File size: 23,626 Bytes
f987b04
 
 
 
 
 
90889e4
f987b04
 
 
 
 
90889e4
d2ade5c
90889e4
f987b04
 
 
 
 
 
 
 
 
 
90889e4
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88db448
 
 
 
 
f987b04
 
3073a00
 
 
 
 
 
 
 
 
88db448
f987b04
 
 
 
 
 
 
 
 
88db448
f987b04
 
88db448
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88db448
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88db448
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
3073a00
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88db448
 
 
 
 
 
 
 
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073a00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88db448
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88db448
 
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
3073a00
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073a00
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88db448
 
 
f987b04
 
3073a00
 
 
 
 
88db448
 
 
3073a00
f987b04
 
3073a00
f987b04
2db2034
cf61cef
88db448
 
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073a00
 
 
 
 
 
 
f987b04
 
 
 
 
 
 
 
 
 
3073a00
 
 
 
 
 
 
 
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073a00
 
 
 
 
 
f987b04
 
3073a00
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073a00
f987b04
 
 
 
 
 
 
88db448
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
# /// script
# requires-python = ">=3.11"
# dependencies = [
#     "datasets",
#     "huggingface-hub[hf_transfer]",
#     "pillow",
#     "vllm",
#     "tqdm",
#     "toolz",
#     "torch",
# ]
#
# [[tool.uv.index]]
# url = "https://wheels.vllm.ai/nightly"
#
# [tool.uv]
# prerelease = "allow"
# ///

"""
Convert document images to markdown using DeepSeek-OCR with vLLM.

This script processes images through the DeepSeek-OCR model to extract
text and structure as markdown, using vLLM for efficient batch processing.

NOTE: Uses vLLM nightly wheels from main (PR #27247 now merged). First run
may take a few minutes to download and install dependencies.

Features:
- Multiple resolution modes (Tiny/Small/Base/Large/Gundam)
- LaTeX equation recognition
- Table extraction and formatting
- Document structure preservation
- Image grounding and descriptions
- Multilingual support
- Batch processing with vLLM for better performance
"""

import argparse
import base64
import io
import json
import logging
import os
import sys
from typing import Any, Dict, List, Union
from datetime import datetime

import torch
from datasets import load_dataset
from huggingface_hub import DatasetCard, login
from PIL import Image
from toolz import partition_all
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Resolution mode presets
RESOLUTION_MODES = {
    "tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
    "small": {"base_size": 640, "image_size": 640, "crop_mode": False},
    "base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
    "large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
    "gundam": {
        "base_size": 1024,
        "image_size": 640,
        "crop_mode": True,
    },  # Dynamic resolution
}

# Prompt mode presets (from DeepSeek-OCR GitHub)
PROMPT_MODES = {
    "document": "<image>\n<|grounding|>Convert the document to markdown.",
    "image": "<image>\n<|grounding|>OCR this image.",
    "free": "<image>\nFree OCR.",
    "figure": "<image>\nParse the figure.",
    "describe": "<image>\nDescribe this image in detail.",
}


def check_cuda_availability():
    """Check if CUDA is available and exit if not."""
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error("Please run on a machine with a CUDA-capable GPU.")
        sys.exit(1)
    else:
        logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")


def make_ocr_message(
    image: Union[Image.Image, Dict[str, Any], str],
    prompt: str = "<image>\n<|grounding|>Convert the document to markdown. ",
) -> List[Dict]:
    """Create chat message for OCR processing."""
    # Convert to PIL Image if needed
    if isinstance(image, Image.Image):
        pil_img = image
    elif isinstance(image, dict) and "bytes" in image:
        pil_img = Image.open(io.BytesIO(image["bytes"]))
    elif isinstance(image, str):
        pil_img = Image.open(image)
    else:
        raise ValueError(f"Unsupported image type: {type(image)}")

    # Convert to RGB
    pil_img = pil_img.convert("RGB")

    # Convert to base64 data URI
    buf = io.BytesIO()
    pil_img.save(buf, format="PNG")
    data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"

    # Return message in vLLM format
    return [
        {
            "role": "user",
            "content": [
                {"type": "image_url", "image_url": {"url": data_uri}},
                {"type": "text", "text": prompt},
            ],
        }
    ]


def create_dataset_card(
    source_dataset: str,
    model: str,
    num_samples: int,
    processing_time: str,
    batch_size: int,
    max_model_len: int,
    max_tokens: int,
    gpu_memory_utilization: float,
    resolution_mode: str,
    base_size: int,
    image_size: int,
    crop_mode: bool,
    image_column: str = "image",
    split: str = "train",
) -> str:
    """Create a dataset card documenting the OCR process."""
    model_name = model.split("/")[-1]

    return f"""---
tags:
- ocr
- document-processing
- deepseek
- deepseek-ocr
- markdown
- uv-script
- generated
---

# Document OCR using {model_name}

This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using DeepSeek-OCR.

