File size: 18,887 Bytes
cea7723
 
 
 
 
 
35c7121
cea7723
 
 
 
 
 
 
 
35c7121
cea7723
35c7121
2204718
cea7723
 
35c7121
 
 
 
 
 
 
 
cea7723
 
 
 
 
 
 
 
 
35c7121
 
cea7723
 
 
35c7121
cea7723
 
 
35c7121
cea7723
 
 
 
 
35c7121
 
 
 
 
 
 
 
cea7723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c7121
 
cea7723
 
 
 
 
 
 
 
 
 
 
 
 
 
35c7121
cea7723
35c7121
cea7723
35c7121
cea7723
 
 
 
 
 
 
 
 
 
35c7121
 
 
cea7723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c7121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea7723
 
 
 
 
 
35c7121
cea7723
35c7121
 
cea7723
35c7121
cea7723
35c7121
cea7723
35c7121
 
 
 
 
cea7723
35c7121
cea7723
 
 
 
35c7121
 
 
cea7723
 
 
 
 
 
 
 
35c7121
 
 
 
 
 
 
 
cea7723
 
 
 
 
 
 
 
 
 
35c7121
 
 
 
 
cea7723
 
 
 
 
35c7121
 
 
 
 
 
 
 
 
cea7723
35c7121
 
 
 
cea7723
35c7121
 
cea7723
35c7121
 
cea7723
35c7121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea7723
35c7121
 
 
 
 
 
 
 
 
 
 
 
 
cea7723
 
 
 
 
35c7121
 
 
 
 
 
 
 
 
 
 
 
 
 
cea7723
 
35c7121
 
 
 
 
 
 
cea7723
 
 
 
 
35c7121
cea7723
35c7121
cea7723
35c7121
 
 
 
 
cea7723
35c7121
 
 
 
 
 
 
 
 
 
cea7723
35c7121
 
 
cea7723
 
 
 
 
35c7121
cea7723
 
35c7121
 
 
 
cea7723
 
35c7121
cea7723
 
35c7121
 
cea7723
35c7121
 
cea7723
 
 
 
 
 
 
 
 
 
 
 
 
35c7121
 
cea7723
 
 
 
 
 
 
 
 
35c7121
 
cea7723
 
 
 
35c7121
 
cea7723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c7121
cea7723
 
35c7121
 
 
 
cea7723
 
35c7121
 
 
 
cea7723
 
35c7121
 
cea7723
 
35c7121
cea7723
35c7121
cea7723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c7121
 
 
 
cea7723
35c7121
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
# /// script
# requires-python = ">=3.11"
# dependencies = [
#     "datasets",
#     "huggingface-hub[hf_transfer]",
#     "pillow",
#     "vllm>=0.9.1",
#     "tqdm",
#     "toolz",
#     "torch",
# ]
#
# ///

"""
Convert document images to markdown using DoTS.ocr with vLLM.

DoTS.ocr is a compact 1.7B multilingual document parsing model with SOTA performance
on 100+ languages. This script uses vLLM for efficient batch processing.

Features:
- 🌍 Multilingual support (100+ languages)
- πŸ“Š Table extraction and formatting
- πŸ“ Formula recognition
- πŸ“ Layout-aware text extraction
- 🎯 Compact model (1.7B parameters)

Model: rednote-hilab/dots.ocr
vLLM: Officially tested with 0.9.1+ (native support via PR #24645)
"""

import argparse
import base64
import io
import json
import logging
import os
import sys
from typing import Any, Dict, List, Union
from datetime import datetime

import torch
from datasets import load_dataset
from huggingface_hub import DatasetCard, login
from PIL import Image
from toolz import partition_all
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


# ────────────────────────────────────────────────────────────────
# DoTS OCR Prompt Templates (from official dots.ocr repo)
# Source: https://github.com/rednote-hilab/dots.ocr/blob/master/dots_ocr/utils/prompts.py
# ────────────────────────────────────────────────────────────────

PROMPT_TEMPLATES = {
    "ocr": "Extract the text content from this image.",

    "layout-all": """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.

1. Bbox format: [x1, y1, x2, y2]

2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].

3. Text Extraction & Formatting Rules:
    - Picture: For the 'Picture' category, the text field should be omitted.
    - Formula: Format its text as LaTeX.
    - Table: Format its text as HTML.
    - All Others (Text, Title, etc.): Format their text as Markdown.

4. Constraints:
    - The output text must be the original text from the image, with no translation.
    - All layout elements must be sorted according to human reading order.

