File size: 18,887 Bytes
			
			| cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 2204718 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 cea7723 35c7121 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 | # /// script
# requires-python = ">=3.11"
# dependencies = [
#     "datasets",
#     "huggingface-hub[hf_transfer]",
#     "pillow",
#     "vllm>=0.9.1",
#     "tqdm",
#     "toolz",
#     "torch",
# ]
#
# ///
"""
Convert document images to markdown using DoTS.ocr with vLLM.
DoTS.ocr is a compact 1.7B multilingual document parsing model with SOTA performance
on 100+ languages. This script uses vLLM for efficient batch processing.
Features:
- π Multilingual support (100+ languages)
- π Table extraction and formatting
- π Formula recognition
- π Layout-aware text extraction
- π― Compact model (1.7B parameters)
Model: rednote-hilab/dots.ocr
vLLM: Officially tested with 0.9.1+ (native support via PR #24645)
"""
import argparse
import base64
import io
import json
import logging
import os
import sys
from typing import Any, Dict, List, Union
from datetime import datetime
import torch
from datasets import load_dataset
from huggingface_hub import DatasetCard, login
from PIL import Image
from toolz import partition_all
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# DoTS OCR Prompt Templates (from official dots.ocr repo)
# Source: https://github.com/rednote-hilab/dots.ocr/blob/master/dots_ocr/utils/prompts.py
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
PROMPT_TEMPLATES = {
    "ocr": "Extract the text content from this image.",
    "layout-all": """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
3. Text Extraction & Formatting Rules:
    - Picture: For the 'Picture' category, the text field should be omitted.
    - Formula: Format its text as LaTeX.
    - Table: Format its text as HTML.
    - All Others (Text, Title, etc.): Format their text as Markdown.
4. Constraints:
    - The output text must be the original text from the image, with no translation.
    - All layout elements must be sorted according to human reading order.
5. Final Output: The entire output must be a single JSON object.""",
    "layout-only": """Please output the layout information from this PDF image, including each layout's bbox and its category. The bbox should be in the format [x1, y1, x2, y2]. The layout categories for the PDF document include ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. Do not output the corresponding text. The layout result should be in JSON format.""",
}
def check_cuda_availability():
    """Check if CUDA is available and exit if not."""
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error("Please run on a machine with a CUDA-capable GPU.")
        sys.exit(1)
    else:
        logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
def make_ocr_message(
    image: Union[Image.Image, Dict[str, Any], str],
    prompt: str = PROMPT_TEMPLATES["ocr"],
) -> List[Dict]:
    """Create chat message for OCR processing."""
    # Convert to PIL Image if needed
    if isinstance(image, Image.Image):
        pil_img = image
    elif isinstance(image, dict) and "bytes" in image:
        pil_img = Image.open(io.BytesIO(image["bytes"]))
    elif isinstance(image, str):
        pil_img = Image.open(image)
    else:
        raise ValueError(f"Unsupported image type: {type(image)}")
    # Convert to RGB
    pil_img = pil_img.convert("RGB")
    # Convert to base64 data URI
    buf = io.BytesIO()
    pil_img.save(buf, format="PNG")
    data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
    # Return message in vLLM format
    return [
        {
            "role": "user",
            "content": [
                {"type": "image_url", "image_url": {"url": data_uri}},
                {"type": "text", "text": prompt},
            ],
        }
    ]
def create_dataset_card(
    source_dataset: str,
    model: str,
    num_samples: int,
    processing_time: str,
    batch_size: int,
    max_model_len: int,
    max_tokens: int,
    gpu_memory_utilization: float,
    image_column: str = "image",
    split: str = "train",
    prompt_mode: str = "general",
) -> str:
    """Create a dataset card documenting the OCR process."""
    model_name = model.split("/")[-1]
    return f"""---
tags:
- ocr
- document-processing
- dots-ocr
- multilingual
- markdown
- uv-script
- generated
---
# Document OCR using {model_name}
This dataset contains OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using DoTS.ocr, a compact 1.7B multilingual model.
