,"
        func_sig += "axes," 
        func_sig += "Option::None," 
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(KEEP_ASPECT_RATIO_POLICY::NOT_SMALLER),"
        func_sig += "Option::Some(MODE::NEAREST),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1], x[2]], y, func_sig, name)
    @staticmethod
    def resize_downsample_scales_linear_half_pixel_symmetric() -> None:
        data = np.array([[[[1, 2, 3, 4]]]], dtype=np.float32)
        scales = np.array([1.0, 1.0, 1.0, 0.6], dtype=np.float32)
        output = interpolate_nd(
            data,
            lambda x, _: linear_coeffs(x),
            scale_factors=scales,
            coordinate_transformation_mode="half_pixel_symmetric",
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_downsample_scales_linear_half_pixel_symmetric"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::HALF_PIXEL_SYMMETRIC),"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::LINEAR),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
    @staticmethod
    def resize_upsample_scales_linear_half_pixel_symmetric() -> None:
        data = np.array([[[[1, 2], [3, 4]]]], dtype=np.float32)
        scales = np.array([1.0, 1.0, 2.3, 2.94], dtype=np.float32)
        output = interpolate_nd(
            data,
            lambda x, _: linear_coeffs(x),
            scale_factors=scales,
            coordinate_transformation_mode="half_pixel_symmetric",
        ).astype(np.float32)
        x = [data, scales]
        y = output
        for i in range(len(x)):
            x[i] = Tensor(Dtype.FP16x16, x[i].shape, to_fp(x[i].flatten(), FixedImpl.FP16x16)) 
        
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "resize_upsample_scales_linear_half_pixel_symmetric"
        func_sig = "data.resize("
        func_sig += "Option::None,"
        func_sig += "scales,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None," 
        func_sig += "Option::Some(TRANSFORMATION_MODE::HALF_PIXEL_SYMMETRIC),"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::None,"
        func_sig += "Option::Some(MODE::LINEAR),"
        func_sig += "Option::None,)"
        make_test([x[0], x[1]], y, func_sig, name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/reverse_sequence.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Reverse_sequence(RunAll):
    @staticmethod
    def Reverse_sequence_u32():
        def reverse_sequence_u32_4x4_batch():
            x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=np.uint32).reshape((4, 4))
            y = np.array([0, 1, 2, 3, 5, 4, 6, 7, 10, 9, 8, 11, 15, 14, 13, 12], dtype=np.uint32).reshape((4, 4))
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reverse_sequence_u32_4x4_batch"
        
            make_test(
                [_x], 
                _y, 
                "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![1,2,3,4].span()), Option::Some(0), Option::Some(1))", 
                name
            )
        def reverse_sequence_u32_4x4_time():    
            x = np.array([0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15], dtype=np.uint32).reshape((4, 4))
            y = np.array([3, 6, 9, 12, 2, 5, 8, 13, 1, 4, 10, 14, 0, 7, 11, 15], dtype=np.uint32).reshape((4, 4))
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reverse_sequence_u32_4x4_time"
            make_test(
                [_x], 
                _y, 
                "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![4,3,2,1].span()), Option::Some(1), Option::Some(0))", 
                name
            )
        def reverse_sequence_u32_3x3_batch():
            x = np.array([0,1,2,3,4,5,6,7,8], dtype=np.uint32).reshape(3,3)
            y = np.array([2,1,0,3,4,5,7,6,8], dtype=np.uint32).reshape(3,3)
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reverse_sequence_u32_3x3_batch"
            make_test(
                [_x],
                _y,
                "input_0.reverse_sequence(TensorTrait::<usize>::new(array![3].span(), array![3,1,2].span()), Option::Some(0), Option::Some(1))",
                name
                )
        def reverse_sequence_u32_3x3_time():
            x = np.array([0,1,2,3,4,5,6,7,8], dtype=np.uint32).reshape(3,3)
            y = np.array([0,7,8,3,4,5,6,1,2], dtype=np.uint32).reshape(3,3)
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reverse_sequence_u32_3x3_time"
            make_test(
                [_x],
                _y,
                "input_0.reverse_sequence(TensorTrait::<usize>::new(array![3].span(), array![1,3,3].span()), Option::Some(1), Option::Some(0))",
                name
                )
            
        reverse_sequence_u32_4x4_batch()
        reverse_sequence_u32_4x4_time()
        reverse_sequence_u32_3x3_batch()
        reverse_sequence_u32_3x3_time()
    
    @staticmethod
    def Reverse_sequence_i32():
        def reverse_sequence_i32_batch():
            x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=np.int32).reshape((4, 4))
            y = np.array([0, 1, 2, 3, 5, 4, 6, 7, 10, 9, 8, 11, 15, 14, 13, 12], dtype=np.int32).reshape((4, 4))
            _x = Tensor(Dtype.I32, x.shape, x.flatten())
            _y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "reverse_sequence_i32_batch_equal_parts"
        
            make_test(
                [_x], 
                _y, 
                "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![1,2,3,4].span()), Option::Some(0), Option::Some(1))", 
                name
            )
        def reverse_sequence_i32_time():    
            x = np.array([0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15], dtype=np.int32).reshape((4, 4))
            y = np.array([3, 6, 9, 12, 2, 5, 8, 13, 1, 4, 10, 14, 0, 7, 11, 15], dtype=np.int32).reshape((4, 4))
            _x = Tensor(Dtype.I32, x.shape, x.flatten())
            _y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "reverse_sequence_i32_time_equal_parts"
            make_test(
                [_x], 
                _y, 
                "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![4,3,2,1].span()), Option::Some(1), Option::Some(0))", 
                name
            )
        
        reverse_sequence_i32_batch()
        reverse_sequence_i32_time()
    
    @staticmethod
    def Reverse_sequence_i8():
        def reverse_sequence_batch():
            x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=np.int8).reshape((4, 4))
            y = np.array([0, 1, 2, 3, 5, 4, 6, 7, 10, 9, 8, 11, 15, 14, 13, 12], dtype=np.int8).reshape((4, 4))
            _x = Tensor(Dtype.I8, x.shape, x.flatten())
            _y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "reverse_sequence_i8_batch_equal_parts"
        
            make_test(
                [_x], 
                _y, 
                "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![1,2,3,4].span()), Option::Some(0), Option::Some(1))", 
                name
            )
        def reverse_sequence_time():    
            x = np.array([0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15], dtype=np.uint32).reshape((4, 4))
            y = np.array([3, 6, 9, 12, 2, 5, 8, 13, 1, 4, 10, 14, 0, 7, 11, 15], dtype=np.uint32).reshape((4, 4))
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reverse_sequence_i8_time_equal_parts"
            make_test(
                [_x], 
                _y, 
                "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![4,3,2,1].span()), Option::Some(1), Option::Some(0))", 
                name
            )
        reverse_sequence_batch()
        reverse_sequence_time()
    def Reverse_sequence_fp16x16():
        def reverse_sequence_batch():
            x = to_fp(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=np.int64).reshape(4, 4), FixedImpl.FP16x16)
            y = to_fp(np.array([0, 1, 2, 3, 5, 4, 6, 7, 10, 9, 8, 11, 15, 14, 13, 12], dtype=np.int64).reshape(4, 4), FixedImpl.FP16x16)
            _x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            _y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "reverse_sequence_fp16x16_batch_equal_parts"
            make_test(
                [_x],
                _y, "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![1,2,3,4].span()), Option::Some(0), Option::Some(1))", 
                name
            )
        def reverse_sequence_time():
            x = to_fp(np.array([0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15], dtype=np.int64).reshape(4, 4), FixedImpl.FP16x16)
            y = to_fp(np.array([3, 6, 9, 12, 2, 5, 8, 13, 1, 4, 10, 14, 0, 7, 11, 15], dtype=np.int64).reshape(4, 4), FixedImpl.FP16x16)
            _x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            _y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "reverse_sequence_fp16x16_time_equal_parts"
            make_test(
                [_x],
                _y, 
                "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![4,3,2,1].span()), Option::Some(1), Option::Some(0))", 
                name
            )
        reverse_sequence_batch()
        reverse_sequence_time()
    def reverse_sequence_different_dimensions():
        def reverse_sequence_different_dimensions_4_5():
            x = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20], dtype=np.uint32).reshape(4,5)
            y = np.array([5,4,3,2,1,9,8,7,6,10,13,12,11,14,15,17,16,18,19,20], dtype=np.uint32).reshape(4,5)
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reverse_sequence_different_dimensions_4_5"
            make_test(
                [_x],
                _y,
                "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![5,4,3,2].span()), Option::Some(0), Option::Some(1))",
                name
                )
        
        def reverse_sequence_different_dimensions_2_4():
            x = np.array([1,2,3,4,5,6,7,8], dtype=np.uint32).reshape(2,4)
            y = np.array([5,6,7,8,1,2,3,4], dtype=np.uint32).reshape(2,4)
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reverse_sequence_different_dimensions_2_4"
            make_test(
                [_x],
                _y,
                "input_0.reverse_sequence(TensorTrait::<usize>::new(array![4].span(), array![2,2,2,2].span()), Option::Some(1), Option::Some(0))",
                name
                )
        def reverse_sequence_different_dimensions_1_6():
            x = np.array([0,1,2,3,4,5], dtype=np.uint32).reshape(1,6)
            y = np.array([4,3,2,1,0,5], dtype=np.uint32).reshape(1,6)
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reverse_sequence_different_dimensions_1_6"
            make_test(
                [_x],
                _y,
                "input_0.reverse_sequence(TensorTrait::<usize>::new(array![1].span(), array![5].span()), Option::Some(0), Option::Some(1))",
                name
                )
            
        def reverse_sequence_different_dimensions_3x9_batch():
            x = np.array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26], dtype=np.uint32).reshape(3,9)
            y = np.array([6,5,4,3,2,1,0,7,8,16,15,14,13,12,11,10,9,17,26,25,24,23,22,21,20,19,18], dtype=np.uint32).reshape(3,9)
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reverse_sequence_different_dimensions_3x9_batch"
            make_test(
                [_x],
                _y,
                "input_0.reverse_sequence(TensorTrait::<usize>::new(array![3].span(), array![7,8,9].span()), Option::Some(0), Option::Some(1))",
                name
                )
        def reverse_sequence_different_dimensions_3x9_time():
            x = np.array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26], dtype=np.uint32).reshape(3,9)
            y = np.array([18,10,20,12,22,14,24,16,8,9,1,11,3,13,5,15,7,17,0,19,2,21,4,23,6,25,26], dtype=np.uint32).reshape(3,9)
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "reverse_sequence_different_dimensions_3x9_time"
            make_test(
                [_x],
                _y,
                "input_0.reverse_sequence(TensorTrait::<usize>::new(array![9].span(), array![3,2,3,2,3,2,3,2,1].span()), Option::Some(1), Option::Some(0))",
                name
                )
            
        reverse_sequence_different_dimensions_4_5()
        reverse_sequence_different_dimensions_2_4()
        reverse_sequence_different_dimensions_1_6()
        reverse_sequence_different_dimensions_3x9_batch()
        reverse_sequence_different_dimensions_3x9_time()
             