5. Final Output: The entire output must be a single JSON object.""",

    "layout-only": """Please output the layout information from this PDF image, including each layout's bbox and its category. The bbox should be in the format [x1, y1, x2, y2]. The layout categories for the PDF document include ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. Do not output the corresponding text. The layout result should be in JSON format.""",
}


def check_cuda_availability():
    """Check if CUDA is available and exit if not."""
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error("Please run on a machine with a CUDA-capable GPU.")
        sys.exit(1)
    else:
        logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")


def make_ocr_message(
    image: Union[Image.Image, Dict[str, Any], str],
    prompt: str = PROMPT_TEMPLATES["ocr"],
) -> List[Dict]:
    """Create chat message for OCR processing."""
    # Convert to PIL Image if needed
    if isinstance(image, Image.Image):
        pil_img = image
    elif isinstance(image, dict) and "bytes" in image:
        pil_img = Image.open(io.BytesIO(image["bytes"]))
    elif isinstance(image, str):
        pil_img = Image.open(image)
    else:
        raise ValueError(f"Unsupported image type: {type(image)}")

    # Convert to RGB
    pil_img = pil_img.convert("RGB")

    # Convert to base64 data URI
    buf = io.BytesIO()
    pil_img.save(buf, format="PNG")
    data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"

    # Return message in vLLM format
    return [
        {
            "role": "user",
            "content": [
                {"type": "image_url", "image_url": {"url": data_uri}},
                {"type": "text", "text": prompt},
            ],
        }
    ]


def create_dataset_card(
    source_dataset: str,
    model: str,
    num_samples: int,
    processing_time: str,
    batch_size: int,
    max_model_len: int,
    max_tokens: int,
    gpu_memory_utilization: float,
    image_column: str = "image",
    split: str = "train",
    prompt_mode: str = "general",
) -> str:
    """Create a dataset card documenting the OCR process."""
    model_name = model.split("/")[-1]

    return f"""---
tags:
- ocr
- document-processing
- dots-ocr
- multilingual
- markdown
- uv-script
- generated
---

# Document OCR using {model_name}

This dataset contains OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using DoTS.ocr, a compact 1.7B multilingual model.

## Processing Details

- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Model**: [{model}](https://huggingface.co/{model})
- **Number of Samples**: {num_samples:,}
- **Processing Time**: {processing_time}
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}

### Configuration

- **Image Column**: `{image_column}`
- **Output Column**: `markdown`
- **Dataset Split**: `{split}`
- **Batch Size**: {batch_size}
- **Prompt Mode**: {prompt_mode}
- **Max Model Length**: {max_model_len:,} tokens
- **Max Output Tokens**: {max_tokens:,}
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%}

## Model Information

DoTS.ocr is a compact multilingual document parsing model that excels at:
- 🌍 **100+ Languages** - Multilingual document support
- πŸ“Š **Table extraction** - Structured data recognition
- πŸ“ **Formulas** - Mathematical notation preservation
- πŸ“ **Layout-aware** - Reading order and structure preservation
- 🎯 **Compact** - Only 1.7B parameters

## Dataset Structure

The dataset contains all original columns plus:
- `markdown`: The extracted text in markdown format
- `inference_info`: JSON list tracking all OCR models applied to this dataset

## Usage

```python
from datasets import load_dataset
import json

# Load the dataset
dataset = load_dataset("{{output_dataset_id}}", split="{split}")

# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break

# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}")
```

## Reproduction

This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) DoTS OCR script:

```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \\
    {source_dataset} \\
    <output-dataset> \\
    --image-column {image_column} \\
    --batch-size {batch_size} \\
    --prompt-mode {prompt_mode} \\
    --max-model-len {max_model_len} \\
    --max-tokens {max_tokens} \\
    --gpu-memory-utilization {gpu_memory_utilization}
```

Generated with πŸ€– [UV Scripts](https://huggingface.co/uv-scripts)
"""


def main(
    input_dataset: str,
    output_dataset: str,
    image_column: str = "image",
    batch_size: int = 16,
    model: str = "rednote-hilab/dots.ocr",
    max_model_len: int = 8192,
    max_tokens: int = 8192,
    gpu_memory_utilization: float = 0.8,
    hf_token: str = None,
    split: str = "train",
    max_samples: int = None,
    private: bool = False,
    shuffle: bool = False,
    seed: int = 42,
    prompt_mode: str = "ocr",
    custom_prompt: str = None,
    output_column: str = "markdown",
):
    """Process images from HF dataset through DoTS.ocr model."""

