File size: 23,626 Bytes
			
			| f987b04 90889e4 f987b04 90889e4 d2ade5c 90889e4 f987b04 90889e4 f987b04 88db448 f987b04 3073a00 88db448 f987b04 88db448 f987b04 88db448 f987b04 88db448 f987b04 88db448 f987b04 3073a00 f987b04 88db448 f987b04 3073a00 f987b04 88db448 f987b04 88db448 f987b04 3073a00 f987b04 3073a00 f987b04 88db448 f987b04 3073a00 88db448 3073a00 f987b04 3073a00 f987b04 2db2034 cf61cef 88db448 f987b04 3073a00 f987b04 3073a00 f987b04 3073a00 f987b04 3073a00 f987b04 3073a00 f987b04 88db448 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 | # /// script
# requires-python = ">=3.11"
# dependencies = [
#     "datasets",
#     "huggingface-hub[hf_transfer]",
#     "pillow",
#     "vllm",
#     "tqdm",
#     "toolz",
#     "torch",
# ]
#
# [[tool.uv.index]]
# url = "https://wheels.vllm.ai/nightly"
#
# [tool.uv]
# prerelease = "allow"
# ///
"""
Convert document images to markdown using DeepSeek-OCR with vLLM.
This script processes images through the DeepSeek-OCR model to extract
text and structure as markdown, using vLLM for efficient batch processing.
NOTE: Uses vLLM nightly wheels from main (PR #27247 now merged). First run
may take a few minutes to download and install dependencies.
Features:
- Multiple resolution modes (Tiny/Small/Base/Large/Gundam)
- LaTeX equation recognition
- Table extraction and formatting
- Document structure preservation
- Image grounding and descriptions
- Multilingual support
- Batch processing with vLLM for better performance
"""
import argparse
import base64
import io
import json
import logging
import os
import sys
from typing import Any, Dict, List, Union
from datetime import datetime
import torch
from datasets import load_dataset
from huggingface_hub import DatasetCard, login
from PIL import Image
from toolz import partition_all
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Resolution mode presets
RESOLUTION_MODES = {
    "tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
    "small": {"base_size": 640, "image_size": 640, "crop_mode": False},
    "base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
    "large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
    "gundam": {
        "base_size": 1024,
        "image_size": 640,
        "crop_mode": True,
    },  # Dynamic resolution
}
# Prompt mode presets (from DeepSeek-OCR GitHub)
PROMPT_MODES = {
    "document": "<image>\n<|grounding|>Convert the document to markdown.",
    "image": "<image>\n<|grounding|>OCR this image.",
    "free": "<image>\nFree OCR.",
    "figure": "<image>\nParse the figure.",
    "describe": "<image>\nDescribe this image in detail.",
}
def check_cuda_availability():
    """Check if CUDA is available and exit if not."""
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error("Please run on a machine with a CUDA-capable GPU.")
        sys.exit(1)
    else:
        logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
def make_ocr_message(
    image: Union[Image.Image, Dict[str, Any], str],
    prompt: str = "<image>\n<|grounding|>Convert the document to markdown. ",
) -> List[Dict]:
    """Create chat message for OCR processing."""
    # Convert to PIL Image if needed
    if isinstance(image, Image.Image):
        pil_img = image
    elif isinstance(image, dict) and "bytes" in image:
        pil_img = Image.open(io.BytesIO(image["bytes"]))
    elif isinstance(image, str):
        pil_img = Image.open(image)
    else:
        raise ValueError(f"Unsupported image type: {type(image)}")
    # Convert to RGB
    pil_img = pil_img.convert("RGB")
    # Convert to base64 data URI
    buf = io.BytesIO()
    pil_img.save(buf, format="PNG")
    data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
    # Return message in vLLM format
    return [
        {
            "role": "user",
            "content": [
                {"type": "image_url", "image_url": {"url": data_uri}},
                {"type": "text", "text": prompt},
            ],
        }
    ]
def create_dataset_card(
    source_dataset: str,
    model: str,
    num_samples: int,
    processing_time: str,
    batch_size: int,
    max_model_len: int,
    max_tokens: int,
    gpu_memory_utilization: float,
    resolution_mode: str,
    base_size: int,
    image_size: int,
    crop_mode: bool,
    image_column: str = "image",
    split: str = "train",
) -> str:
    """Create a dataset card documenting the OCR process."""
    model_name = model.split("/")[-1]
    return f"""---
tags:
- ocr
- document-processing
- deepseek
- deepseek-ocr
- markdown
- uv-script
- generated
---
# Document OCR using {model_name}
This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using DeepSeek-OCR.