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/round.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Round(RunAll):
   
    @staticmethod
    def round_fp8x23():
        x = np.array([0.1, 0.5, 0.9, 1.2, 1.5, 1.8, 2.3, 2.5, 2.7, -1.1, -1.5, -1.9, -2.2, -2.5, -2.8]).astype(np.float64)
        y = np.array([0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, -1.0, -2.0, -2.0, -2.0, -3.0, -3.0]).astype(np.float64)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
        
        name = "round_fp8x23"
        make_test([x], y, "input_0.round()", name)
     
    @staticmethod
    def round_fp16x16():
        x = np.array([0.1, 0.5, 0.9, 1.2, 1.5, 1.8, 2.3, 2.5, 2.7, -1.1, -1.5, -1.9, -2.2, -2.5, -2.8]).astype(np.float64)
        y = np.array([0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, -1.0, -2.0, -2.0, -2.0, -3.0, -3.0]).astype(np.float64)        
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16))
        name = "round_fp16x16"
        make_test([x], y, "input_0.round()", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/running.py 
 | 
	import os
import glob
# Directory path where Python files/modules are located
directory_path = 'nodegen/node/'
# Get all files in the directory
all_files = os.listdir(directory_path)
# Filter Python files using glob and '*.py' pattern
python_files = [file[:-3] for file in all_files if file.endswith('.py')]
fixed = [
    'abs',
    'argmax',
    'argmin',
    'concat',
    'cumsum',
    'div',
    'equal',
    'less_equal',
    'greater',
    'linear',
    'matmul',
    'mul',
    'or',
    'reduce_sum',
    'sub',
    'transpose',
    'xor',
    'less',
    'greater_equal',
    'slice',
    'gather',
    'nonzero',
    'squeeze',
    'unsqueeze',
    'sign',
    'clip',
    '__init__',
    'running'
]
for node in python_files:
    if node not in fixed:
        current_dir = os.getcwd()
        command = f'python nodegen/node/__init__.py {node}'
        os.system(command) 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/scatter.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
# The below ScatterElements' numpy implementation is from https://stackoverflow.com/a/46204790/11767360
def scatter_elements(data, indices, updates, axis=0, reduction="none"):  # type: ignore
    if axis < 0:
        axis = data.ndim + axis
    idx_xsection_shape = indices.shape[:axis] + indices.shape[axis + 1 :]
    def make_slice(arr, axis, i):  # type: ignore
        slc = [slice(None)] * arr.ndim
        slc[axis] = i
        return slc
    def unpack(packed):  # type: ignore
        unpacked = packed[0]
        for i in range(1, len(packed)):
            unpacked = unpacked, packed[i]
        return unpacked
    def make_indices_for_duplicate(idx):  # type: ignore
        final_idx = []
        for i in range(len(idx[0])):
            final_idx.append(tuple(idx_element[i] for idx_element in idx))
        return list(final_idx)
    # We use indices and axis parameters to create idx
    # idx is in a form that can be used as a NumPy advanced indices for scattering of updates param. in data
    idx = [
        [
            unpack(np.indices(idx_xsection_shape).reshape(indices.ndim - 1, -1)),
            indices[tuple(make_slice(indices, axis, i))].reshape(1, -1)[0],
        ]
        for i in range(indices.shape[axis])
    ]
    idx = list(np.concatenate(idx, axis=1))
    idx.insert(axis, idx.pop())
    # updates_idx is a NumPy advanced indices for indexing of elements in the updates
    updates_idx = list(idx)
    updates_idx.pop(axis)
    updates_idx.insert(
        axis, np.repeat(np.arange(indices.shape[axis]), np.prod(idx_xsection_shape))
    )
    scattered = np.copy(data)
    if reduction == "none":
        scattered[tuple(idx)] = updates[tuple(updates_idx)]
    else:
        idx, updates_idx = make_indices_for_duplicate(idx), make_indices_for_duplicate(
            updates_idx
        )
        for iter, idx_set in enumerate(idx):
            if reduction == "add":
                scattered[idx_set] += updates[updates_idx[iter]]
            elif reduction == "mul":
                scattered[idx_set] *= updates[updates_idx[iter]]
            elif reduction == "max":
                scattered[idx_set] = np.maximum(
                    scattered[idx_set], updates[updates_idx[iter]]
                )
            elif reduction == "min":
                scattered[idx_set] = np.minimum(
                    scattered[idx_set], updates[updates_idx[iter]]
                )
    return scattered
class Scatter(RunAll):
    @staticmethod
    def scatter_fp16x16():
            
        def scatter():
            def default():
                x1 = np.zeros((3, 3)).astype(np.int64)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int64)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 0, 'none')
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp(x2.flatten(), FixedImpl.FP16x16))
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "scatter_fp16x16_3d_default"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(0), reduction:Option::Some('none'))", 
                    name= name)
                
            def axis_1():
                x1 = np.zeros((3, 3)).astype(np.int64)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int64)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 1, 'none')
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp(x2.flatten(), FixedImpl.FP16x16))
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "scatter_fp16x16_3d_axis1"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(1), reduction:Option::Some('none'))", 
                    name= name)
                
            def axis_1_add():
                x1 = np.zeros((3, 3)).astype(np.int64)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int64)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 1, 'add')
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp(x2.flatten(), FixedImpl.FP16x16))
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "scatter_fp16x16_3d_axis1_add"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(1), reduction:Option::Some('add'))", 
                    name= name)
                
            default()
            axis_1()
            axis_1_add()
        scatter()
    @staticmethod
    def scatter_fp8x23():
            
        def scatter():
            def default():
                x1 = np.zeros((3, 3)).astype(np.int64)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int64)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 0, 'none')
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp(x2.flatten(), FixedImpl.FP8x23))
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
                name = "scatter_fp8x23_default"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(0), reduction:Option::Some('none'))", 
                    name= name)
                
            def axis1():
                x1 = np.zeros((3, 3)).astype(np.int64)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int64)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 1, 'none')
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp(x2.flatten(), FixedImpl.FP8x23))
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
                name = "scatter_fp8x23_axis1"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(1), reduction:Option::Some('none'))", 
                    name= name)
                
            def axis1_mul():
                x1 = np.zeros((3, 3)).astype(np.int64)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int64)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 0, 'mul')
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp(x2.flatten(), FixedImpl.FP8x23))
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))
                name = "scatter_fp8x23_mul"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(0), reduction:Option::Some('mul'))", 
                    name= name)
                
            default()
            axis1()
            axis1_mul()
        scatter()
    @staticmethod
    def scatter_i8():
            
        def scatter_3D():
            def default():
                x1 = np.zeros((3, 3)).astype(np.int8)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int8)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 0, 'none')
                x1 =  Tensor(Dtype.I8, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.I8, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y =  Tensor(Dtype.I8, y.shape, y.flatten()) 
                name = "scatter_i8_default"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(0), reduction:Option::Some('none'))", 
                    name= name)
                
            def axis1():
                x1 = np.zeros((3, 3)).astype(np.int8)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int8)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 1, 'none')
                x1 =  Tensor(Dtype.I8, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.I8, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y =  Tensor(Dtype.I8, y.shape, y.flatten()) 
                name = "scatter_i8_axis1"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(1), reduction:Option::Some('none'))", 
                    name= name)
                
                
            def axis1_max():
                x1 = np.zeros((3, 3)).astype(np.int8)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int8)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 1, 'max')
                x1 =  Tensor(Dtype.I8, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.I8, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y =  Tensor(Dtype.I8, y.shape, y.flatten()) 
                name = "scatter_i8_axis1_max"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(1), reduction:Option::Some('max'))", 
                    name= name)
                
            default()
            axis1()
            axis1_max()
        scatter_3D()
    @staticmethod
    def scatter_i32():
        def scatter_3D():
            def default():
                x1 = np.zeros((3, 3)).astype(np.int32)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int32)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 0, 'none')
                x1 =  Tensor(Dtype.I32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.I32, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y =  Tensor(Dtype.I32, y.shape, y.flatten()) 
                name = "scatter_i8_default"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(0), reduction:Option::Some('none'))", 
                    name= name)
                
            def axis1():
                x1 = np.zeros((3, 3)).astype(np.int32)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int32)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 1, 'none')
                x1 =  Tensor(Dtype.I32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.I32, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y =  Tensor(Dtype.I32, y.shape, y.flatten()) 
                name = "scatter_i8_axis1"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(1), reduction:Option::Some('none'))", 
                    name= name)
                
            def axis_min():
                x1 = np.zeros((3, 3)).astype(np.int32)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.int32)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 1, 'min')
                x1 =  Tensor(Dtype.I32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.I32, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y =  Tensor(Dtype.I32, y.shape, y.flatten()) 
                name = "scatter_i8_default"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(1), reduction:Option::Some('min'))", 
                    name= name)
                
            default()
            axis1()
            axis_min()
        scatter_3D()
    @staticmethod
    def scatter_u32():
            
        def scatter_3D():
            def default():
                x1 = np.zeros((3, 3)).astype(np.uint32)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.uint32)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 0, 'none')
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y =  Tensor(Dtype.U32, y.shape, y.flatten()) 
                name = "scatter_u32_default"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(0), reduction:Option::Some('none'))", 
                    name= name)
                