    # Check CUDA availability first
    check_cuda_availability()

    # Track processing start time
    start_time = datetime.now()

    # Enable HF_TRANSFER for faster downloads
    os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

    # Login to HF if token provided
    HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
    if HF_TOKEN:
        login(token=HF_TOKEN)

    # Determine prompt to use
    if custom_prompt:
        prompt = custom_prompt
        logger.info(f"Using custom prompt: {prompt[:50]}...")
    else:
        prompt = PROMPT_TEMPLATES.get(prompt_mode, PROMPT_TEMPLATES["ocr"])
        logger.info(f"Using prompt mode: {prompt_mode}")

    # Load dataset
    logger.info(f"Loading dataset: {input_dataset}")
    dataset = load_dataset(input_dataset, split=split)

    # Validate image column
    if image_column not in dataset.column_names:
        raise ValueError(
            f"Column '{image_column}' not found. Available: {dataset.column_names}"
        )

    # Shuffle if requested
    if shuffle:
        logger.info(f"Shuffling dataset with seed {seed}")
        dataset = dataset.shuffle(seed=seed)

    # Limit samples if requested
    if max_samples:
        dataset = dataset.select(range(min(max_samples, len(dataset))))
        logger.info(f"Limited to {len(dataset)} samples")

    # Initialize vLLM model
    logger.info(f"Initializing vLLM with model: {model}")
    logger.info("This may take a few minutes on first run...")
    llm = LLM(
        model=model,
        trust_remote_code=True,
        max_model_len=max_model_len,
        gpu_memory_utilization=gpu_memory_utilization,
    )

    sampling_params = SamplingParams(
        temperature=0.0,  # Deterministic for OCR
        max_tokens=max_tokens,
    )

    logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
    logger.info(f"Output will be written to column: {output_column}")

    # Process images in batches
    all_outputs = []

    for batch_indices in tqdm(
        partition_all(batch_size, range(len(dataset))),
        total=(len(dataset) + batch_size - 1) // batch_size,
        desc="DoTS.ocr processing",
    ):
        batch_indices = list(batch_indices)
        batch_images = [dataset[i][image_column] for i in batch_indices]

        try:
            # Create messages for batch
            batch_messages = [make_ocr_message(img, prompt) for img in batch_images]

            # Process with vLLM
            outputs = llm.chat(batch_messages, sampling_params)

            # Extract outputs
            for output in outputs:
                text = output.outputs[0].text.strip()
                all_outputs.append(text)

        except Exception as e:
            logger.error(f"Error processing batch: {e}")
            # Add error placeholders for failed batch
            all_outputs.extend(["[OCR ERROR]"] * len(batch_images))

    # Calculate processing time
    processing_duration = datetime.now() - start_time
    processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min"

    # Add output column to dataset
    logger.info(f"Adding '{output_column}' column to dataset")
    dataset = dataset.add_column(output_column, all_outputs)

    # Handle inference_info tracking (for multi-model comparisons)
    inference_entry = {
        "model_id": model,
        "column_name": output_column,
        "timestamp": datetime.now().isoformat(),
        "prompt_mode": prompt_mode if not custom_prompt else "custom",
    }

    if "inference_info" in dataset.column_names:
        # Append to existing inference info
        logger.info("Updating existing inference_info column")

        def update_inference_info(example):
            try:
                existing_info = json.loads(example["inference_info"]) if example["inference_info"] else []
            except (json.JSONDecodeError, TypeError):
                existing_info = []

            existing_info.append(inference_entry)
            return {"inference_info": json.dumps(existing_info)}

        dataset = dataset.map(update_inference_info)
    else:
        # Create new inference_info column
        logger.info("Creating new inference_info column")
        inference_list = [json.dumps([inference_entry])] * len(dataset)
        dataset = dataset.add_column("inference_info", inference_list)

    # Push to hub
    logger.info(f"Pushing to {output_dataset}")
    dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)

    # Create and push dataset card
    logger.info("Creating dataset card")
    card_content = create_dataset_card(
        source_dataset=input_dataset,
        model=model,
        num_samples=len(dataset),
        processing_time=processing_time_str,
        batch_size=batch_size,
        max_model_len=max_model_len,
        max_tokens=max_tokens,
        gpu_memory_utilization=gpu_memory_utilization,
        image_column=image_column,
        split=split,
        prompt_mode=prompt_mode if not custom_prompt else "custom",
    )

    card = DatasetCard(card_content)
    card.push_to_hub(output_dataset, token=HF_TOKEN)

    logger.info("βœ… DoTS.ocr processing complete!")
    logger.info(f"Dataset available at: https://huggingface.co/datasets/{output_dataset}")
    logger.info(f"Processing time: {processing_time_str}")