## Processing Details

- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Model**: [{model}](https://huggingface.co/{model})
- **Number of Samples**: {num_samples:,}
- **Processing Time**: {processing_time}
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}

### Configuration

- **Image Column**: `{image_column}`
- **Output Column**: `markdown`
- **Dataset Split**: `{split}`
- **Batch Size**: {batch_size}
- **Resolution Mode**: {resolution_mode}
- **Base Size**: {base_size}
- **Image Size**: {image_size}
- **Crop Mode**: {crop_mode}
- **Max Model Length**: {max_model_len:,} tokens
- **Max Output Tokens**: {max_tokens:,}
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%}

## Model Information

DeepSeek-OCR is a state-of-the-art document OCR model that excels at:
- πŸ“ **LaTeX equations** - Mathematical formulas preserved in LaTeX format
- πŸ“Š **Tables** - Extracted and formatted as HTML/markdown
- πŸ“ **Document structure** - Headers, lists, and formatting maintained
- πŸ–ΌοΈ **Image grounding** - Spatial layout and bounding box information
- πŸ” **Complex layouts** - Multi-column and hierarchical structures
- 🌍 **Multilingual** - Supports multiple languages

### Resolution Modes

- **Tiny** (512Γ—512): Fast processing, 64 vision tokens
- **Small** (640Γ—640): Balanced speed/quality, 100 vision tokens
- **Base** (1024Γ—1024): High quality, 256 vision tokens
- **Large** (1280Γ—1280): Maximum quality, 400 vision tokens
- **Gundam** (dynamic): Adaptive multi-tile processing for large documents

## Dataset Structure

The dataset contains all original columns plus:
- `markdown`: The extracted text in markdown format with preserved structure
- `inference_info`: JSON list tracking all OCR models applied to this dataset

## Usage

```python
from datasets import load_dataset
import json

# Load the dataset
dataset = load_dataset("{{{{output_dataset_id}}}}", split="{split}")

# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break

# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {{{{info['column_name']}}}} - Model: {{{{info['model_id']}}}}")
```

## Reproduction

This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) DeepSeek OCR vLLM script:

```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \\\\
    {source_dataset} \\\\
    <output-dataset> \\\\
    --resolution-mode {resolution_mode} \\\\
    --image-column {image_column}
```

## Performance

- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second
- **Processing Method**: Batch processing with vLLM (2-3x speedup over sequential)

Generated with πŸ€– [UV Scripts](https://huggingface.co/uv-scripts)
"""


def main(
    input_dataset: str,
    output_dataset: str,
    image_column: str = "image",
    batch_size: int = 8,  # Smaller batch size to avoid potential memory issues with DeepSeek-OCR
    model: str = "deepseek-ai/DeepSeek-OCR",
    resolution_mode: str = "gundam",
    base_size: int = None,
    image_size: int = None,
    crop_mode: bool = None,
    max_model_len: int = 8192,
    max_tokens: int = 8192,
    gpu_memory_utilization: float = 0.8,
    prompt_mode: str = "document",
    prompt: str = None,
    hf_token: str = None,
    split: str = "train",
    max_samples: int = None,
    private: bool = False,
    shuffle: bool = False,
    seed: int = 42,
):
    """Process images from HF dataset through DeepSeek-OCR model with vLLM."""

    # Check CUDA availability first
    check_cuda_availability()

    # Track processing start time
    start_time = datetime.now()

    # Enable HF_TRANSFER for faster downloads
    os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

    # Login to HF if token provided
    HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
    if HF_TOKEN:
        login(token=HF_TOKEN)