                
            def axis1():
                x1 = np.zeros((3, 3)).astype(np.uint32)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.uint32)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 1, 'none')
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y =  Tensor(Dtype.U32, y.shape, y.flatten()) 
                name = "scatter_u32_axis1"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(1), reduction:Option::Some('none'))", 
                    name= name)
                
            def axis_add():
                x1 = np.zeros((3, 3)).astype(np.uint32)
                x2 = np.arange(1, 10).reshape((3, 3)).astype(np.uint32)
                x3 = np.array(
                        [[0,1,2],
                        [2,0,1],
                        [1,0,1]],
                        )
                y = scatter_elements(x1, x3, x2, 0, 'add')
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) 
                y =  Tensor(Dtype.U32, y.shape, y.flatten()) 
                name = "scatter_u32_add"
                make_test(
                    inputs = [x1, x2, x3], output = y, func_sig = "input_0.scatter(updates:input_1, indices:input_2, axis:Option::Some(0), reduction:Option::Some('add'))", 
                    name= name)
                
            default()
            axis1()
            axis_add()
        scatter_3D()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/scatter_nd.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
def scatter_nd_impl(data, indices, updates, reduction="none"):  # type: ignore
    # Check tensor shapes
    assert indices.shape[-1] <= len(data.shape)
    assert updates.shape == indices.shape[:-1] + data.shape[indices.shape[-1] :]
    # Compute output
    output = np.copy(data)
    for i in np.ndindex(indices.shape[:-1]):
        # NOTE: The order of iteration in this loop is not specified.
        if reduction == "add":
            output[tuple(indices[i])] += updates[i]
        elif reduction == "mul":
            output[tuple(indices[i])] *= updates[i]
        elif reduction == "max":
            output[tuple(indices[i])] = np.maximum(output[indices[i]], updates[i])
        elif reduction == "min":
            output[tuple(indices[i])] = np.minimum(output[indices[i]], updates[i])
        else:
            output[tuple(indices[i])] = updates[i]
    return output
data = np.array(
            [
                [[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
                [[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
                [[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]],
                [[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]],
            ],
            dtype=np.float32,
        )
indices = np.array([[0], [2]], dtype=np.int64)
updates = np.array(
            [
                [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
                [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]],
            ],
            dtype=np.float32,
        )
class Scatter_nd(RunAll):
    @staticmethod
    def scatter_nd_fp16x16():
        def scatter_nd_3D():
            def default():
                x1 = data.astype(np.int64)
                x2 = indices.astype(np.int64)
                x3 = updates.astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='none')
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                x3 = Tensor(Dtype.FP16x16, x3.shape, to_fp(x3.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "scatter_nd_fp16x16_3d_default"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::None(()))", 
                    name= name)
                
            def add():
                x1 = data.astype(np.int64)
                x2 = indices.astype(np.int64)
                x3 = updates.astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='add')
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                x3 = Tensor(Dtype.FP16x16, x3.shape, to_fp(x3.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "scatter_nd_fp16x16_3d_add"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::Some('add'))", 
                    name= name)
                
            def mul():
                x1 = data.astype(np.int64)
                x2 = indices.astype(np.int64)
                x3 = updates.astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='mul')
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                x3 = Tensor(Dtype.FP16x16, x3.shape, to_fp(x3.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "scatter_nd_fp16x16_3d_mul"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::Some('mul'))", 
                    name= name)
                
            def max():
                x1 = data.astype(np.int64)
                x2 = indices.astype(np.int64)
                x3 = updates.astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='max')
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                x3 = Tensor(Dtype.FP16x16, x3.shape, to_fp(x3.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "scatter_nd_fp16x16_3d_max"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::Some('max'))", 
                    name= name)
                
            def min():
                x1 = data.astype(np.int64)
                x2 = indices.astype(np.int64)
                x3 = updates.astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='min')
                x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                x3 = Tensor(Dtype.FP16x16, x3.shape, to_fp(x3.flatten(), FixedImpl.FP16x16))
                y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16)) 
                name = "scatter_nd_fp16x16_3d_min"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::Some('min'))", 
                    name= name)
                
            default()
            add()
            mul()
            max()
            min()
        scatter_nd_3D()
    @staticmethod
    def scatter_nd_fp8x23():
        def scatter_nd_3D():
            def default():
                x1 = data.astype(np.int64)
                x2 = indices.astype(np.int64)
                x3 = updates.astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='none')
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                x3 = Tensor(Dtype.FP8x23, x3.shape, to_fp(x3.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23)) 
                name = "scatter_nd_fp8x23_3d_default"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::None(()))", 
                    name= name)
                
            def add():
                x1 = data.astype(np.int64)
                x2 = indices.astype(np.int64)
                x3 = updates.astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='add')
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                x3 = Tensor(Dtype.FP8x23, x3.shape, to_fp(x3.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23)) 
                name = "scatter_nd_fp8x23_3d_add"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::Some('add'))", 
                    name= name)
                
            def mul():
                x1 = data.astype(np.int64)
                x2 = indices.astype(np.int64)
                x3 = updates.astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='mul')
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                x3 = Tensor(Dtype.FP8x23, x3.shape, to_fp(x3.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23)) 
                name = "scatter_nd_fp8x23_3d_mul"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::Some('mul'))", 
                    name= name)
                
            def max():
                x1 = data.astype(np.int64)
                x2 = indices.astype(np.int64)
                x3 = updates.astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='max')
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                x3 = Tensor(Dtype.FP8x23, x3.shape, to_fp(x3.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23)) 
                name = "scatter_nd_fp8x23_3d_max"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::Some('max'))", 
                    name= name)
                
            def min():
                x1 = data.astype(np.int64)
                x2 = indices.astype(np.int64)
                x3 = updates.astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='min')
                x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
                x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) 
                x3 = Tensor(Dtype.FP8x23, x3.shape, to_fp(x3.flatten(), FixedImpl.FP8x23))
                y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23)) 
                name = "scatter_nd_fp8x23_3d_min"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::Some('min'))", 
                    name= name)
                
            default()
            add()
            mul()
            max()
            min()
        scatter_nd_3D()
    @staticmethod
    def scatter_nd_u32():
        def scatter_nd_3D():
            def default():
                x1 =  np.arange(0,12).reshape((4,3)).astype(np.int32)
                x2 = np.array([[0],[1]]).astype(np.uint32)
                x3 = np.random.randint(low = 0,high=100, size=(2,3)).astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='none')
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                x3 =  Tensor(Dtype.U32, x3.shape, x3.flatten())
                y =  Tensor(Dtype.U32, y.shape, y.flatten()) 
                name = "scatter_nd_u32_default"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::None(()))", 
                    name= name)
                
            def add():
                x1 =  np.arange(0,12).reshape((4,3)).astype(np.int32)
                x2 = np.array([[1],[0]]).astype(np.uint32)
                x3 = np.random.randint(low = 0,high=100, size=(2,3)).astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='add')
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                x3 =  Tensor(Dtype.U32, x3.shape, x3.flatten())
                y =  Tensor(Dtype.U32, y.shape, y.flatten()) 
                name = "scatter_nd_u32_add"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::Some('add'))", 
                    name= name)
                
            def mul():
                x1 =  np.arange(0,12).reshape((4,3)).astype(np.int32)
                x2 =np.array([[0],[1]]).astype(np.uint32)
                x3 = np.random.randint(low = 0,high=100, size=(2,3)).astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='mul')
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                x3 =  Tensor(Dtype.U32, x3.shape, x3.flatten())
                y =  Tensor(Dtype.U32, y.shape, y.flatten()) 
                name = "scatter_nd_u32_mul"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::Some('mul'))", 
                    name= name)
                
            def max():
                x1 =  np.arange(0,12).reshape((4,3)).astype(np.int32)
                x2 =np.array([[0],[1]]).astype(np.uint32)
                x3 = np.random.randint(low = 0,high=100, size=(2,3)).astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='max')
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                x3 =  Tensor(Dtype.U32, x3.shape, x3.flatten())
                y =  Tensor(Dtype.U32, y.shape, y.flatten()) 
                name = "scatter_nd_u32_max"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::Some('max'))", 
                    name= name)
                
            def min():
                x1 =  np.arange(0,12).reshape((4,3)).astype(np.int32)
                x2 = np.array([[0],[1]]).astype(np.uint32)
                x3 = np.random.randint(low = 0,high=100, size=(2,3)).astype(np.uint32)
                y = scatter_nd_impl(x1, x2, x3, reduction='min')
                x1 =  Tensor(Dtype.U32, x1.shape, x1.flatten())
                x2 =  Tensor(Dtype.U32, x2.shape, x2.flatten())
                x3 =  Tensor(Dtype.U32, x3.shape, x3.flatten())
                y =  Tensor(Dtype.U32, y.shape, y.flatten()) 
                name = "scatter_nd_u32_min"
                make_test(
                    inputs = [x1, x3, x2], output = y, func_sig = "input_0.scatter_nd(updates:input_1, indices:input_2, reduction:Option::Some('min'))", 
                    name= name)
                
            default()
            add()
            mul()
            max()
            min()
        scatter_nd_3D()
    
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/sequence_at.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
scalar = lambda x: Tensor(Dtype.I32, (), np.array([x]).astype(np.int32).flatten())
class Sequence_at(RunAll):
    @staticmethod
    def sequence_at_u32():
        def positive_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(0, 6, shape).astype(np.uint32)
                tensor = Tensor(Dtype.U32, values.shape, values.flatten())
                sequence.append(tensor)
            position = scalar(2)
            name = "sequence_at_u32_positive"
            make_test([sequence, position], sequence[2], "SequenceTrait::sequence_at(input_0, input_1)", name, Trait.SEQUENCE)
        def negative_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(0, 6, shape).astype(np.uint32)
                tensor = Tensor(Dtype.U32, values.shape, values.flatten())
                sequence.append(tensor)
            position = scalar(-2)
            name = "sequence_at_u32_negative"
            make_test([sequence, position], sequence[-2], "SequenceTrait::sequence_at(input_0, input_1)", name, Trait.SEQUENCE)
        positive_position()
        negative_position()
    @staticmethod
    def sequence_at_i32():
        def positive_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int32)
                tensor = Tensor(Dtype.I32, values.shape, values.flatten())
                sequence.append(tensor)
            position = scalar(2)
            name = "sequence_at_i32_positive"
            make_test([sequence, position], sequence[2], "SequenceTrait::sequence_at(input_0, input_1)", name, Trait.SEQUENCE)
        def negative_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int32)
                tensor = Tensor(Dtype.I32, values.shape, values.flatten())
                sequence.append(tensor)
            position = scalar(-2)
            name = "sequence_at_i32_negative"
            make_test([sequence, position], sequence[-2], "SequenceTrait::sequence_at(input_0, input_1)", name, Trait.SEQUENCE)
        positive_position()
        negative_position()
    @staticmethod
    def sequence_at_i8():
        def positive_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int8)
                tensor = Tensor(Dtype.I8, values.shape, values.flatten())
                sequence.append(tensor)
            position = scalar(2)
            name = "sequence_at_i8_positive"
            make_test([sequence, position], sequence[2], "SequenceTrait::sequence_at(input_0, input_1)", name, Trait.SEQUENCE)
        def negative_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int8)
                tensor = Tensor(Dtype.I8, values.shape, values.flatten())
                sequence.append(tensor)
            position = scalar(-2)
            name = "sequence_at_i8_negative"
            make_test([sequence, position], sequence[-2], "SequenceTrait::sequence_at(input_0, input_1)", name, Trait.SEQUENCE)
        positive_position()
        negative_position()
    @staticmethod
    def sequence_at_fp8x23():
        def positive_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23))
                sequence.append(tensor)
            position = scalar(2)
            name = "sequence_at_fp8x23_positive"
            make_test([sequence, position], sequence[2], "SequenceTrait::sequence_at(input_0, input_1)", name, Trait.SEQUENCE)
        def negative_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23))
                sequence.append(tensor)
            position = scalar(-2)
            name = "sequence_at_fp8x23_negative"
            make_test([sequence, position], sequence[-2], "SequenceTrait::sequence_at(input_0, input_1)", name, Trait.SEQUENCE)
        positive_position()
        negative_position()
    
