Datasets:
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 17 new columns ({'question subtype', 'contrast', 'spacing', 'multiple-choice question', 'shape', 'question type', 'lesion', 'Question ID', 'split', 'age', 'question', 'sex', 'scanner', 'answer', 'correct option', 'organ', 'Image ID'}) and 2 missing columns ({'original id', 'AbdomenAtlas_id'}).
This happened while the csv dataset builder was generating data using
hf://datasets/tumor-vqa/DeepTumorVQA_1.0/Tumor_VQA_dataset_V3.csv (at revision 2557a8ccb9db849c7ac8983ed2f6b760bac86253)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
writer.write_table(table)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
pa_table = table_cast(pa_table, self._schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
return cast_table_to_schema(table, schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
Question ID: int64
Image ID: string
spacing: string
shape: string
sex: string
age: double
scanner: string
contrast: string
question: string
answer: string
multiple-choice question: string
correct option: string
organ: string
lesion: string
question type: string
question subtype: string
split: string
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2259
to
{'original id': Value(dtype='string', id=None), 'AbdomenAtlas_id': Value(dtype='string', id=None)}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1433, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet
builder.download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare
self._download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 17 new columns ({'question subtype', 'contrast', 'spacing', 'multiple-choice question', 'shape', 'question type', 'lesion', 'Question ID', 'split', 'age', 'question', 'sex', 'scanner', 'answer', 'correct option', 'organ', 'Image ID'}) and 2 missing columns ({'original id', 'AbdomenAtlas_id'}).
This happened while the csv dataset builder was generating data using
hf://datasets/tumor-vqa/DeepTumorVQA_1.0/Tumor_VQA_dataset_V3.csv (at revision 2557a8ccb9db849c7ac8983ed2f6b760bac86253)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
original id
string | AbdomenAtlas_id
string |
|---|---|
autoPET_PETCT_404f8c732f
|
BDMAP_00000001
|
TCIA-Pancreas-CT_PANCREAS_0039
|
BDMAP_00000002
|
TotalSegmentator_s0543
|
BDMAP_00000003
|
MSD-Colon_colon_195
|
BDMAP_00000004
|
TCIAColon_TCIAColon_0256_0_1
|
BDMAP_00000005
|
autoPET_PETCT_63464433c8
|
BDMAP_00000006
|
MSD-HepaticVessel_hepaticvessel_447
|
BDMAP_00000007
|
KiTS19-21_prediction_00280
|
BDMAP_00000008
|
WORD_word_0086
|
BDMAP_00000009
|
autoPET_PETCT_f637b5930b
|
BDMAP_00000010
|
autoPET_PETCT_49479d6e64
|
BDMAP_00000011
|
TCIAColon_TCIAColon_0300_0_1
|
BDMAP_00000012
|
MSD-HepaticVessel_hepaticvessel_200
|
BDMAP_00000013
|
TotalSegmentator_s0904
|
BDMAP_00000014
|
MSD-HepaticVessel_hepaticvessel_406
|
BDMAP_00000015
|
TCIA-LDCT_LDCT-L277_0_1
|
BDMAP_00000016
|
FLARE23Val_FLARE23_Ts_0084_0000
|
BDMAP_00000017
|
TotalSegmentator_s1089
|
BDMAP_00000018
|
TCIAColon_TCIAColon_0233_0_4
|
BDMAP_00000019
|
BTCV_img0034
|
BDMAP_00000020
|
TotalSegmentator_s0369
|
BDMAP_00000021
|
TCIAColon_TCIAColon_0249_0_2
|
BDMAP_00000022
|
KiTS21_img0228
|
BDMAP_00000023
|
MSD-Pancreas_pancreas_476
|
BDMAP_00000024
|
MSD-Hepatic_hepaticvessel_343
|
BDMAP_00000025
|
NIH-Lymph_NIH-LYMPH-ABD-041_0_0
|
BDMAP_00000026
|
MSD-Colon_colon_188
|
BDMAP_00000027
|
AbdomenCT-1K_Case_01035_0000
|