## Processing Details
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Model**: [{model}](https://huggingface.co/{model})
- **Number of Samples**: {num_samples:,}
- **Processing Time**: {processing_time}
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}
### Configuration
- **Image Column**: `{image_column}`
- **Output Column**: `markdown`
- **Dataset Split**: `{split}`
- **Batch Size**: {batch_size}
- **Resolution Mode**: {resolution_mode}
- **Base Size**: {base_size}
- **Image Size**: {image_size}
- **Crop Mode**: {crop_mode}
- **Max Model Length**: {max_model_len:,} tokens
- **Max Output Tokens**: {max_tokens:,}
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%}
## Model Information
DeepSeek-OCR is a state-of-the-art document OCR model that excels at:
- π **LaTeX equations** - Mathematical formulas preserved in LaTeX format
- π **Tables** - Extracted and formatted as HTML/markdown
- π **Document structure** - Headers, lists, and formatting maintained
- πΌοΈ **Image grounding** - Spatial layout and bounding box information
- π **Complex layouts** - Multi-column and hierarchical structures
- π **Multilingual** - Supports multiple languages
### Resolution Modes
- **Tiny** (512Γ512): Fast processing, 64 vision tokens
- **Small** (640Γ640): Balanced speed/quality, 100 vision tokens
- **Base** (1024Γ1024): High quality, 256 vision tokens
- **Large** (1280Γ1280): Maximum quality, 400 vision tokens
- **Gundam** (dynamic): Adaptive multi-tile processing for large documents
## Dataset Structure
The dataset contains all original columns plus:
- `markdown`: The extracted text in markdown format with preserved structure
- `inference_info`: JSON list tracking all OCR models applied to this dataset
## Usage
```python
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{{{{output_dataset_id}}}}", split="{split}")
# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {{{{info['column_name']}}}} - Model: {{{{info['model_id']}}}}")
```
## Reproduction
This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) DeepSeek OCR vLLM script:
```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \\\\
    {source_dataset} \\\\
    <output-dataset> \\\\
    --resolution-mode {resolution_mode} \\\\
    --image-column {image_column}
```
## Performance
- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second
- **Processing Method**: Batch processing with vLLM (2-3x speedup over sequential)
Generated with π€ [UV Scripts](https://huggingface.co/uv-scripts)
"""
def main(
    input_dataset: str,
    output_dataset: str,
    image_column: str = "image",
    batch_size: int = 8,  # Smaller batch size to avoid potential memory issues with DeepSeek-OCR
    model: str = "deepseek-ai/DeepSeek-OCR",
    resolution_mode: str = "gundam",
    base_size: int = None,
    image_size: int = None,
    crop_mode: bool = None,
    max_model_len: int = 8192,
    max_tokens: int = 8192,
    gpu_memory_utilization: float = 0.8,
    prompt_mode: str = "document",
    prompt: str = None,
    hf_token: str = None,
    split: str = "train",
    max_samples: int = None,
    private: bool = False,
    shuffle: bool = False,
    seed: int = 42,
):
    """Process images from HF dataset through DeepSeek-OCR model with vLLM."""
    # Check CUDA availability first
    check_cuda_availability()
    # Track processing start time
    start_time = datetime.now()
    # Enable HF_TRANSFER for faster downloads
    os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
    # Login to HF if token provided
    HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
    if HF_TOKEN:
        login(token=HF_TOKEN)
    # Determine resolution settings
    if resolution_mode in RESOLUTION_MODES:
        mode_config = RESOLUTION_MODES[resolution_mode]
        final_base_size = (
            base_size if base_size is not None else mode_config["base_size"]
        )
        final_image_size = (
            image_size if image_size is not None else mode_config["image_size"]
        )
        final_crop_mode = (
            crop_mode if crop_mode is not None else mode_config["crop_mode"]
        )
        logger.info(f"Using resolution mode: {resolution_mode}")
    else:
        # Custom mode - require all parameters
        if base_size is None or image_size is None or crop_mode is None:
            raise ValueError(
                f"Invalid resolution mode '{resolution_mode}'. "
                f"Use one of {list(RESOLUTION_MODES.keys())} or specify "
                f"--base-size, --image-size, and --crop-mode manually."