if __name__ == "__main__":
    # Show example usage if no arguments
    if len(sys.argv) == 1:
        print("=" * 80)
        print("DoTS.ocr Document Processing")
        print("=" * 80)
        print("\nCompact 1.7B multilingual OCR model supporting 100+ languages")
        print("\nFeatures:")
        print("- 🌍 Multilingual support (100+ languages)")
        print("- ⚑ Fast processing with vLLM (2-3x speedup)")
        print("- πŸ“Š Table extraction and formatting")
        print("- πŸ“ Formula recognition")
        print("- πŸ“ Layout-aware text extraction")
        print("\nExample usage:")
        print("\n1. Basic OCR:")
        print("   uv run dots-ocr.py input-dataset output-dataset")
        print("\n2. With custom settings:")
        print("   uv run dots-ocr.py docs analyzed-docs --batch-size 20 --max-samples 100")
        print("\n3. Layout analysis with structure:")
        print("   uv run dots-ocr.py papers analyzed-structure --prompt-mode layout-all")
        print("\n4. Layout detection only (no text):")
        print("   uv run dots-ocr.py docs layout-info --prompt-mode layout-only")
        print("\n5. Running on HF Jobs:")
        print("   hf jobs uv run --flavor l4x1 \\")
        print("     -e HF_TOKEN=$(python3 -c \"from huggingface_hub import get_token; print(get_token())\") \\")
        print("     -e HF_HUB_ENABLE_HF_TRANSFER=1 \\")
        print("     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \\")
        print("       input-dataset output-dataset")
        print("\n" + "=" * 80)
        print("\nFor full help, run: uv run dots-ocr.py --help")
        sys.exit(0)

    parser = argparse.ArgumentParser(
        description="Document OCR using DoTS.ocr (1.7B multilingual model)",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Prompt Modes (official DoTS.ocr prompts):
  ocr         - Simple text extraction (default)
  layout-all  - Layout analysis with bboxes, categories, and text (JSON output)
  layout-only - Layout detection with bboxes and categories only (JSON output)

Examples:
  # Basic text OCR (default)
  uv run dots-ocr.py my-docs analyzed-docs

  # Full layout analysis with structure
  uv run dots-ocr.py papers structured --prompt-mode layout-all

  # Random sampling for testing
  uv run dots-ocr.py large-dataset test --max-samples 50 --shuffle
        """,
    )

    parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
    parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
    parser.add_argument(
        "--image-column",
        default="image",
        help="Column containing images (default: image)",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=16,
        help="Batch size for processing (default: 16, DoTS handles 16-30 well)",
    )
    parser.add_argument(
        "--model",
        default="rednote-hilab/dots.ocr",
        help="Model to use (default: rednote-hilab/dots.ocr)",
    )
    parser.add_argument(
        "--max-model-len",
        type=int,
        default=8192,
        help="Maximum model context length (default: 8192)",
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=8192,
        help="Maximum tokens to generate (default: 8192)",
    )
    parser.add_argument(
        "--gpu-memory-utilization",
        type=float,
        default=0.8,
        help="GPU memory utilization (default: 0.8)",
    )
    parser.add_argument("--hf-token", help="Hugging Face API token")
    parser.add_argument(
        "--split", default="train", help="Dataset split to use (default: train)"
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        help="Maximum number of samples to process (for testing)",
    )
    parser.add_argument(
        "--private", action="store_true", help="Make output dataset private"
    )
    parser.add_argument(
        "--shuffle", action="store_true", help="Shuffle dataset before processing"
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed for shuffling (default: 42)",
    )
    parser.add_argument(
        "--prompt-mode",
        choices=list(PROMPT_TEMPLATES.keys()),
        default="ocr",
        help=f"Prompt template to use: {', '.join(PROMPT_TEMPLATES.keys())} (default: ocr)",
    )
    parser.add_argument(
        "--custom-prompt",
        help="Custom prompt text (overrides --prompt-mode)",
    )
    parser.add_argument(
        "--output-column",
        default="markdown",
        help="Column name for output text (default: markdown)",
    )

    args = parser.parse_args()

    main(
        input_dataset=args.input_dataset,
        output_dataset=args.output_dataset,
        image_column=args.image_column,
        batch_size=args.batch_size,
        model=args.model,
        max_model_len=args.max_model_len,
        max_tokens=args.max_tokens,
        gpu_memory_utilization=args.gpu_memory_utilization,
        hf_token=args.hf_token,
        split=args.split,
        max_samples=args.max_samples,
        private=args.private,
        shuffle=args.shuffle,
        seed=args.seed,
        prompt_mode=args.prompt_mode,
        custom_prompt=args.custom_prompt,
        output_column=args.output_column,
    )