    # Determine resolution settings
    if resolution_mode in RESOLUTION_MODES:
        mode_config = RESOLUTION_MODES[resolution_mode]
        final_base_size = (
            base_size if base_size is not None else mode_config["base_size"]
        )
        final_image_size = (
            image_size if image_size is not None else mode_config["image_size"]
        )
        final_crop_mode = (
            crop_mode if crop_mode is not None else mode_config["crop_mode"]
        )
        logger.info(f"Using resolution mode: {resolution_mode}")
    else:
        # Custom mode - require all parameters
        if base_size is None or image_size is None or crop_mode is None:
            raise ValueError(
                f"Invalid resolution mode '{resolution_mode}'. "
                f"Use one of {list(RESOLUTION_MODES.keys())} or specify "
                f"--base-size, --image-size, and --crop-mode manually."
            )
        final_base_size = base_size
        final_image_size = image_size
        final_crop_mode = crop_mode
        resolution_mode = "custom"

    logger.info(
        f"Resolution: base_size={final_base_size}, "
        f"image_size={final_image_size}, crop_mode={final_crop_mode}"
    )

    # Determine prompt
    if prompt is not None:
        final_prompt = prompt
        logger.info(f"Using custom prompt")
    elif prompt_mode in PROMPT_MODES:
        final_prompt = PROMPT_MODES[prompt_mode]
        logger.info(f"Using prompt mode: {prompt_mode}")
    else:
        raise ValueError(
            f"Invalid prompt mode '{prompt_mode}'. "
            f"Use one of {list(PROMPT_MODES.keys())} or specify --prompt"
        )

    logger.info(f"Prompt: {final_prompt}")

    # Load dataset
    logger.info(f"Loading dataset: {input_dataset}")
    dataset = load_dataset(input_dataset, split=split)

    # Validate image column
    if image_column not in dataset.column_names:
        raise ValueError(
            f"Column '{image_column}' not found. Available: {dataset.column_names}"
        )

    # Shuffle if requested
    if shuffle:
        logger.info(f"Shuffling dataset with seed {seed}")
        dataset = dataset.shuffle(seed=seed)

    # Limit samples if requested
    if max_samples:
        dataset = dataset.select(range(min(max_samples, len(dataset))))
        logger.info(f"Limited to {len(dataset)} samples")

    # Initialize vLLM
    logger.info(f"Initializing vLLM with model: {model}")
    logger.info("This may take a few minutes on first run...")

    # Add specific parameters for DeepSeek-OCR compatibility
    llm = LLM(
        model=model,
        trust_remote_code=True,
        max_model_len=max_model_len,
        gpu_memory_utilization=gpu_memory_utilization,
        limit_mm_per_prompt={"image": 1},
        enforce_eager=False,  # Use torch.compile instead of eager execution
    )

    sampling_params = SamplingParams(
        temperature=0.0,  # Deterministic for OCR
        max_tokens=max_tokens,
    )

    logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
    logger.info(
        "Using vLLM for batch processing - should be faster than sequential processing"
    )

    # Process images in batches
    all_markdown = []

    for batch_indices in tqdm(
        partition_all(batch_size, range(len(dataset))),
        total=(len(dataset) + batch_size - 1) // batch_size,
        desc="DeepSeek-OCR vLLM processing",
    ):
        batch_indices = list(batch_indices)
        batch_images = [dataset[i][image_column] for i in batch_indices]

        try:
            # Create messages for batch
            batch_messages = [make_ocr_message(img, final_prompt) for img in batch_images]

            # Process with vLLM
            outputs = llm.chat(batch_messages, sampling_params)

            # Extract outputs
            for output in outputs:
                text = output.outputs[0].text.strip()
                all_markdown.append(text)

        except Exception as e:
            logger.error(f"Error processing batch: {e}")
            # Add error placeholders for failed batch
            all_markdown.extend(["[OCR FAILED]"] * len(batch_images))

    # Calculate processing time
    processing_duration = datetime.now() - start_time
    processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min"

    # Add markdown column to dataset
    logger.info("Adding markdown column to dataset")
    dataset = dataset.add_column("markdown", all_markdown)

    # Handle inference_info tracking
    logger.info("Updating inference_info...")

    # Check for existing inference_info
    if "inference_info" in dataset.column_names:
        # Parse existing info from first row (all rows have same info)
        try:
            existing_info = json.loads(dataset[0]["inference_info"])
            if not isinstance(existing_info, list):
                existing_info = [existing_info]  # Convert old format to list
        except (json.JSONDecodeError, TypeError):
            existing_info = []
        # Remove old column to update it
        dataset = dataset.remove_columns(["inference_info"])
    else:
        existing_info = []