            )
        final_base_size = base_size
        final_image_size = image_size
        final_crop_mode = crop_mode
        resolution_mode = "custom"
    logger.info(
        f"Resolution: base_size={final_base_size}, "
        f"image_size={final_image_size}, crop_mode={final_crop_mode}"
    )
    # Determine prompt
    if prompt is not None:
        final_prompt = prompt
        logger.info(f"Using custom prompt")
    elif prompt_mode in PROMPT_MODES:
        final_prompt = PROMPT_MODES[prompt_mode]
        logger.info(f"Using prompt mode: {prompt_mode}")
    else:
        raise ValueError(
            f"Invalid prompt mode '{prompt_mode}'. "
            f"Use one of {list(PROMPT_MODES.keys())} or specify --prompt"
        )
    logger.info(f"Prompt: {final_prompt}")
    # Load dataset
    logger.info(f"Loading dataset: {input_dataset}")
    dataset = load_dataset(input_dataset, split=split)
    # Validate image column
    if image_column not in dataset.column_names:
        raise ValueError(
            f"Column '{image_column}' not found. Available: {dataset.column_names}"
        )
    # Shuffle if requested
    if shuffle:
        logger.info(f"Shuffling dataset with seed {seed}")
        dataset = dataset.shuffle(seed=seed)
    # Limit samples if requested
    if max_samples:
        dataset = dataset.select(range(min(max_samples, len(dataset))))
        logger.info(f"Limited to {len(dataset)} samples")
    # Initialize vLLM
    logger.info(f"Initializing vLLM with model: {model}")
    logger.info("This may take a few minutes on first run...")
    # Add specific parameters for DeepSeek-OCR compatibility
    llm = LLM(
        model=model,
        trust_remote_code=True,
        max_model_len=max_model_len,
        gpu_memory_utilization=gpu_memory_utilization,
        limit_mm_per_prompt={"image": 1},
        enforce_eager=False,  # Use torch.compile instead of eager execution
    )
    sampling_params = SamplingParams(
        temperature=0.0,  # Deterministic for OCR
        max_tokens=max_tokens,
    )
    logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
    logger.info(
        "Using vLLM for batch processing - should be faster than sequential processing"
    )
    # Process images in batches
    all_markdown = []
    for batch_indices in tqdm(
        partition_all(batch_size, range(len(dataset))),
        total=(len(dataset) + batch_size - 1) // batch_size,
        desc="DeepSeek-OCR vLLM processing",
    ):
        batch_indices = list(batch_indices)
        batch_images = [dataset[i][image_column] for i in batch_indices]
        try:
            # Create messages for batch
            batch_messages = [make_ocr_message(img, final_prompt) for img in batch_images]
            # Process with vLLM
            outputs = llm.chat(batch_messages, sampling_params)
            # Extract outputs
            for output in outputs:
                text = output.outputs[0].text.strip()
                all_markdown.append(text)
        except Exception as e:
            logger.error(f"Error processing batch: {e}")
            # Add error placeholders for failed batch
            all_markdown.extend(["[OCR FAILED]"] * len(batch_images))
    # Calculate processing time
    processing_duration = datetime.now() - start_time
    processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min"
    # Add markdown column to dataset
    logger.info("Adding markdown column to dataset")
    dataset = dataset.add_column("markdown", all_markdown)
    # Handle inference_info tracking
    logger.info("Updating inference_info...")
    # Check for existing inference_info
    if "inference_info" in dataset.column_names:
        # Parse existing info from first row (all rows have same info)
        try:
            existing_info = json.loads(dataset[0]["inference_info"])
            if not isinstance(existing_info, list):
                existing_info = [existing_info]  # Convert old format to list
        except (json.JSONDecodeError, TypeError):
            existing_info = []
        # Remove old column to update it
        dataset = dataset.remove_columns(["inference_info"])
    else:
        existing_info = []
    # Add new inference info
    new_info = {
        "column_name": "markdown",
        "model_id": model,
        "processing_date": datetime.now().isoformat(),
        "resolution_mode": resolution_mode,
        "base_size": final_base_size,
        "image_size": final_image_size,
        "crop_mode": final_crop_mode,
        "prompt": final_prompt,
        "prompt_mode": prompt_mode if prompt is None else "custom",
        "batch_size": batch_size,
        "max_tokens": max_tokens,
        "gpu_memory_utilization": gpu_memory_utilization,
        "max_model_len": max_model_len,
        "script": "deepseek-ocr-vllm.py",
        "script_version": "1.0.0",
        "script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py",
        "implementation": "vllm (batch processing)",
    }
    existing_info.append(new_info)
    # Add updated inference_info column
    info_json = json.dumps(existing_info, ensure_ascii=False)
    dataset = dataset.add_column("inference_info", [info_json] * len(dataset))
    # Push to hub
    logger.info(f"Pushing to {output_dataset}")
    dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
    # Create and push dataset card
    logger.info("Creating dataset card...")
