Datasets:
Tasks:
Summarization
Sub-tasks:
news-articles-summarization
Languages:
Kazakh
Size:
100K<n<1M
ArXiv:
License:
| # -*- coding: utf-8 -*- | |
| import re, json, sys, subprocess | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from datasets import load_dataset | |
| from tqdm import tqdm | |
| #!pip install datasets==3.6.0 | |
| # | |
| # ===== Параметры ===== | |
| BASE_MODEL = "google/gemma-3-4b-it" | |
| MODEL_PATH = "talgatzh/gemma-finetuned-model2" | |
| OUTPUT_FILE = "gemma_inference_results_from_multidomain_fixedzxcs555.jsonl" | |
| MAX_NEW_TOKENS = 60 | |
| MAX_TEXTS = 20 # увеличь для более стабильной метрики (>=200) | |
| # ===== ROUGE (установим при необходимости) ===== | |
| try: | |
| import evaluate | |
| except ImportError: | |
| subprocess.check_call([sys.executable, "-m", "pip", "install", "-q", "evaluate"]) | |
| import evaluate | |
| # ===== Модель и токенизатор ===== | |
| tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_PATH, | |
| device_map="auto", | |
| torch_dtype=torch.float16, | |
| trust_remote_code=True | |
| ).eval() | |
| # pad_token для стабильности (у Gemma pad = eos) | |
| if tokenizer.pad_token_id is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| # ===== Утилиты ===== | |
| def is_kazakh(text: str) -> bool: | |
| return any(c in text.lower() for c in "қәөүңғұһі") | |
| _SENT_SPLIT = re.compile(r'(?<=[\.\!\?…])\s+|\n+') | |
| def lead_n(text: str, n=3) -> str: | |
| sents = [s.strip() for s in _SENT_SPLIT.split(text.strip()) if s.strip()] | |
| return " ".join(sents[:n]) | |
| def build_chat_prompt(text: str) -> str: | |
| instr = ( | |
| "Мақсат: Экстрактивті қысқаша мазмұн.\n" | |
| "Ереже: Тек бастапқы мәтіндегі сөйлемдерді көшір. Өз сөзіңмен жазба. Синоним қолданба.\n" | |
| "Мәтіннен тек 2–3 ең маңызды сөйлемді таңда да, сол күйінде жаз.\n" | |
| "Формат: тек сөйлемдер, жаңа сөздер қоспа.\n\n" | |
| "Мәтін:\n" | |
| f"{text.strip()}\n\n" | |
| "Қысқаша мазмұн:" | |
| ) | |
| messages = [{"role": "user", "content": instr}] | |
| # Правильный chat-template для Gemma-IT | |
| return tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| # ===== Данные ===== | |
| dataset = load_dataset("kz-transformers/multidomain-kazakh-dataset", | |
| split="train", streaming=True) | |
| INPUT_TEXTS = [] | |
| for ex in dataset: | |
| txt = (ex.get("text") or "").strip() | |
| if is_kazakh(txt) and len(txt.split()) > 20: | |
| INPUT_TEXTS.append(txt) | |
| if len(INPUT_TEXTS) >= MAX_TEXTS: | |
| break | |
| print(f"✔ Отобрано {len(INPUT_TEXTS)} казахских текстов из multidomain") | |
| # ===== Генерация ===== | |
| results, preds, refs = [], [], [] | |
| for text in tqdm(INPUT_TEXTS, desc="Generating summaries"): | |
| prompt_text = build_chat_prompt(text) | |
| toks = tokenizer(prompt_text, return_tensors="pt", truncation=True, max_length=2048) | |
| toks = {k: v.to(model.device) for k, v in toks.items()} | |
| with torch.no_grad(): | |
| out = model.generate( | |
| **toks, | |
| max_new_tokens=MAX_NEW_TOKENS, | |
| do_sample=False, | |
| temperature=0.0, | |
| repetition_penalty=1.05, | |
| no_repeat_ngram_size=6, | |
| eos_token_id=tokenizer.eos_token_id, | |
| pad_token_id=tokenizer.pad_token_id, | |
| use_cache=True, | |
| ) | |
| # === Берём ТОЛЬКО новые токены после входа === | |
| input_len = toks["input_ids"].shape[1] | |
| gen_ids = out[0, input_len:] | |
| generated = tokenizer.decode(gen_ids, skip_special_tokens=True).strip() | |
| # Чистим возможные «утечки» ролей/маркеров | |
| for bad in ("model", "<start_of_turn>", "<end_of_turn>"): | |
| if generated.lower().startswith(bad): | |
| generated = generated[len(bad):].lstrip(": ").strip() | |
| generated = generated.replace(bad, "").strip() | |
| # Fallback: если пусто — берём первые 2–3 предложения исходника | |
| if not generated: | |
| generated = lead_n(text, n=3) | |
| reference = lead_n(text, n=3) | |
| results.append({"text": text, "summary": generated, "reference": reference}) | |
| preds.append(generated) | |
| refs.append(reference) | |
| # ===== Сохранение ===== | |
| with open(OUTPUT_FILE, "w", encoding="utf-8") as f: | |
| for r in results: | |
| f.write(json.dumps(r, ensure_ascii=False) + "\n") | |
| print(f"✅ Сохранено {len(results)} суммаризаций → {OUTPUT_FILE}") | |
| # ===== ROUGE к Lead-3 (прокси для быстрой диагностики) ===== | |
| rouge = evaluate.load("rouge") | |
| scores = rouge.compute(predictions=preds, references=refs, use_stemmer=True) | |
| scores_pct = {k: round(v * 100, 2) for k, v in scores.items()} | |
| print("🔎 ROUGE vs Lead-3:") | |
| for k in ("rouge1", "rouge2", "rougeL", "rougeLsum"): | |
| print(f"{k.upper()}: {scores_pct.get(k, 0)}%") | |
| # ===== Быстрый дебаг первых 3 пар ===== | |
| for i in range(min(3, len(results))): | |
| print("\n--- SAMPLE", i+1, "---") | |
| print("PRED:", results[i]["summary"]) | |
| print("REF :", results[i]["reference"]) | |