    @staticmethod
    def sequence_at_fp16x16():
        def positive_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16))
                sequence.append(tensor)
            position = scalar(2)
            name = "sequence_at_fp16x16_positive"
            make_test([sequence, position], sequence[2], "SequenceTrait::sequence_at(input_0, input_1)", name, Trait.SEQUENCE)
        def negative_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16))
                sequence.append(tensor)
            position = scalar(-2)
            name = "sequence_at_fp16x16_negative"
            make_test([sequence, position], sequence[-2], "SequenceTrait::sequence_at(input_0, input_1)", name, Trait.SEQUENCE)
        positive_position()
        negative_position()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/sequence_construct.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
class Sequence_construct(RunAll):
    @staticmethod
    def sequence_construct_u32():
        sequence = []
        tensor_cnt = np.random.randint(1, 10)
        shape = np.random.randint(1, 4, 2)
        for _ in range(tensor_cnt):
            values = np.random.randint(0, 6, shape).astype(np.uint32)
            tensor = Tensor(Dtype.U32, values.shape, values.flatten())
            sequence.append(tensor)
        name = "sequence_construct_u32"
        make_test([sequence], sequence, "SequenceTrait::sequence_construct(input_0)", name, Trait.SEQUENCE)
    @staticmethod
    def sequence_construct_i32():
        sequence = []
        tensor_cnt = np.random.randint(1, 10)
        shape = np.random.randint(1, 4, 2)
        for _ in range(tensor_cnt):
            values = np.random.randint(-6, 6, shape).astype(np.int32)
            tensor = Tensor(Dtype.I32, values.shape, values.flatten())
            sequence.append(tensor)
        name = "sequence_construct_i32"
        make_test([sequence], sequence, "SequenceTrait::sequence_construct(input_0)", name, Trait.SEQUENCE)
    @staticmethod
    def sequence_construct_i8():
        sequence = []
        tensor_cnt = np.random.randint(1, 10)
        shape = np.random.randint(1, 4, 2)
        for _ in range(tensor_cnt):
            values = np.random.randint(-6, 6, shape).astype(np.int8)
            tensor = Tensor(Dtype.I8, values.shape, values.flatten())
            sequence.append(tensor)
        name = "sequence_construct_i8"
        make_test([sequence], sequence, "SequenceTrait::sequence_construct(input_0)", name, Trait.SEQUENCE)
    @staticmethod
    def sequence_construct_fp8x23():
        sequence = []
        tensor_cnt = np.random.randint(1, 10)
        shape = np.random.randint(1, 4, 2)
        for _ in range(tensor_cnt):
            values = np.random.randint(-6, 6, shape).astype(np.float64)
            tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23))
            sequence.append(tensor)
        name = "sequence_construct_fp8x23"
        make_test([sequence], sequence, "SequenceTrait::sequence_construct(input_0)", name, Trait.SEQUENCE)
    @staticmethod
    def sequence_construct_fp16x16():
        sequence = []
        tensor_cnt = np.random.randint(1, 10)
        shape = np.random.randint(1, 4, 2)
        for _ in range(tensor_cnt):
            values = np.random.randint(-6, 6, shape).astype(np.float64)
            tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16))
            sequence.append(tensor)
        name = "sequence_construct_fp16x16"
        make_test([sequence], sequence, "SequenceTrait::sequence_construct(input_0)", name, Trait.SEQUENCE)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/sequence_empty.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, Dtype, Tensor, Trait
class Sequence_empty(RunAll):
    @staticmethod
    def sequence_empty_u32():
        def default():
            shape=(0,)
            x = np.zeros(shape, dtype=np.uint32)
            t = Tensor(Dtype.U32, shape, x.flatten())
            make_test(
                inputs=[],
                output=[t],
                func_sig="SequenceTrait::sequence_empty()",
                name="sequence_empty_u32",
                trait=Trait.SEQUENCE
            )
        default()
    @staticmethod
    def sequence_empty_i32():
        def default():
            shape=(0,)
            x = np.zeros(shape, dtype=np.int32)
            t = Tensor(Dtype.I32, shape, x.flatten())
            make_test(
                inputs=[],
                output=[t],
                func_sig="SequenceTrait::sequence_empty()",
                name="sequence_empty_i32",
                trait=Trait.SEQUENCE
            )
        default()
    @staticmethod
    def sequence_empty_i8():
        def default():
            shape=(0,)
            x = np.zeros(shape, dtype=np.int8)
            t = Tensor(Dtype.I8, shape, x.flatten())
            make_test(
                inputs=[],
                output=[t],
                func_sig="SequenceTrait::sequence_empty()",
                name="sequence_empty_i8",
                trait=Trait.SEQUENCE
            )
        default()
    @staticmethod
    def sequence_empty_fp8x23():
        def default():
            shape=(0,)
            x = np.zeros(shape, dtype=np.float64)
            t = Tensor(Dtype.FP8x23, shape, x.flatten())
            make_test(
                inputs=[],
                output=[t],
                func_sig="SequenceTrait::sequence_empty()",
                name="sequence_empty_fp8x23",
                trait=Trait.SEQUENCE
            )
        default()
    @staticmethod
    def sequence_empty_fp16x16():
        def default():
            shape=(0,)
            x = np.zeros(shape, dtype=np.float64)
            t = Tensor(Dtype.FP16x16, shape, x.flatten())
            make_test(
                inputs=[],
                output=[t],
                func_sig="SequenceTrait::sequence_empty()",
                name="sequence_empty_fp16x16",
                trait=Trait.SEQUENCE
            )
        default()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/sequence_erase.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
scalar = lambda x: Tensor(Dtype.I32, (), np.array([x]).astype(np.int32).flatten())
class Sequence_erase(RunAll):
    @staticmethod
    def sequence_erase_u32():
        def positive_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(0, 6, shape).astype(np.uint32)
                tensor = Tensor(Dtype.U32, values.shape, values.flatten())
                sequence.append(tensor)
            position = scalar(2)
            output_sequence = sequence.copy()
            output_sequence.pop(2)
            name = "sequence_erase_u32_positive"
            make_test([sequence, position], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::Some(input_1))", name, Trait.SEQUENCE)
        def negative_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(0, 6, shape).astype(np.uint32)
                tensor = Tensor(Dtype.U32, values.shape, values.flatten())
                sequence.append(tensor)
            position = scalar(-2)
            
            output_sequence = sequence.copy()
            output_sequence.pop(-2)
            name = "sequence_erase_u32_negative"
            make_test([sequence, position], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::Some(input_1))", name, Trait.SEQUENCE)
        def empty_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(0, 6, shape).astype(np.uint32)
                tensor = Tensor(Dtype.U32, values.shape, values.flatten())
                sequence.append(tensor)
            