## Processing Details
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Model**: [{model}](https://huggingface.co/{model})
- **Number of Samples**: {num_samples:,}
- **Processing Time**: {processing_time}
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}
### Configuration
- **Image Column**: `{image_column}`
- **Output Column**: `markdown`
- **Dataset Split**: `{split}`
- **Batch Size**: {batch_size}
- **Prompt Mode**: {prompt_mode}
- **Max Model Length**: {max_model_len:,} tokens
- **Max Output Tokens**: {max_tokens:,}
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%}
## Model Information
DoTS.ocr is a compact multilingual document parsing model that excels at:
- π **100+ Languages** - Multilingual document support
- π **Table extraction** - Structured data recognition
- π **Formulas** - Mathematical notation preservation
- π **Layout-aware** - Reading order and structure preservation
- π― **Compact** - Only 1.7B parameters
## Dataset Structure
The dataset contains all original columns plus:
- `markdown`: The extracted text in markdown format
- `inference_info`: JSON list tracking all OCR models applied to this dataset
## Usage
```python
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{{output_dataset_id}}", split="{split}")
# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}")
```
## Reproduction
This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) DoTS OCR script:
```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \\
    {source_dataset} \\
    <output-dataset> \\
    --image-column {image_column} \\
    --batch-size {batch_size} \\
    --prompt-mode {prompt_mode} \\
    --max-model-len {max_model_len} \\
    --max-tokens {max_tokens} \\
    --gpu-memory-utilization {gpu_memory_utilization}
```
Generated with π€ [UV Scripts](https://huggingface.co/uv-scripts)
"""
def main(
    input_dataset: str,
    output_dataset: str,
    image_column: str = "image",
    batch_size: int = 16,
    model: str = "rednote-hilab/dots.ocr",
    max_model_len: int = 8192,
    max_tokens: int = 8192,
    gpu_memory_utilization: float = 0.8,
    hf_token: str = None,
    split: str = "train",
    max_samples: int = None,
    private: bool = False,
    shuffle: bool = False,
    seed: int = 42,
    prompt_mode: str = "ocr",
    custom_prompt: str = None,
    output_column: str = "markdown",
):
    """Process images from HF dataset through DoTS.ocr model."""
    # Check CUDA availability first
    check_cuda_availability()
    # Track processing start time
    start_time = datetime.now()
    # Enable HF_TRANSFER for faster downloads
    os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
    # Login to HF if token provided
    HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
    if HF_TOKEN:
        login(token=HF_TOKEN)
    # Determine prompt to use
    if custom_prompt:
        prompt = custom_prompt
        logger.info(f"Using custom prompt: {prompt[:50]}...")
    else:
        prompt = PROMPT_TEMPLATES.get(prompt_mode, PROMPT_TEMPLATES["ocr"])
        logger.info(f"Using prompt mode: {prompt_mode}")
    # Load dataset
    logger.info(f"Loading dataset: {input_dataset}")
    dataset = load_dataset(input_dataset, split=split)
    # Validate image column
    if image_column not in dataset.column_names:
        raise ValueError(
            f"Column '{image_column}' not found. Available: {dataset.column_names}"
        )
    # Shuffle if requested
    if shuffle:
        logger.info(f"Shuffling dataset with seed {seed}")
        dataset = dataset.shuffle(seed=seed)
    # Limit samples if requested
    if max_samples:
        dataset = dataset.select(range(min(max_samples, len(dataset))))
        logger.info(f"Limited to {len(dataset)} samples")
    # Initialize vLLM model
    logger.info(f"Initializing vLLM with model: {model}")
    logger.info("This may take a few minutes on first run...")