    card_content = create_dataset_card(
        source_dataset=input_dataset,
        model=model,
        num_samples=len(dataset),
        processing_time=processing_time_str,
        batch_size=batch_size,
        max_model_len=max_model_len,
        max_tokens=max_tokens,
        gpu_memory_utilization=gpu_memory_utilization,
        resolution_mode=resolution_mode,
        base_size=final_base_size,
        image_size=final_image_size,
        crop_mode=final_crop_mode,
        image_column=image_column,
        split=split,
    )
    card = DatasetCard(card_content)
    card.push_to_hub(output_dataset, token=HF_TOKEN)
    logger.info("β
 Dataset card created and pushed!")
    logger.info("β
 OCR conversion complete!")
    logger.info(
        f"Dataset available at: https://huggingface.co/datasets/{output_dataset}"
    )
    logger.info(f"Processing time: {processing_time_str}")
if __name__ == "__main__":
    # Show example usage if no arguments
    if len(sys.argv) == 1:
        print("=" * 80)
        print("DeepSeek-OCR to Markdown Converter (vLLM)")
        print("=" * 80)
        print("\nThis script converts document images to markdown using")
        print("DeepSeek-OCR with vLLM for efficient batch processing.")
        print("\nFeatures:")
        print("- Multiple resolution modes (Tiny/Small/Base/Large/Gundam)")
        print("- LaTeX equation recognition")
        print("- Table extraction and formatting")
        print("- Document structure preservation")
        print("- Image grounding and spatial layout")
        print("- Multilingual support")
        print("- β‘ Fast batch processing with vLLM (2-3x speedup)")
        print("\nExample usage:")
        print("\n1. Basic OCR conversion (Gundam mode - dynamic resolution):")
        print("   uv run deepseek-ocr-vllm.py document-images markdown-docs")
        print("\n2. High quality mode (Large - 1280Γ1280):")
        print(
            "   uv run deepseek-ocr-vllm.py scanned-pdfs extracted-text --resolution-mode large"
        )
        print("\n3. Fast processing (Tiny - 512Γ512):")
        print("   uv run deepseek-ocr-vllm.py quick-test output --resolution-mode tiny")
        print("\n4. Parse figures from documents:")
        print("   uv run deepseek-ocr-vllm.py scientific-papers figures --prompt-mode figure")
        print("\n5. Free OCR without layout:")
        print("   uv run deepseek-ocr-vllm.py images text --prompt-mode free")
        print("\n6. Process a subset for testing:")
        print(
            "   uv run deepseek-ocr-vllm.py large-dataset test-output --max-samples 10"
        )
        print("\n7. Custom resolution:")
        print("   uv run deepseek-ocr-vllm.py dataset output \\")
        print("       --base-size 1024 --image-size 640 --crop-mode")
        print("\n8. Running on HF Jobs:")
        print("   hf jobs uv run --flavor l4x1 \\")
        print("     -s HF_TOKEN \\")
        print("     -e UV_TORCH_BACKEND=auto \\")
        print(
            "     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \\"
        )
        print("       your-document-dataset \\")
        print("       your-markdown-output")
        print("\n" + "=" * 80)
        print("\nFor full help, run: uv run deepseek-ocr-vllm.py --help")
        sys.exit(0)
    parser = argparse.ArgumentParser(
        description="OCR images to markdown using DeepSeek-OCR (vLLM)",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Resolution Modes:
  tiny      512Γ512 pixels, fast processing (64 vision tokens)
  small     640Γ640 pixels, balanced (100 vision tokens)
  base      1024Γ1024 pixels, high quality (256 vision tokens)
  large     1280Γ1280 pixels, maximum quality (400 vision tokens)
  gundam    Dynamic multi-tile processing (adaptive)
Prompt Modes:
  document  Convert document to markdown with grounding (default)
  image     OCR any image with grounding
  free      Free OCR without layout preservation
  figure    Parse figures from documents
  describe  Generate detailed image descriptions
Examples:
  # Basic usage with default Gundam mode
  uv run deepseek-ocr-vllm.py my-images-dataset ocr-results
  # High quality processing
  uv run deepseek-ocr-vllm.py documents extracted-text --resolution-mode large
  # Fast processing for testing
  uv run deepseek-ocr-vllm.py dataset output --resolution-mode tiny --max-samples 100
  # Parse figures from a document dataset
  uv run deepseek-ocr-vllm.py scientific-papers figures --prompt-mode figure
  # Free OCR without layout (fastest)
  uv run deepseek-ocr-vllm.py images text --prompt-mode free
  # Custom prompt for specific task
  uv run deepseek-ocr-vllm.py dataset output --prompt "<image>\nExtract all table data."