            output_sequence = sequence.copy()
            output_sequence.pop(-1)
            name = "sequence_erase_u32_empty"
            make_test([sequence], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::None(()))", name, Trait.SEQUENCE)
        positive_position()
        negative_position()
        empty_position()
    @staticmethod
    def sequence_erase_i32():
        def positive_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int32)
                tensor = Tensor(Dtype.I32, values.shape, values.flatten())
                sequence.append(tensor)
            position = scalar(2)
            output_sequence = sequence.copy()
            output_sequence.pop(2)
            name = "sequence_erase_i32_positive"
            make_test([sequence, position], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::Some(input_1))", name, Trait.SEQUENCE)
        def negative_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int32)
                tensor = Tensor(Dtype.I32, values.shape, values.flatten())
                sequence.append(tensor)
            position = scalar(-2)
            output_sequence = sequence.copy()
            output_sequence.pop(-2)
            name = "sequence_erase_i32_negative"
            make_test([sequence, position], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::Some(input_1))", name, Trait.SEQUENCE)
        def empty_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int32)
                tensor = Tensor(Dtype.I32, values.shape, values.flatten())
                sequence.append(tensor)
            output_sequence = sequence.copy()
            output_sequence.pop(-1)
            name = "sequence_erase_i32_empty"
            make_test([sequence], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::None(()))", name, Trait.SEQUENCE)
        positive_position()
        negative_position()
        empty_position()
    @staticmethod
    def sequence_erase_i8():
        def positive_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int8)
                tensor = Tensor(Dtype.I8, values.shape, values.flatten())
                sequence.append(tensor)
            position = scalar(2)
            output_sequence = sequence.copy()
            output_sequence.pop(2)
            name = "sequence_erase_i8_positive"
            make_test([sequence, position], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::Some(input_1))", name, Trait.SEQUENCE)
        def negative_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int8)
                tensor = Tensor(Dtype.I8, values.shape, values.flatten())
                sequence.append(tensor)
            position = scalar(-2)
            output_sequence = sequence.copy()
            output_sequence.pop(-2)
            name = "sequence_erase_i8_negative"
            make_test([sequence, position], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::Some(input_1))", name, Trait.SEQUENCE)
        def empty_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.int8)
                tensor = Tensor(Dtype.I8, values.shape, values.flatten())
                sequence.append(tensor)
            output_sequence = sequence.copy()
            output_sequence.pop(-1)
            name = "sequence_erase_i8_empty"
            make_test([sequence], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::None(()))", name, Trait.SEQUENCE)
        positive_position()
        negative_position()
        empty_position()
    @staticmethod
    def sequence_erase_fp8x23():
        def positive_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23))
                sequence.append(tensor)
            position = scalar(2)
            output_sequence = sequence.copy()
            output_sequence.pop(2)
            name = "sequence_erase_fp8x23_positive"
            make_test([sequence, position], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::Some(input_1))", name, Trait.SEQUENCE)
        def negative_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23))
                sequence.append(tensor)
            position = scalar(-2)
            output_sequence = sequence.copy()
            output_sequence.pop(-2)
            name = "sequence_erase_fp8x23_negative"
            make_test([sequence, position], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::Some(input_1))", name, Trait.SEQUENCE)
        def empty_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23))
                sequence.append(tensor)
            output_sequence = sequence.copy()
            output_sequence.pop(-1)
            name = "sequence_erase_fp8x23_empty"
            make_test([sequence], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::None(()))", name, Trait.SEQUENCE)
        positive_position()
        negative_position()
        empty_position()
    @staticmethod
    def sequence_erase_fp16x16():
        def positive_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16))
                sequence.append(tensor)
            position = scalar(2)
            output_sequence = sequence.copy()
            output_sequence.pop(2)
            name = "sequence_erase_fp16x16_positive"
            make_test([sequence, position], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::Some(input_1))", name, Trait.SEQUENCE)
        def negative_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16))
                sequence.append(tensor)
            position = scalar(-2)
            output_sequence = sequence.copy()
            output_sequence.pop(-2)
            name = "sequence_erase_fp16x16_negative"
            make_test([sequence, position], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::Some(input_1))", name, Trait.SEQUENCE)
        def empty_position():
            sequence = []
            shape = np.random.randint(1, 4, 2)
            for _ in range(5):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16))
                sequence.append(tensor)
            output_sequence = sequence.copy()
            output_sequence.pop(-1)
            name = "sequence_erase_fp16x16_empty"
            make_test([sequence], output_sequence, "SequenceTrait::sequence_erase(input_0, Option::None(()))", name, Trait.SEQUENCE)
        positive_position()
        negative_position()
        empty_position() 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/sequence_insert.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
scalar = lambda x: Tensor(Dtype.I32, (), np.array([x]).astype(np.int32).flatten())
class Sequence_insert(RunAll):
    @staticmethod
    def sequence_insert_u32():
        def default():
            sequence = []
            tensor_cnt = 3
            shape = np.random.randint(1, 4, 2)
            for _ in range(tensor_cnt):
                val = np.random.randint(0, 6, shape).astype(np.uint32)
                t = Tensor(Dtype.U32, val.shape, val.flatten())
                sequence.append(t)
            val = np.random.randint(0, 6, shape).astype(np.uint32)
            tensor = Tensor(Dtype.U32, val.shape, val.flatten())
            position = np.random.randint(-2, 2)
            expected_sequence = sequence.copy()
            expected_sequence.insert(position, tensor)
            name = "sequence_insert_u32"
            make_test([sequence, tensor, scalar(position)], expected_sequence, "input_0.sequence_insert(@input_1,Option::Some(input_2))", name, Trait.SEQUENCE)
        default()
    @staticmethod
    def sequence_insert_i32():
        def default():
            sequence = []
            tensor_cnt = 3
            shape = np.random.randint(1, 4, 2)
            for _ in range(tensor_cnt):
                val = np.random.randint(0, 6, shape).astype(np.int32)
                t = Tensor(Dtype.I32, val.shape, val.flatten())
                sequence.append(t)
            val = np.random.randint(0, 6, shape).astype(np.int32)
            tensor = Tensor(Dtype.I32, val.shape, val.flatten())
            position = np.random.randint(-2, 2)
            expected_sequence = sequence.copy()
            expected_sequence.insert(position, tensor)
            name = "sequence_insert_i32"
            make_test([sequence, tensor, scalar(position)], expected_sequence, "input_0.sequence_insert(@input_1,Option::Some(input_2))", name, Trait.SEQUENCE)
        default()
    @staticmethod
    def sequence_insert_i8():
        def default():
            sequence = []
            tensor_cnt = 3
            shape = np.random.randint(1, 4, 2)
            for _ in range(tensor_cnt):
                val = np.random.randint(0, 6, shape).astype(np.int8)
                t = Tensor(Dtype.I8, val.shape, val.flatten())
                sequence.append(t)
            val = np.random.randint(0, 6, shape).astype(np.int8)
            tensor = Tensor(Dtype.I8, val.shape, val.flatten())
            position = np.random.randint(-2, 2)
            expected_sequence = sequence.copy()
            expected_sequence.insert(position, tensor)
            name = "sequence_insert_i8"
            make_test([sequence, tensor, scalar(position)], expected_sequence, "input_0.sequence_insert(@input_1,Option::Some(input_2))", name, Trait.SEQUENCE)
        default()
    @staticmethod
    def sequence_insert_fp8x23():
        def default():
            sequence = []
            tensor_cnt = 3
            shape = np.random.randint(1, 4, 2)
            for _ in range(tensor_cnt):
                val = np.random.randint(0, 6, shape).astype(np.float64)
                t = Tensor(Dtype.FP8x23, val.shape, to_fp(
                    val.flatten(), FixedImpl.FP8x23))
                sequence.append(t)
            val = np.random.randint(0, 6, shape).astype(np.float64)
            tensor = Tensor(Dtype.FP8x23, val.shape, to_fp(
                val.flatten(), FixedImpl.FP8x23))
            position = np.random.randint(-2, 2)
            expected_sequence = sequence.copy()
            expected_sequence.insert(position, tensor)
            name = "sequence_insert_fp8x23"
            make_test([sequence, tensor, scalar(position)], expected_sequence, "input_0.sequence_insert(@input_1,Option::Some(input_2))", name, Trait.SEQUENCE)
        default()
    @staticmethod
    def sequence_insert_fp16x16():
        def default():
            sequence = []
            tensor_cnt = 3
            shape = np.random.randint(1, 4, 2)
            for _ in range(tensor_cnt):
                val = np.random.randint(0, 6, shape).astype(np.float64)
                t = Tensor(Dtype.FP16x16, val.shape, to_fp(
                    val.flatten(), FixedImpl.FP16x16))
                sequence.append(t)
            val = np.random.randint(0, 6, shape).astype(np.float64)
            tensor = Tensor(Dtype.FP16x16, val.shape, to_fp(
                val.flatten(), FixedImpl.FP16x16))
            position = np.random.randint(-2, 2)
            expected_sequence = sequence.copy()
            expected_sequence.insert(position, tensor)
            name = "sequence_insert_fp16x16"
            make_test([sequence, tensor, scalar(position)], expected_sequence, "input_0.sequence_insert(@input_1,Option::Some(input_2))", name, Trait.SEQUENCE)
        default()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/sequence_length.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
scalar = lambda x: Tensor(Dtype.U32, (), np.array([x]).astype(np.uint32).flatten())
class Sequence_length(RunAll):
    @staticmethod
    def sequence_length_u32():
        def default():
            sequence = []
            tensor_cnt = np.random.randint(1, 10)
            shape = np.random.randint(1, 4, 2)
            for _ in range(tensor_cnt):
                values = np.random.randint(0, 6, shape).astype(np.uint32)
                tensor = Tensor(Dtype.U32, values.shape, values.flatten())
                sequence.append(tensor)
            name = "sequence_length_u32"
            make_test([sequence], scalar(len(sequence)), "input_0.sequence_length()", name, Trait.SEQUENCE)
        def broadcast():
            sequence = []
            tensor_cnt = np.random.randint(1, 10)
            for _ in range(tensor_cnt):
                shape = np.random.randint(1, 4, 2)
                values = np.random.randint(0, 6, shape).astype(np.uint32)
                tensor = Tensor(Dtype.U32, values.shape, values.flatten())
                sequence.append(tensor)
            name = "sequence_length_u32_broadcast"
            make_test([sequence], scalar(len(sequence)), "input_0.sequence_length()", name, Trait.SEQUENCE)
        default()
        broadcast()
    @staticmethod
    def sequence_length_i32():
        def default():
            sequence = []
            tensor_cnt = np.random.randint(1, 10)
            shape = np.random.randint(1, 4, 2)
            for _ in range(tensor_cnt):
                values = np.random.randint(-6, 6, shape).astype(np.int32)
                tensor = Tensor(Dtype.I32, values.shape, values.flatten())
                sequence.append(tensor)
            name = "sequence_length_i32"
            make_test([sequence], scalar(len(sequence)), "input_0.sequence_length()", name, Trait.SEQUENCE)
        def broadcast():
            sequence = []
            tensor_cnt = np.random.randint(1, 10)
            for _ in range(tensor_cnt):
                shape = np.random.randint(1, 4, 2)
                values = np.random.randint(-6, 6, shape).astype(np.int32)
                tensor = Tensor(Dtype.I32, values.shape, values.flatten())
                sequence.append(tensor)
            name = "sequence_length_i32_broadcast"
            make_test([sequence], scalar(len(sequence)), "input_0.sequence_length()", name, Trait.SEQUENCE)
        default()
        broadcast()
    @staticmethod
    def sequence_length_i8():
        def default():
            sequence = []
            tensor_cnt = np.random.randint(1, 10)
            shape = np.random.randint(1, 4, 2)
            for _ in range(tensor_cnt):
                values = np.random.randint(-6, 6, shape).astype(np.int8)
                tensor = Tensor(Dtype.I8, values.shape, values.flatten())
                sequence.append(tensor)
            name = "sequence_length_i8"
            make_test([sequence], scalar(len(sequence)), "input_0.sequence_length()", name, Trait.SEQUENCE)
        def broadcast():
            sequence = []
            tensor_cnt = np.random.randint(1, 10)
            for _ in range(tensor_cnt):
                shape = np.random.randint(1, 4, 2)
                values = np.random.randint(-6, 6, shape).astype(np.int8)
                tensor = Tensor(Dtype.I8, values.shape, values.flatten())
                sequence.append(tensor)
            name = "sequence_length_i8_broadcast"
            make_test([sequence], scalar(len(sequence)), "input_0.sequence_length()", name, Trait.SEQUENCE)
        default()
        broadcast()
    @staticmethod
    def sequence_length_fp8x23():
        def default():
            sequence = []
            tensor_cnt = np.random.randint(1, 10)
            shape = np.random.randint(1, 4, 2)
            for _ in range(tensor_cnt):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23))
                sequence.append(tensor)
            name = "sequence_length_fp8x23"
            make_test([sequence], scalar(len(sequence)), "input_0.sequence_length()", name, Trait.SEQUENCE)
        def broadcast():
            sequence = []
            tensor_cnt = np.random.randint(1, 10)
            for _ in range(tensor_cnt):
                shape = np.random.randint(1, 4, 2)
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23))
                sequence.append(tensor)
            name = "sequence_length_fp8x23_broadcast"
            make_test([sequence], scalar(len(sequence)), "input_0.sequence_length()", name, Trait.SEQUENCE)
        default()
        broadcast()
    @staticmethod
    def sequence_length_fp16x16():
        def default():
            sequence = []
            tensor_cnt = np.random.randint(1, 10)
            shape = np.random.randint(1, 4, 2)
            for _ in range(tensor_cnt):
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16))
                sequence.append(tensor)
            name = "sequence_length_fp16x16"
            make_test([sequence], scalar(len(sequence)), "input_0.sequence_length()", name, Trait.SEQUENCE)
        def broadcast():
            sequence = []
            tensor_cnt = np.random.randint(1, 10)
            for _ in range(tensor_cnt):
                shape = np.random.randint(1, 4, 2)
                values = np.random.randint(-6, 6, shape).astype(np.float64)
                tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16))
                sequence.append(tensor)
            name = "sequence_length_fp16x16_broadcast"
            make_test([sequence], scalar(len(sequence)), "input_0.sequence_length()", name, Trait.SEQUENCE)
        default()
        broadcast()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/shrink.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
def shrink(input_array: np.ndarray, bias: float, lambd: float) -> np.ndarray:
    output_array = np.where(input_array > lambd, input_array - bias, 
                            np.where(input_array < -lambd, input_array + bias, 0))
    return output_array
class Shrink(RunAll):
    @staticmethod
    def shrink_fp8x23():
        def shrink_hard():
            x = np.random.uniform(-3, 3, (3, 3, 3)).astype(np.float64)
            bias = np.float64(0) # Default value
            lambd = np.float64(1)
            y = shrink(x, bias, lambd)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23))
            name = "shrink_hard_fp8x23"
            make_test([x], y, "TensorTrait::shrink(input_0, Option::None(()), Option::Some(FixedTrait::new(8388608, false)))", name)
        def shrink_soft():
            x = np.random.uniform(-3, 3, (3, 3, 3)).astype(np.float64)
            bias = np.float64(1)
            lambd = np.float64(1)
            y = shrink(x, bias, lambd)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23))
            name = "shrink_soft_fp8x23"
            make_test([x], y, "TensorTrait::shrink(input_0, Option::Some(FixedTrait::new(8388608, false)), Option::Some(FixedTrait::new(8388608, false)))", name)
        shrink_hard()
        shrink_soft()
    @staticmethod
    def shrink_fp16x16():
        def shrink_hard():
            x = np.random.uniform(-3, 3, (3, 3, 3)).astype(np.float64)
            bias = np.float64(0) # Default value
            lambd = np.float64(1)
            y = shrink(x, bias, lambd)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16))
            name = "shrink_hard_fp16x16"
            make_test([x], y, "TensorTrait::shrink(input_0, Option::None(()), Option::Some(FixedTrait::new(65536, false)))", name)
        def shrink_soft():
            x = np.random.uniform(-3, 3, (3, 3, 3)).astype(np.float64)
            bias = np.float64(1)
            lambd = np.float64(1)
            y = shrink(x, bias, lambd)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16))
            name = "shrink_soft_fp16x16"
            make_test([x], y, "TensorTrait::shrink(input_0, Option::Some(FixedTrait::new(65536, false)), Option::Some(FixedTrait::new(65536, false)))", name)
        shrink_hard()
        shrink_soft() 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/sigmoid.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
import tensorflow as tf
class Sigmoid(RunAll):
    @staticmethod
    def fp8x23():
        x = np.random.uniform(-3, 3, (2, 2)).astype(np.float32)
        y = tf.keras.activations.sigmoid(x).numpy()
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "sigmoid_fp8x23"
        make_test([x], y, "NNTrait::sigmoid(@input_0)",
                    name, Trait.NN)
    @staticmethod
    def fp16x16():
        x = np.random.uniform(-3, 3, (2, 2)).astype(np.float32)
        y = tf.keras.activations.sigmoid(x).numpy()
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "sigmoid_fp16x16"
        make_test([x], y, "NNTrait::sigmoid(@input_0)",
                    name, Trait.NN)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/sign.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Sign(RunAll):
    @staticmethod
    def sign_i8():
        def sign():
            x = np.array(range(-5, 6)).astype(np.int8)
            y = np.array([-1, -1, -1, -1, -1,  0,  1,  1,  1,  1,  1]).astype(np.int8)
            