    llm = LLM(
        model=model,
        trust_remote_code=True,
        max_model_len=max_model_len,
        gpu_memory_utilization=gpu_memory_utilization,
    )
    sampling_params = SamplingParams(
        temperature=0.0,  # Deterministic for OCR
        max_tokens=max_tokens,
    )
    logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
    logger.info(f"Output will be written to column: {output_column}")
    # Process images in batches
    all_outputs = []
    for batch_indices in tqdm(
        partition_all(batch_size, range(len(dataset))),
        total=(len(dataset) + batch_size - 1) // batch_size,
        desc="DoTS.ocr processing",
    ):
        batch_indices = list(batch_indices)
        batch_images = [dataset[i][image_column] for i in batch_indices]
        try:
            # Create messages for batch
            batch_messages = [make_ocr_message(img, prompt) for img in batch_images]
            # Process with vLLM
            outputs = llm.chat(batch_messages, sampling_params)
            # Extract outputs
            for output in outputs:
                text = output.outputs[0].text.strip()
                all_outputs.append(text)
        except Exception as e:
            logger.error(f"Error processing batch: {e}")
            # Add error placeholders for failed batch
            all_outputs.extend(["[OCR ERROR]"] * len(batch_images))
    # Calculate processing time
    processing_duration = datetime.now() - start_time
    processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min"
    # Add output column to dataset
    logger.info(f"Adding '{output_column}' column to dataset")
    dataset = dataset.add_column(output_column, all_outputs)
    # Handle inference_info tracking (for multi-model comparisons)
    inference_entry = {
        "model_id": model,
        "column_name": output_column,
        "timestamp": datetime.now().isoformat(),
        "prompt_mode": prompt_mode if not custom_prompt else "custom",
    }
    if "inference_info" in dataset.column_names:
        # Append to existing inference info
        logger.info("Updating existing inference_info column")
        def update_inference_info(example):
            try:
                existing_info = json.loads(example["inference_info"]) if example["inference_info"] else []
            except (json.JSONDecodeError, TypeError):
                existing_info = []
            existing_info.append(inference_entry)
            return {"inference_info": json.dumps(existing_info)}
        dataset = dataset.map(update_inference_info)
    else:
        # Create new inference_info column
        logger.info("Creating new inference_info column")
        inference_list = [json.dumps([inference_entry])] * len(dataset)
        dataset = dataset.add_column("inference_info", inference_list)
    # Push to hub
    logger.info(f"Pushing to {output_dataset}")
    dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
    # Create and push dataset card
    logger.info("Creating dataset card")
    card_content = create_dataset_card(
        source_dataset=input_dataset,
        model=model,
        num_samples=len(dataset),
        processing_time=processing_time_str,
        batch_size=batch_size,
        max_model_len=max_model_len,
        max_tokens=max_tokens,
        gpu_memory_utilization=gpu_memory_utilization,
        image_column=image_column,
        split=split,
        prompt_mode=prompt_mode if not custom_prompt else "custom",
    )
    card = DatasetCard(card_content)
    card.push_to_hub(output_dataset, token=HF_TOKEN)
    logger.info("β
 DoTS.ocr processing complete!")