BDMAP_00000028
|
MSD-Hepatic_hepaticvessel_334
|
BDMAP_00000029
|
MSD-Colon_colon_139
|
BDMAP_00000030
|
autoPET_PETCT_b53ba7c6bf
|
BDMAP_00000031
|
autoPET_PETCT_5d553bf6b4
|
BDMAP_00000032
|
autoPET_PETCT_ba81e4b04b
|
BDMAP_00000033
|
KiTS21_img0268
|
BDMAP_00000034
|
Decathlon_hepaticvessel_325
|
BDMAP_00000035
|
KiTS23_case_00401
|
BDMAP_00000036
|
MSD-Hepatic_hepaticvessel_036
|
BDMAP_00000037
|
Decathlon_hepaticvessel_199
|
BDMAP_00000038
|
KiTS21_img0066
|
BDMAP_00000039
|
TCIAColon_TCIAColon_0262_0_3
|
BDMAP_00000040
|
autoPET_PETCT_f5c2c09846
|
BDMAP_00000041
|
TotalSegmentator_s0250
|
BDMAP_00000042
|
KiTS21_img0298
|
BDMAP_00000043
|
KiTS23_case_00512
|
BDMAP_00000044
|
MSD-Colon_colon_128
|
BDMAP_00000045
|
TCIA-CPTAC-PDA_CPTAC-PDA-C3N-02010_0_1
|
BDMAP_00000046
|
AbdomenCT-1K_Case_00056_0000
|
BDMAP_00000047
|
TCIAColon_TCIAColon_0188_0_1
|
BDMAP_00000048
|
AbdomenCT-1K_Case_00535_0000
|
BDMAP_00000049
|
AMOS_amos_0059
|
BDMAP_00000050
|
TotalSegmentator_s1374
|
BDMAP_00000051
|
AbdomenCT-1K_Case_00162_0000
|
BDMAP_00000052
|
autoPET_PETCT_2ce074c2ea
|
BDMAP_00000053
|
TCIA-CPTAC-PDA_CPTAC-PDA-C3N-03000_0_3
|
BDMAP_00000054
|
MSD-Pancreas_pancreas_014
|
BDMAP_00000055
|
Decathlon_spleen_33
|
BDMAP_00000056
|
TCIAColon_TCIAColon_0166_0_3
|
BDMAP_00000057
|
TCIA-LDCT_LDCT-L193_0_1
|
BDMAP_00000058
|
KiTS21_img0286
|
BDMAP_00000059
|
TCIAColon_TCIAColon_0232_0_2
|
BDMAP_00000060
|
TotalSegmentator_s1348
|
BDMAP_00000061
|
KiTS21_img0017
|
BDMAP_00000062
|
TCIAColon_TCIAColon_0161_0_3
|
BDMAP_00000063
|
MSD-Liver_liver_148
|
BDMAP_00000064
|
TCIA-LDCT_LDCT-L219_0_1
|
BDMAP_00000065
|
KiTS21_img0116
|
BDMAP_00000066
|
TCIAColon_TCIAColon_0082_0_3
|
BDMAP_00000067
|
AbdomenCT-1K_Case_00799_0000
|
BDMAP_00000068
|
MSD-Colon_colon_012
|
BDMAP_00000069
|
TotalSegmentator_s0429
|
BDMAP_00000070
|
AMOS_amos_0044
|
BDMAP_00000071
|
autoPET_PETCT_5de3ac617a
|
BDMAP_00000072
|
autoPET_PETCT_ded50b1e68
|
BDMAP_00000073
|
Decathlon_lung_016
|
BDMAP_00000074
|
Decathlon_hepaticvessel_005
|
BDMAP_00000075
|
AMOS_amos_0159
|
BDMAP_00000076
|
autoPET_PETCT_6170317f2e
|
BDMAP_00000077
|
Decathlon_lung_003
|
BDMAP_00000078
|
TotalSegmentator_s0896
|
BDMAP_00000079
|
TCIAColon_TCIAColon_0286_0_3
|
BDMAP_00000080
|
autoPET_PETCT_2a78eed085
|
BDMAP_00000081
|
MSD-Colon_colon_150
|
BDMAP_00000082
|
autoPET_PETCT_61348439bf
|
BDMAP_00000083
|
Decathlon_liver_59
|
BDMAP_00000084
|
autoPET_PETCT_b2f82ed4b9
|
BDMAP_00000085
|
TCGA-BLCA_TCGA-BLCA-4Z-AA86_0_3
|
BDMAP_00000086
|
Decathlon_pancreas_346
|
BDMAP_00000087
|
autoPET_PETCT_d3dac0d1cd
|
BDMAP_00000088
|
AMOS_amos_0038
|
BDMAP_00000089
|
KiTS19-21_case_00147
|
BDMAP_00000090
|
LiTS_liver_38
|
BDMAP_00000091
|
FLARE23Val_FLARE23_Ts_0016_0000
|
BDMAP_00000092
|
Decathlon_pancreas_348
|
BDMAP_00000093
|
Decathlon_hepaticvessel_431
|
BDMAP_00000094
|
AbdomenCT-1K_Case_00773_0000
|
BDMAP_00000095
|
MSD-Colon_colon_084
|
BDMAP_00000096
|
TCIAColon_TCIAColon_0260_0_2
|
BDMAP_00000097
|
autoPET_PETCT_90ea6a6aaf
|
BDMAP_00000098
|
TCIAColon_TCIAColon_0154_0_2
|
BDMAP_00000099
|
LiTS_liver_71
|
BDMAP_00000100
|
π§ Overview
We present DeepTumorVQA, a diagnostic visual question answering (VQA) benchmark targeting abdominal tumors in CT scans. It comprises 9,262 CT volumes (3.7M slices) from 17 public datasets, with 395K expert-level questions spanning four categories: Recognition, Measurement, Visual Reasoning, and Medical Reasoning.