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "sign_i8"
            make_test(
                [x], y, "input_0.sign()", name)
        sign()
    @staticmethod
    def sign_i32():
        def sign():
            x = np.array(range(-5, 6)).astype(np.int32)
            y = np.array([-1, -1, -1, -1, -1,  0,  1,  1,  1,  1,  1]).astype(np.int32)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "sign_i32"
            make_test(
                [x], y, "input_0.sign()", name)
        sign()
    @staticmethod
    def sign_fail():
        def sign():
            x = np.array(range(-5, 6)).astype(np.int32)
            y = np.array([1, -1, -1, -1, -1,  0,  1,  1,  1,  1,  -1]).astype(np.int32)
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "sign_fail"
            make_test(
                [x], y, "input_0.sign()", name)
        sign()
    
    @staticmethod
    def sign_fP16x16():
        def sign():
            x = to_fp (np.array(range(-5, 6)).astype(np.int64), FixedImpl.FP16x16)
            y = to_fp (np.array([-1, -1, -1, -1, -1,  0,  1,  1,  1,  1,  1]).astype(np.int64), FixedImpl.FP16x16)
            
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "sign_fP16x16"
            make_test(
                [x], y, "input_0.sign()", name)
        sign()
    @staticmethod
    def sign_fP8x23():
        def sign():
            x = to_fp (np.array(range(-5, 6)).astype(np.int64), FixedImpl.FP8x23)
            y = to_fp (np.array([-1, -1, -1, -1, -1,  0,  1,  1,  1,  1,  1]).astype(np.int64), FixedImpl.FP8x23)            
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            name = "sign_fP8x23"
            make_test(
                [x], y, "input_0.sign()", name)
        sign()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/sin.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Sin(RunAll):
    
    @staticmethod
    def sin_fp8x23():
        x = np.random.uniform(-3, 7, (2, 2)).astype(np.float64)
        y = np.sin(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "sin_fp8x23"
        make_test([x], y, "input_0.sin()", name)
    @staticmethod
    def sin_fp16x16():
        x = np.random.uniform(-3, 7, (2, 2)).astype(np.float64)
        y = np.sin(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "sin_fp16x16"
        make_test([x], y, "input_0.sin()", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/sinh.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Sinh(RunAll):
    @staticmethod
    def sinh_fp8x23():
        x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64)
        y = np.sinh(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "sinh_fp8x23"
        make_test([x], y, "input_0.sinh()", name)
    @staticmethod
    def sinh_fp16x16():
        x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64)
        y = np.sinh(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "sinh_fp16x16"
        make_test([x], y, "input_0.sinh()", name)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/slice.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Slice(RunAll):
    @staticmethod
    def slice_u32():
        def slice_2D():
            x = np.random.randint(0, 255, (2, 4)).astype(np.uint32)
            y = x[0:2, 2:4]
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "slice_u32_2d"
            make_test(
                [x], y, "input_0.slice(array![0, 2].span(), array![2, 4].span(), Option::Some(array![0, 1].span()), Option::Some(array![1, 1].span()))", name)
        def slice_3D():
            x = np.random.randint(0, 255, (20, 10, 5)).astype(np.uint32)
            y = x[0:3, 0:10:3]
            x = Tensor(Dtype.U32, x.shape, x.flatten())
            y = Tensor(Dtype.U32, y.shape, y.flatten())
            name = "slice_u32_3d"
            make_test(
                [x], y, "input_0.slice(array![0, 0].span(), array![3, 10].span(), Option::Some(array![0, 1].span()), Option::Some(array![1, 3].span()))", name)
        slice_2D()
        slice_3D()
    @staticmethod
    def slice_i32():
        def slice_2D():
            x = np.random.randint(-127, 127, (2, 4)).astype(np.int32)
            y = x[0:2, 2:4]
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "slice_i32_2d"
            make_test(
                [x], y, "input_0.slice(array![0, 2].span(), array![2, 4].span(), Option::Some(array![0, 1].span()), Option::Some(array![1, 1].span()))", name)
        def slice_3D():
            x = np.random.randint(-127, 127, (20, 10, 5)).astype(np.int32)
            y = x[0:3, 0:10:3]
            x = Tensor(Dtype.I32, x.shape, x.flatten())
            y = Tensor(Dtype.I32, y.shape, y.flatten())
            name = "slice_i32_3d"
            make_test(
                [x], y, "input_0.slice(array![0, 0].span(), array![3, 10].span(), Option::Some(array![0, 1].span()), Option::Some(array![1, 3].span()))", name)
        slice_2D()
        slice_3D()
    @staticmethod
    def slice_i8():
        def slice_2D():
            x = np.random.randint(-127, 127, (2, 4)).astype(np.int8)
            y = x[0:2, 2:4]
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "slice_i8_2d"
            make_test(
                [x], y, "input_0.slice(array![0, 2].span(), array![2, 4].span(), Option::Some(array![0, 1].span()), Option::Some(array![1, 1].span()))", name)
        def slice_3D():
            x = np.random.randint(-127, 127, (20, 10, 5)).astype(np.int8)
            y = x[0:3, 0:10:3]
            x = Tensor(Dtype.I8, x.shape, x.flatten())
            y = Tensor(Dtype.I8, y.shape, y.flatten())
            name = "slice_i8_3d"
            make_test(
                [x], y, "input_0.slice(array![0, 0].span(), array![3, 10].span(), Option::Some(array![0, 1].span()), Option::Some(array![1, 3].span()))", name)
        slice_2D()
        slice_3D()
    @staticmethod
    def slice_fp8x23():
        def slice_2D():
            x = to_fp(np.random.randint(-127, 127, (2, 4)
                                        ).astype(np.int64), FixedImpl.FP8x23)
            y = x[0:2, 2:4]
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            
            name = "slice_fp8x23_2d"
            make_test(
                [x], y, "input_0.slice(array![0, 2].span(), array![2, 4].span(), Option::Some(array![0, 1].span()), Option::Some(array![1, 1].span()))", name)
        def slice_3D():
            x = to_fp(np.random.randint(-127, 127, (20, 10, 5)
                                        ).astype(np.int64), FixedImpl.FP8x23)
            y = x[0:3, 0:10:3]
            x = Tensor(Dtype.FP8x23, x.shape, x.flatten())
            y = Tensor(Dtype.FP8x23, y.shape, y.flatten())
            