    logger.info(f"Dataset available at: https://huggingface.co/datasets/{output_dataset}")
    logger.info(f"Processing time: {processing_time_str}")
if __name__ == "__main__":
    # Show example usage if no arguments
    if len(sys.argv) == 1:
        print("=" * 80)
        print("DoTS.ocr Document Processing")
        print("=" * 80)
        print("\nCompact 1.7B multilingual OCR model supporting 100+ languages")
        print("\nFeatures:")
        print("- π Multilingual support (100+ languages)")
        print("- β‘ Fast processing with vLLM (2-3x speedup)")
        print("- π Table extraction and formatting")
        print("- π Formula recognition")
        print("- π Layout-aware text extraction")
        print("\nExample usage:")
        print("\n1. Basic OCR:")
        print("   uv run dots-ocr.py input-dataset output-dataset")
        print("\n2. With custom settings:")
        print("   uv run dots-ocr.py docs analyzed-docs --batch-size 20 --max-samples 100")
        print("\n3. Layout analysis with structure:")
        print("   uv run dots-ocr.py papers analyzed-structure --prompt-mode layout-all")
        print("\n4. Layout detection only (no text):")
        print("   uv run dots-ocr.py docs layout-info --prompt-mode layout-only")
        print("\n5. Running on HF Jobs:")
        print("   hf jobs uv run --flavor l4x1 \\")
        print("     -e HF_TOKEN=$(python3 -c \"from huggingface_hub import get_token; print(get_token())\") \\")
        print("     -e HF_HUB_ENABLE_HF_TRANSFER=1 \\")
        print("     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \\")
        print("       input-dataset output-dataset")
        print("\n" + "=" * 80)
        print("\nFor full help, run: uv run dots-ocr.py --help")
        sys.exit(0)
    parser = argparse.ArgumentParser(
        description="Document OCR using DoTS.ocr (1.7B multilingual model)",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Prompt Modes (official DoTS.ocr prompts):
  ocr         - Simple text extraction (default)
  layout-all  - Layout analysis with bboxes, categories, and text (JSON output)
  layout-only - Layout detection with bboxes and categories only (JSON output)
Examples:
  # Basic text OCR (default)
  uv run dots-ocr.py my-docs analyzed-docs
  # Full layout analysis with structure
  uv run dots-ocr.py papers structured --prompt-mode layout-all
  # Random sampling for testing
  uv run dots-ocr.py large-dataset test --max-samples 50 --shuffle
        """,
    )
    parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
    parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
    parser.add_argument(
        "--image-column",
        default="image",
        help="Column containing images (default: image)",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=16,
        help="Batch size for processing (default: 16, DoTS handles 16-30 well)",
    )
    parser.add_argument(
        "--model",
        default="rednote-hilab/dots.ocr",
        help="Model to use (default: rednote-hilab/dots.ocr)",
    )
    parser.add_argument(
        "--max-model-len",
        type=int,
        default=8192,
        help="Maximum model context length (default: 8192)",
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=8192,
        help="Maximum tokens to generate (default: 8192)",
    )
    parser.add_argument(
        "--gpu-memory-utilization",
        type=float,
        default=0.8,
        help="GPU memory utilization (default: 0.8)",
    )
    parser.add_argument("--hf-token", help="Hugging Face API token")
    parser.add_argument(
        "--split", default="train", help="Dataset split to use (default: train)"
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        help="Maximum number of samples to process (for testing)",
    )
    parser.add_argument(
        "--private", action="store_true", help="Make output dataset private"
    )
    parser.add_argument(
        "--shuffle", action="store_true", help="Shuffle dataset before processing"
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed for shuffling (default: 42)",
    )
    parser.add_argument(
        "--prompt-mode",
        choices=list(PROMPT_TEMPLATES.keys()),
        default="ocr",
        help=f"Prompt template to use: {', '.join(PROMPT_TEMPLATES.keys())} (default: ocr)",
    )
    parser.add_argument(
        "--custom-prompt",
        help="Custom prompt text (overrides --prompt-mode)",
    )
    parser.add_argument(
        "--output-column",
        default="markdown",
        help="Column name for output text (default: markdown)",
    )
    args = parser.parse_args()
    main(
        input_dataset=args.input_dataset,
        output_dataset=args.output_dataset,
        image_column=args.image_column,
        batch_size=args.batch_size,
        model=args.model,
        max_model_len=args.max_model_len,
        max_tokens=args.max_tokens,
        gpu_memory_utilization=args.gpu_memory_utilization,
        hf_token=args.hf_token,
        split=args.split,
        max_samples=args.max_samples,
        private=args.private,
        shuffle=args.shuffle,
        seed=args.seed,
        prompt_mode=args.prompt_mode,
        custom_prompt=args.custom_prompt,
        output_column=args.output_column,
    )
 | 