π§Ύ Dataset CT Volumes Overview
The following public abdominal CT datasets are included in DeepTumorVQA.
Note: The number of volumes may differ from the original publications due to validation splits or removal of duplicates.
| Dataset (Year) [Source] | # of Volumes | # of Centers | Dataset (Year) [Source] | # of Volumes | # of Centers |
|---|---|---|---|---|---|
| 1. CHAOS (2018) π | 20 | 1 | 2. Pancreas-CT (2015) π | 42 | 1 |
| 3. BTCV (2015) π | 47 | 1 | 4. LiTS (2019) π | 131 | 7 |
| 5. CT-ORG (2020) π | 140 | 8 | 6. WORD (2021) π | 120 | 1 |
| 7. AMOS22 (2022) π | 200 | 2 | 8. KiTS (2020) π | 489 | 1 |
| 9β14. MSD CT Tasks (2021) π | 945 | 1 | 15. AbdomenCT-1K (2021) π | 1,050 | 12 |
| 16. FLAREβ23 (2022) π | 4,100 | 30 | 17. Trauma Detect. (2023) π | 4,711 | 23 |
To facilitate alignment between our VQA dataset and the original CT image sources, we follow the AbdomenAtlas naming rule and provide a mapping file that links each image ID in our dataset to its corresponding source identifier.
You can view the ID mapping CSV here: AbdomenAtlas_ID_mapping.csv
This file ensures traceability and reproducibility when working with external data references and annotations.
You may also email zzhou82@jh.edu for mapped full data and opportunities to collaborate in our future publications!
Each example in Tumor_VQA_dataset_V3.csv contains the following fields:
question_id: A unique integer identifier for each VQA sample (e.g.,0).image_id: A string identifier for the corresponding CT volume or slice (e.g.,BDMAP_00000001).spacing: Image voxel spacing (e.g.,"[0.8222656 0.8222656 2.5 ]"), stored as a string.shape: The image dimensions (e.g.,"(512, 512, 339)"), stored as a string.sex: Binary patient sex (Male,Female).age: Patient age in years, stored as a float64 (e.g.,65.0).scanner: Type of CT scanner used (e.g.,siemens.contrast: Indicates use of contrast agent (Non-contrast,Arterial,Venous, etc.).question: A natural-language question about the image.answer: The corresponding expert-level answer to the question.multiple_choice_question: Reformulation of the question as a multiple-choice item.correct_option: The correct answer among multiple choices (a value from A to D).organ: The anatomical structure referenced in the question.lesion: The type of lesion involved (tumor,cyst, etc.).question_type: The general category of the question (recognition,measurement,visual reasoning,medical reasoning, etc.).question_subtype: A more granular subclassification (e.g.,lesion_counting,organ_hu_measurement, `lesion_type_classification, etc.).split: Designates whether the sample belongs to thetrainorvalidationset.
Acknowledgement and Disclosure of Funding
This work was supported by the Lustgarten Foundation for Pancreatic Cancer Research and the Patrick J. McGovern Foundation Award.
Citation
@article{chen2025vision,
title={Are Vision Language Models Ready for Clinical Diagnosis? A 3D Medical Benchmark for Tumor-centric Visual Question Answering},
author={Chen, Yixiong and Xiao, Wenjie and Bassi, Pedro RAS and Zhou, Xinze and Er, Sezgin and Hamamci, Ibrahim Ethem and Zhou, Zongwei and Yuille, Alan},
journal={arXiv preprint arXiv:2505.18915},
year={2025}
}
- Downloads last month
- 53