            name = "slice_fp8x23_3d"
            make_test(
                [x], y, "input_0.slice(array![0, 0].span(), array![3, 10].span(), Option::Some(array![0, 1].span()), Option::Some(array![1, 3].span()))", name)
        slice_2D()
        slice_3D()
    @staticmethod
    def slice_fp16x16():
        def slice_2D():
            x = to_fp(np.random.randint(-127, 127, (2, 4)
                                        ).astype(np.int64), FixedImpl.FP16x16)
            y = x[0:2, 2:4]
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "slice_fp16x16_2d"
            make_test(
                [x], y, "input_0.slice(array![0, 2].span(), array![2, 4].span(), Option::Some(array![0, 1].span()), Option::Some(array![1, 1].span()))", name)
        def slice_3D():
            x = to_fp(np.random.randint(-127, 127, (20, 10, 5)
                                        ).astype(np.int64), FixedImpl.FP16x16)
            y = x[0:3, 0:10:3]
            x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            y = Tensor(Dtype.FP16x16, y.shape, y.flatten())
            name = "slice_fp16x16_3d"
            make_test(
                [x], y, "input_0.slice(array![0, 0].span(), array![3, 10].span(), Option::Some(array![0, 1].span()), Option::Some(array![1, 3].span()))", name)
        slice_2D()
        slice_3D()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/softmax.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
def softmax(x: np.ndarray, axis: int = -1) -> np.ndarray:
    x_max = np.max(x, axis=axis, keepdims=True)
    tmp = np.exp(x - x_max)
    s = np.sum(tmp, axis=axis, keepdims=True)
    return tmp / s
class Softmax(RunAll):
        
    @staticmethod
    def axis_0():
        x = np.abs(np.random.randn(3, 4, 5).astype(np.float32))
        y = softmax(x, axis=0)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "softmax_axis_0"
        make_test([x], y, "NNTrait::softmax(@input_0, Option::Some(0))",
                  name, Trait.NN)
    
    @staticmethod
    def axis_1():
        x = np.abs(np.random.randn(3, 4, 5).astype(np.float32))
        y = softmax(x, axis=1)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "softmax_axis_1"
        make_test([x], y, "NNTrait::softmax(@input_0, Option::Some(1))",
                  name, Trait.NN)
    
    @staticmethod
    def axis_2():
        x = np.abs(np.random.randn(3, 4, 5).astype(np.float32))
        y = softmax(x, axis=2)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "softmax_axis_2"
        make_test([x], y, "NNTrait::softmax(@input_0, Option::Some(2))",
                  name, Trait.NN)
    
    @staticmethod
    def axis_minus_1():
        x = np.abs(np.random.randn(3, 4, 5).astype(np.float32))
        y = softmax(x, axis=-1)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "softmax_axis_minus_1"
        make_test([x], y, "NNTrait::softmax(@input_0, Option::None)",
                  name, Trait.NN)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/softmax_zero.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
def softmax_zero(x: np.ndarray, axis: int = -1) -> np.ndarray:
    x_max = np.max(x, axis=axis, keepdims=True)
    tmp = np.exp(x - x_max)
    tmp = np.where(x == 0.0, 0.0, tmp)
    s = np.sum(tmp, axis=axis, keepdims=True)
    s = np.where(s == 0.0, 1, s)
    
    return tmp / s
class Softmax_zero(RunAll):
    @staticmethod
    def fp8x23():
        x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64)
        y = softmax_zero(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "softmax_zero_fp8x23"
        make_test([x], y, "NNTrait::softmax_zero(@input_0, 1)",
                    name, Trait.NN)
    @staticmethod
    def fp16x16():
        x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64)
        y = softmax_zero(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "softmax_zero_fp16x16"
        make_test([x], y, "NNTrait::softmax_zero(@input_0, 1)",
                    name, Trait.NN)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/softplus.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
def softplus(x: np.ndarray) -> np.ndarray:
    return np.log(np.exp(x) + 1)
class Softplus(RunAll):
    @staticmethod
    def softplus_fp():
        def fp8x23():
            x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64)
            y = softplus(x)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23))
            name = "softplus_fp8x23"
            make_test([x], y, "NNTrait::softplus(@input_0)",
                      name, Trait.NN)
        def fp16x16():
            x = np.random.uniform(-3, 3, (2, 2)).astype(np.float64)
            y = softplus(x)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16))
            name = "softplus_fp16x16"
            make_test([x], y, "NNTrait::softplus(@input_0)",
                      name, Trait.NN)
        fp8x23()
        fp16x16()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/softsign.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
def softsign(x: np.ndarray) -> np.ndarray:
    return x / (1 + np.abs(x))
class Softsign(RunAll):
    @staticmethod
    def softsign_fp():
        def fp8x23():
            x = np.random.uniform(-5, 7, (2, 2)).astype(np.float64)
            y = softsign(x)
            x = Tensor(Dtype.FP8x23, x.shape, to_fp(
                x.flatten(), FixedImpl.FP8x23))
            y = Tensor(Dtype.FP8x23, y.shape, to_fp(
                y.flatten(), FixedImpl.FP8x23))
            name = "softsign_fp8x23"
            make_test([x], y, "NNTrait::softsign(@input_0)",
                      name, Trait.NN)
        def fp16x16():
            x = np.random.uniform(-5, 7, (2, 2)).astype(np.float64)
            y = softsign(x)
            x = Tensor(Dtype.FP16x16, x.shape, to_fp(
                x.flatten(), FixedImpl.FP16x16))
            y = Tensor(Dtype.FP16x16, y.shape, to_fp(
                y.flatten(), FixedImpl.FP16x16))
            name = "softsign_fp16x16"
            make_test([x], y, "NNTrait::softsign(@input_0)",
                      name, Trait.NN)
        fp8x23()
        fp16x16()
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/space_to_depth.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
def space_to_depth(data: np.ndarray, blocksize: int = 2) -> np.ndarray:
    if len(data.shape) != 4:
        raise RuntimeError(f"Unexpected shape {data.shape!r}.")
    b, C, H, W = data.shape
    tmpshape = (
        b,
        C,
        H // blocksize,
        blocksize,
        W // blocksize,
        blocksize,
    )
    reshaped = np.reshape(data, tmpshape)
    transposed = np.transpose(reshaped, [0, 3, 5, 1, 2, 4])
    finalshape = (
        b,
        C * blocksize * blocksize,
        H // blocksize,
        W // blocksize,
    )
    y = np.reshape(transposed, finalshape).astype(data.dtype)
    return y
class Space_to_depth(RunAll):
    @staticmethod
    def fp8x23():
        x = np.random.uniform(-3, 3, (1, 2, 2, 4)).astype(np.float64)
        y = space_to_depth(x)
        x = Tensor(Dtype.FP8x23, x.shape, to_fp(
            x.flatten(), FixedImpl.FP8x23))
        y = Tensor(Dtype.FP8x23, y.shape, to_fp(
            y.flatten(), FixedImpl.FP8x23))
        name = "space_to_depth_fp8x23"
        make_test([x], y, "NNTrait::space_to_depth(@input_0, 2)",
                    name, Trait.NN)
    @staticmethod
    def fp16x16():
        x = np.random.uniform(-3, 3, (1, 2, 2, 4)).astype(np.float16)
        y = space_to_depth(x)
        x = Tensor(Dtype.FP16x16, x.shape, to_fp(
            x.flatten(), FixedImpl.FP16x16))
        y = Tensor(Dtype.FP16x16, y.shape, to_fp(
            y.flatten(), FixedImpl.FP16x16))
        name = "space_to_depth_fp16x16"
        make_test([x], y, "NNTrait::space_to_depth(@input_0, 2)",
                    name, Trait.NN)
        
    # @staticmethod
    # def fp64x64():
    #     x = np.random.uniform(-3, 3, (1, 2, 2, 4)).astype(np.float64)
    #     y = space_to_depth(x)
    #     x = Tensor(Dtype.FP64x64, x.shape, to_fp(
    #         x.flatten(), FixedImpl.FP64x64))
    #     y = Tensor(Dtype.FP64x64, y.shape, to_fp(
    #         y.flatten(), FixedImpl.FP64x64))
    #     name = "space_to_depth_fp64x64"
    #     make_test([x], y, "NNTrait::space_to_depth(@input_0, 2)",
    #                 name, Trait.NN)
    @staticmethod
    def fpi8():
        x = np.random.randint(-3, 3, (1, 2, 2, 4)).astype(np.int8)
        y = space_to_depth(x)
        x = Tensor(Dtype.I8, x.shape, x.flatten())
        y = Tensor(Dtype.I8, y.shape, y.flatten())
        name = "space_to_depth_i8"
        make_test([x], y, "NNTrait::space_to_depth(@input_0, 2)",
                    name, Trait.NN)
    @staticmethod
    def fpi32():
        x = np.random.randint(-3, 3, (1, 2, 2, 4)).astype(np.int32)
        y = space_to_depth(x)
        x = Tensor(Dtype.I32, x.shape, x.flatten())
        y = Tensor(Dtype.I32, y.shape, y.flatten())
        name = "space_to_depth_i32"
        make_test([x], y, "NNTrait::space_to_depth(@input_0, 2)",
                    name, Trait.NN)
    @staticmethod
    def fpu32():
        x = np.random.randint(-3, 3, (1, 2, 2, 4)).astype(np.uint32)
        y = space_to_depth(x)
        x = Tensor(Dtype.U32, x.shape, x.flatten())
        y = Tensor(Dtype.U32, y.shape, y.flatten())
        name = "space_to_depth_u32"
        make_test([x], y, "NNTrait::space_to_depth(@input_0, 2)",
                    name, Trait.NN)
 
