The Dataset Viewer has been disabled on this dataset.
OCR Text Extraction using RolmOCR
This dataset contains extracted text from images in stckmn/ocr-input-Directive017-1761353484 using RolmOCR.
Processing Details
- Source Dataset: stckmn/ocr-input-Directive017-1761353484
 - Model: reducto/RolmOCR
 - Number of Samples: 21
 - Processing Time: 2.2 minutes
 - Processing Date: 2025-10-25 00:54 UTC
 
Configuration
- Image Column: 
image - Output Column: 
rolmocr_text - Dataset Split: 
train - Batch Size: 16
 - Max Model Length: 16,384 tokens
 - Max Output Tokens: 8,192
 - GPU Memory Utilization: 80.0%
 
Model Information
RolmOCR is a fast, general-purpose OCR model based on Qwen2.5-VL-7B architecture. It extracts plain text from document images with high accuracy and efficiency.
Dataset Structure
The dataset contains all original columns plus:
rolmocr_text: The extracted text from each imageinference_info: JSON list tracking all OCR models applied to this dataset
Usage
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{output_dataset_id}", split="train")
# Access the extracted text
for example in dataset:
    print(example["rolmocr_text"])
    break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {info['column_name']} - Model: {info['model_id']}")
Reproduction
This dataset was generated using the uv-scripts/ocr RolmOCR script:
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/rolm-ocr.py \
    stckmn/ocr-input-Directive017-1761353484 \
    <output-dataset> \
    --image-column image \
    --batch-size 16 \
    --max-model-len 16384 \
    --max-tokens 8192 \
    --gpu-memory-utilization 0.8
Performance
- Processing Speed: ~0.2 images/second
 - GPU Configuration: vLLM with 80% GPU memory utilization
 
Generated with 🤖 UV Scripts
- Downloads last month
 - 8