    # Add new inference info
    new_info = {
        "column_name": "markdown",
        "model_id": model,
        "processing_date": datetime.now().isoformat(),
        "resolution_mode": resolution_mode,
        "base_size": final_base_size,
        "image_size": final_image_size,
        "crop_mode": final_crop_mode,
        "prompt": final_prompt,
        "prompt_mode": prompt_mode if prompt is None else "custom",
        "batch_size": batch_size,
        "max_tokens": max_tokens,
        "gpu_memory_utilization": gpu_memory_utilization,
        "max_model_len": max_model_len,
        "script": "deepseek-ocr-vllm.py",
        "script_version": "1.0.0",
        "script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py",
        "implementation": "vllm (batch processing)",
    }
    existing_info.append(new_info)

    # Add updated inference_info column
    info_json = json.dumps(existing_info, ensure_ascii=False)
    dataset = dataset.add_column("inference_info", [info_json] * len(dataset))

    # Push to hub
    logger.info(f"Pushing to {output_dataset}")
    dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)

    # Create and push dataset card
    logger.info("Creating dataset card...")
    card_content = create_dataset_card(
        source_dataset=input_dataset,
        model=model,
        num_samples=len(dataset),
        processing_time=processing_time_str,
        batch_size=batch_size,
        max_model_len=max_model_len,
        max_tokens=max_tokens,
        gpu_memory_utilization=gpu_memory_utilization,
        resolution_mode=resolution_mode,
        base_size=final_base_size,
        image_size=final_image_size,
        crop_mode=final_crop_mode,
        image_column=image_column,
        split=split,
    )

    card = DatasetCard(card_content)
    card.push_to_hub(output_dataset, token=HF_TOKEN)
    logger.info("βœ… Dataset card created and pushed!")

    logger.info("βœ… OCR conversion complete!")
    logger.info(
        f"Dataset available at: https://huggingface.co/datasets/{output_dataset}"
    )
    logger.info(f"Processing time: {processing_time_str}")


if __name__ == "__main__":
    # Show example usage if no arguments
    if len(sys.argv) == 1:
        print("=" * 80)
        print("DeepSeek-OCR to Markdown Converter (vLLM)")
        print("=" * 80)
        print("\nThis script converts document images to markdown using")
        print("DeepSeek-OCR with vLLM for efficient batch processing.")
        print("\nFeatures:")
        print("- Multiple resolution modes (Tiny/Small/Base/Large/Gundam)")
        print("- LaTeX equation recognition")
        print("- Table extraction and formatting")
        print("- Document structure preservation")
        print("- Image grounding and spatial layout")
        print("- Multilingual support")
        print("- ⚑ Fast batch processing with vLLM (2-3x speedup)")
        print("\nExample usage:")
        print("\n1. Basic OCR conversion (Gundam mode - dynamic resolution):")
        print("   uv run deepseek-ocr-vllm.py document-images markdown-docs")
        print("\n2. High quality mode (Large - 1280Γ—1280):")
        print(
            "   uv run deepseek-ocr-vllm.py scanned-pdfs extracted-text --resolution-mode large"
        )
        print("\n3. Fast processing (Tiny - 512Γ—512):")
        print("   uv run deepseek-ocr-vllm.py quick-test output --resolution-mode tiny")
        print("\n4. Parse figures from documents:")
        print("   uv run deepseek-ocr-vllm.py scientific-papers figures --prompt-mode figure")
        print("\n5. Free OCR without layout:")
        print("   uv run deepseek-ocr-vllm.py images text --prompt-mode free")
        print("\n6. Process a subset for testing:")
        print(
            "   uv run deepseek-ocr-vllm.py large-dataset test-output --max-samples 10"
        )
        print("\n7. Custom resolution:")
        print("   uv run deepseek-ocr-vllm.py dataset output \\")
        print("       --base-size 1024 --image-size 640 --crop-mode")
        print("\n8. Running on HF Jobs:")
        print("   hf jobs uv run --flavor l4x1 \\")
        print("     -s HF_TOKEN \\")
        print("     -e UV_TORCH_BACKEND=auto \\")
        print(
            "     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \\"
        )
        print("       your-document-dataset \\")
        print("       your-markdown-output")
        print("\n" + "=" * 80)
        print("\nFor full help, run: uv run deepseek-ocr-vllm.py --help")
        sys.exit(0)

    parser = argparse.ArgumentParser(
        description="OCR images to markdown using DeepSeek-OCR (vLLM)",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Resolution Modes:
  tiny      512Γ—512 pixels, fast processing (64 vision tokens)
  small     640Γ—640 pixels, balanced (100 vision tokens)
  base      1024Γ—1024 pixels, high quality (256 vision tokens)
  large     1280Γ—1280 pixels, maximum quality (400 vision tokens)
  gundam    Dynamic multi-tile processing (adaptive)