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
	nodegen/node/split.py 
 | 
	import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl
class Split(RunAll):
    @staticmethod
    def split_u32():
        def split_1D():
            x = np.random.randint(0, 255, 6).astype(np.uint32)
            y = [
                np.array(x[0:2]).astype(np.uint32), 
                np.array(x[2:4]).astype(np.uint32),
                np.array(x[4:6]).astype(np.uint32),
            ]
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = [
                Tensor(Dtype.U32, y[0].shape, y[0].flatten()),
                Tensor(Dtype.U32, y[1].shape, y[1].flatten()),
                Tensor(Dtype.U32, y[2].shape, y[2].flatten()),
            ]
            name = "split_u32_1d_equal_parts"
            make_test(
                [_x], _y, "input_0.split(0, Option::Some(3), Option::None(()))", name)
            y = [
                np.array(x[0:2]).astype(np.uint32), 
                np.array(x[2:6]).astype(np.uint32),
            ]
            _y = [
                Tensor(Dtype.U32, y[0].shape, y[0].flatten()),
                Tensor(Dtype.U32, y[1].shape, y[1].flatten()),
            ]
            name = "split_u32_1d_variable_parts"
            make_test(
                [_x], _y, "input_0.split(0, Option::None(()), Option::Some(TensorTrait::<u32>::new(shape: array![2].span(), data: array![2, 4].span(),)))", name)
        def split_2D():
            x = np.random.randint(0, 255, (2, 6)).astype(np.uint32)
            y = [
                np.array(x[0:2, 0:3]).astype(np.uint32),
                np.array(x[0:2, 3:6]).astype(np.uint32),
            ]
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = [
                Tensor(Dtype.U32, y[0].shape, y[0].flatten()),
                Tensor(Dtype.U32, y[1].shape, y[1].flatten()),
            ]
            name = "split_u32_2d_equal_parts"
            make_test(
                [_x], _y, "input_0.split(1, Option::Some(2), Option::None(()))", name)
            y = [
                np.array(x[0:2, 0:2]).astype(np.uint32), 
                np.array(x[0:2, 2:6]).astype(np.uint32)
            ]
            _y = [
                Tensor(Dtype.U32, y[0].shape, y[0].flatten()),
                Tensor(Dtype.U32, y[1].shape, y[1].flatten()),
            ]
            name = "split_u32_2d_variable_parts"
            make_test(
                [_x], _y, "input_0.split(1, Option::None(()), Option::Some(TensorTrait::<u32>::new(shape: array![2].span(), data: array![2, 4].span(),)))", name)
        
        def split_zero_size():
            # 1-dimensional tensor with dimension_size=0
            x = np.array([]).astype(np.uint32)
            y = [
                np.array([]).astype(np.uint32),
                np.array([]).astype(np.uint32),
                np.array([]).astype(np.uint32),
            ]
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = [
                Tensor(Dtype.U32, y[0].shape, y[0].flatten()),
                Tensor(Dtype.U32, y[1].shape, y[1].flatten()),
                Tensor(Dtype.U32, y[2].shape, y[2].flatten()),
            ]
            # Split emtpy tensor to tensors of size zero
            name = "split_u32_zero_size"
            make_test(
                [_x], _y, "input_0.split(0, Option::None(()), Option::Some(TensorTrait::<u32>::new(shape: array![3].span(), data: array![0, 0, 0].span(),)))", name)
            
        
        def split_1d_uneven():
            x = np.random.randint(0, 255, 7).astype(np.uint32)
            y = [
                np.array(x[0:2]).astype(np.uint32), 
                np.array(x[2:4]).astype(np.uint32),
                np.array(x[4:6]).astype(np.uint32),
                np.array(x[6:7]).astype(np.uint32),
            ]
            
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = [
                Tensor(Dtype.U32, y[0].shape, y[0].flatten()),
                Tensor(Dtype.U32, y[1].shape, y[1].flatten()),
                Tensor(Dtype.U32, y[2].shape, y[2].flatten()),
                Tensor(Dtype.U32, y[3].shape, y[3].flatten()),
            ]
            name = "split_u32_1d_uneven"
            make_test(
                [_x], _y, "input_0.split(0, Option::Some(4), Option::None(()))", name)
            
        def split_2d_uneven():
            x = np.random.randint(0, 255, (2, 8)).astype(np.uint32)
            y = [
                np.array(x[0:2, 0:3]).astype(np.uint32), 
                np.array(x[0:2, 3:6]).astype(np.uint32), 
                np.array(x[0:2, 6:8]).astype(np.uint32)
            ]
            _x = Tensor(Dtype.U32, x.shape, x.flatten())
            _y = [
                Tensor(Dtype.U32, y[0].shape, y[0].flatten()),
                Tensor(Dtype.U32, y[1].shape, y[1].flatten()),
                Tensor(Dtype.U32, y[2].shape, y[2].flatten()),
            ]
            name = "split_u32_2d_uneven"
            make_test(
                [_x], _y, "input_0.split(1, Option::Some(3), Option::None(()))", name)
        
        split_1D()
        split_2D()
        split_zero_size()
        split_1d_uneven()
        split_2d_uneven()
    @staticmethod
    def split_fp16x16():
        def split_1D():
            x = to_fp(np.random.randint(-127, 127, 6
                                        ).astype(np.int64), FixedImpl.FP16x16)
            y = [
                np.array(x[0:2]).astype(np.int64), 
                np.array(x[2:4]).astype(np.int64),
                np.array(x[4:6]).astype(np.int64),
            ]
            _x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            _y = [
                Tensor(Dtype.FP16x16, y[0].shape, y[0].flatten()),
                Tensor(Dtype.FP16x16, y[1].shape, y[1].flatten()),
                Tensor(Dtype.FP16x16, y[2].shape, y[2].flatten()),
            ]
            name = "split_fp16x16_1d_equal_parts"
            make_test(
                [_x], _y, "input_0.split(0, Option::Some(3), Option::None(()))", name)
            y = [
                np.array(x[0:2]).astype(np.int64), 
                np.array(x[2:6]).astype(np.int64),
            ]
            _y = [
                Tensor(Dtype.FP16x16, y[0].shape, y[0].flatten()),
                Tensor(Dtype.FP16x16, y[1].shape, y[1].flatten()),
            ]
            name = "split_fp16x16_1d_variable_parts"
            make_test(
                [_x], _y, "input_0.split(0, Option::None(()), Option::Some(TensorTrait::<u32>::new(shape: array![2].span(), data: array![2, 4].span(),)))", name)
        def split_2D():
            x = to_fp(np.random.randint(-127, 127, (2, 6)
                                        ).astype(np.int64), FixedImpl.FP16x16)
            y = [
                np.array(x[0:2, 0:3]).astype(np.int64),
                np.array(x[0:2, 3:6]).astype(np.int64),
            ]
            _x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            _y = [
                Tensor(Dtype.FP16x16, y[0].shape, y[0].flatten()),
                Tensor(Dtype.FP16x16, y[1].shape, y[1].flatten()),
            ]
            name = "split_fp16x16_2d_equal_parts"
            make_test(
                [_x], _y, "input_0.split(1, Option::Some(2), Option::None(()))", name)
            y = [
                np.array(x[0:2, 0:2]).astype(np.int64), 
                np.array(x[0:2, 2:6]).astype(np.int64)
            ]
            _y = [
                Tensor(Dtype.FP16x16, y[0].shape, y[0].flatten()),
                Tensor(Dtype.FP16x16, y[1].shape, y[1].flatten()),
            ]
            name = "split_fp16x16_2d_variable_parts"
            make_test(
                [_x], _y, "input_0.split(1, Option::None(()), Option::Some(TensorTrait::<u32>::new(shape: array![2].span(), data: array![2, 4].span(),)))", name)
        
        def split_zero_size():
            # 1-dimensional tensor with dimension_size=0
            x = to_fp(np.array([]).astype(np.int64
                                        ).astype(np.int64), FixedImpl.FP16x16)
            y = [
                np.array([]).astype(np.int64),
                np.array([]).astype(np.int64),
                np.array([]).astype(np.int64),
            ]
            _x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            _y = [
                Tensor(Dtype.FP16x16, y[0].shape, y[0].flatten()),
                Tensor(Dtype.FP16x16, y[1].shape, y[1].flatten()),
                Tensor(Dtype.FP16x16, y[2].shape, y[2].flatten()),
            ]
            # Split emtpy tensor to tensors of size zero
            name = "split_fp16x16_zero_size"
            make_test(
                [_x], _y, "input_0.split(0, Option::None(()), Option::Some(TensorTrait::<u32>::new(shape: array![3].span(), data: array![0, 0, 0].span(),)))", name)
            
        
        def split_1d_uneven():
            x = to_fp(np.random.randint(-127, 127, 7
                                        ).astype(np.int64), FixedImpl.FP16x16)
            y = [
                np.array(x[0:2]).astype(np.int64), 
                np.array(x[2:4]).astype(np.int64),
                np.array(x[4:6]).astype(np.int64),
                np.array(x[6:7]).astype(np.int64),
            ]
            _x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            _y = [
                Tensor(Dtype.FP16x16, y[0].shape, y[0].flatten()),
                Tensor(Dtype.FP16x16, y[1].shape, y[1].flatten()),
                Tensor(Dtype.FP16x16, y[2].shape, y[2].flatten()),
                Tensor(Dtype.FP16x16, y[3].shape, y[3].flatten()),
            ]
            name = "split_fp16x16_1d_uneven"
            make_test(
                [_x], _y, "input_0.split(0, Option::Some(4), Option::None(()))", name)
            
        def split_2d_uneven():
            x = to_fp(np.random.randint(-127, 127, (2, 8)
                                        ).astype(np.int64), FixedImpl.FP16x16)
            y = [
                np.array(x[0:2, 0:3]).astype(np.int64), 
                np.array(x[0:2, 3:6]).astype(np.int64), 
                np.array(x[0:2, 6:8]).astype(np.int64)
            ]
            _x = Tensor(Dtype.FP16x16, x.shape, x.flatten())
            _y = [
                Tensor(Dtype.FP16x16, y[0].shape, y[0].flatten()),
                Tensor(Dtype.FP16x16, y[1].shape, y[1].flatten()),
                Tensor(Dtype.FP16x16, y[2].shape, y[2].flatten()),
            ]
            name = "split_fp16x16_2d_uneven"
            make_test(
                [_x], _y, "input_0.split(1, Option::Some(3), Option::None(()))", name)
        
        split_1D()
        split_2D()
        split_zero_size()
        split_1d_uneven()
        split_2d_uneven()
     
 | 
	https://github.com/gizatechxyz/orion 
 | 
					
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.