  # Custom resolution settings
  uv run deepseek-ocr-vllm.py dataset output --base-size 1024 --image-size 640 --crop-mode
  # With custom batch size for performance tuning
  uv run deepseek-ocr-vllm.py dataset output --batch-size 16 --max-model-len 16384
        """,
    )
    parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
    parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
    parser.add_argument(
        "--image-column",
        default="image",
        help="Column containing images (default: image)",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=8,
        help="Batch size for processing (default: 8, adjust based on GPU memory)",
    )
    parser.add_argument(
        "--model",
        default="deepseek-ai/DeepSeek-OCR",
        help="Model to use (default: deepseek-ai/DeepSeek-OCR)",
    )
    parser.add_argument(
        "--resolution-mode",
        default="gundam",
        choices=list(RESOLUTION_MODES.keys()) + ["custom"],
        help="Resolution mode preset (default: gundam)",
    )
    parser.add_argument(
        "--base-size",
        type=int,
        help="Base resolution size (overrides resolution-mode)",
    )
    parser.add_argument(
        "--image-size",
        type=int,
        help="Image tile size (overrides resolution-mode)",
    )
    parser.add_argument(
        "--crop-mode",
        action="store_true",
        help="Enable dynamic multi-tile cropping (overrides resolution-mode)",
    )
    parser.add_argument(
        "--max-model-len",
        type=int,
        default=8192,
        help="Maximum model context length (default: 8192)",
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=8192,
        help="Maximum tokens to generate (default: 8192)",
    )
    parser.add_argument(
        "--gpu-memory-utilization",
        type=float,
        default=0.8,
        help="GPU memory utilization (default: 0.8)",
    )
    parser.add_argument(
        "--prompt-mode",
        default="document",
        choices=list(PROMPT_MODES.keys()),
        help="Prompt mode preset (default: document). Use --prompt for custom prompts.",
    )
    parser.add_argument(
        "--prompt",
        help="Custom OCR prompt (overrides --prompt-mode)",
    )
    parser.add_argument("--hf-token", help="Hugging Face API token")
    parser.add_argument(
        "--split", default="train", help="Dataset split to use (default: train)"
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        help="Maximum number of samples to process (for testing)",
    )
    parser.add_argument(
        "--private", action="store_true", help="Make output dataset private"
    )
    parser.add_argument(
        "--shuffle",
        action="store_true",
        help="Shuffle the dataset before processing (useful for random sampling)",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed for shuffling (default: 42)",
    )
    args = parser.parse_args()
    main(
        input_dataset=args.input_dataset,
        output_dataset=args.output_dataset,
        image_column=args.image_column,
        batch_size=args.batch_size,
        model=args.model,
        resolution_mode=args.resolution_mode,
        base_size=args.base_size,
        image_size=args.image_size,
        crop_mode=args.crop_mode if args.crop_mode else None,
        max_model_len=args.max_model_len,
        max_tokens=args.max_tokens,
        gpu_memory_utilization=args.gpu_memory_utilization,
        prompt_mode=args.prompt_mode,
        prompt=args.prompt,
        hf_token=args.hf_token,
        split=args.split,
        max_samples=args.max_samples,
        private=args.private,
        shuffle=args.shuffle,
        seed=args.seed,
    )
 | 