Prompt Modes:
  document  Convert document to markdown with grounding (default)
  image     OCR any image with grounding
  free      Free OCR without layout preservation
  figure    Parse figures from documents
  describe  Generate detailed image descriptions

Examples:
  # Basic usage with default Gundam mode
  uv run deepseek-ocr-vllm.py my-images-dataset ocr-results

  # High quality processing
  uv run deepseek-ocr-vllm.py documents extracted-text --resolution-mode large

  # Fast processing for testing
  uv run deepseek-ocr-vllm.py dataset output --resolution-mode tiny --max-samples 100

  # Parse figures from a document dataset
  uv run deepseek-ocr-vllm.py scientific-papers figures --prompt-mode figure

  # Free OCR without layout (fastest)
  uv run deepseek-ocr-vllm.py images text --prompt-mode free

  # Custom prompt for specific task
  uv run deepseek-ocr-vllm.py dataset output --prompt "<image>\nExtract all table data."

  # Custom resolution settings
  uv run deepseek-ocr-vllm.py dataset output --base-size 1024 --image-size 640 --crop-mode

  # With custom batch size for performance tuning
  uv run deepseek-ocr-vllm.py dataset output --batch-size 16 --max-model-len 16384
        """,
    )

    parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
    parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
    parser.add_argument(
        "--image-column",
        default="image",
        help="Column containing images (default: image)",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=8,
        help="Batch size for processing (default: 8, adjust based on GPU memory)",
    )
    parser.add_argument(
        "--model",
        default="deepseek-ai/DeepSeek-OCR",
        help="Model to use (default: deepseek-ai/DeepSeek-OCR)",
    )
    parser.add_argument(
        "--resolution-mode",
        default="gundam",
        choices=list(RESOLUTION_MODES.keys()) + ["custom"],
        help="Resolution mode preset (default: gundam)",
    )
    parser.add_argument(
        "--base-size",
        type=int,
        help="Base resolution size (overrides resolution-mode)",
    )
    parser.add_argument(
        "--image-size",
        type=int,
        help="Image tile size (overrides resolution-mode)",
    )
    parser.add_argument(
        "--crop-mode",
        action="store_true",
        help="Enable dynamic multi-tile cropping (overrides resolution-mode)",
    )
    parser.add_argument(
        "--max-model-len",
        type=int,
        default=8192,
        help="Maximum model context length (default: 8192)",
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=8192,
        help="Maximum tokens to generate (default: 8192)",
    )
    parser.add_argument(
        "--gpu-memory-utilization",
        type=float,
        default=0.8,
        help="GPU memory utilization (default: 0.8)",
    )
    parser.add_argument(
        "--prompt-mode",
        default="document",
        choices=list(PROMPT_MODES.keys()),
        help="Prompt mode preset (default: document). Use --prompt for custom prompts.",
    )
    parser.add_argument(
        "--prompt",
        help="Custom OCR prompt (overrides --prompt-mode)",
    )
    parser.add_argument("--hf-token", help="Hugging Face API token")
    parser.add_argument(
        "--split", default="train", help="Dataset split to use (default: train)"
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        help="Maximum number of samples to process (for testing)",
    )
    parser.add_argument(
        "--private", action="store_true", help="Make output dataset private"
    )
    parser.add_argument(
        "--shuffle",
        action="store_true",
        help="Shuffle the dataset before processing (useful for random sampling)",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed for shuffling (default: 42)",
    )

    args = parser.parse_args()

    main(
        input_dataset=args.input_dataset,
        output_dataset=args.output_dataset,
        image_column=args.image_column,
        batch_size=args.batch_size,
        model=args.model,
        resolution_mode=args.resolution_mode,
        base_size=args.base_size,
        image_size=args.image_size,
        crop_mode=args.crop_mode if args.crop_mode else None,
        max_model_len=args.max_model_len,
        max_tokens=args.max_tokens,
        gpu_memory_utilization=args.gpu_memory_utilization,
        prompt_mode=args.prompt_mode,
        prompt=args.prompt,
        hf_token=args.hf_token,
        split=args.split,
        max_samples=args.max_samples,
        private=args.private,
        shuffle=args.shuffle,
        seed=args.seed,
    )