File size: 21,148 Bytes
0e62664
 
 
 
 
 
94823db
0e62664
 
 
d805bea
0e62664
 
94823db
 
 
 
 
0e62664
 
 
 
 
 
 
 
94823db
 
 
0e62664
 
 
 
 
 
 
 
 
 
94823db
0e62664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6042172
0e62664
 
 
6042172
0e62664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6042172
0e62664
 
 
 
6042172
0e62664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf6b7f
 
0e62664
 
 
 
ddf6b7f
0e62664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6042172
0e62664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6042172
 
0e62664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
# /// script
# requires-python = ">=3.11"
# dependencies = [
#     "datasets",
#     "huggingface-hub[hf_transfer]",
#     "pillow",
#     "vllm",
#     "tqdm",
#     "toolz",
#     "torch",
#     "triton-kernels @ git+https://github.com/triton-lang/triton.git@v3.5.0#subdirectory=python/triton_kernels",
# ]
#
# [[tool.uv.index]]
# url = "https://wheels.vllm.ai/nightly"
#
# [tool.uv]
# prerelease = "allow"
# ///

"""
Convert document images to markdown using LightOnOCR with vLLM.

LightOnOCR is a compact 1B multilingual OCR model optimized for production speed.
Combines Pixtral ViT encoder with Qwen3 language model for efficient document parsing.

NOTE: Requires vLLM nightly wheels for LightOnOCR support. First run may take
a few minutes to download and install dependencies.

Features:
- ⚑ Fastest: 5.71 pages/sec on H100 GPU
- 🎯 Compact: Only 1B parameters
- 🌍 Multilingual with European language optimization
- πŸ“ LaTeX formula recognition
- πŸ“Š Table extraction (markdown format)
- πŸ“ Document structure preservation
- πŸ”€ 3 vocabulary sizes (151k/32k/16k tokens)

Model: lightonai/LightOnOCR-1B-1025
vLLM: Requires nightly build from main branch
Performance: 76.1% overall benchmark score
"""

import argparse
import base64
import io
import json
import logging
import os
import sys
from typing import Any, Dict, List, Union
from datetime import datetime

import torch
from datasets import load_dataset
from huggingface_hub import DatasetCard, login
from PIL import Image
from toolz import partition_all
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


# Model variants with different vocabulary sizes
MODEL_VARIANTS = {
    "151k": "lightonai/LightOnOCR-1B-1025",  # Full vocabulary (default)
    "32k": "lightonai/LightOnOCR-0.9B-32k-1025",  # European languages optimized
    "16k": "lightonai/LightOnOCR-0.9B-16k-1025",  # European languages optimized
}


def check_cuda_availability():
    """Check if CUDA is available and exit if not."""
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error("Please run on a machine with a CUDA-capable GPU.")
        sys.exit(1)
    else:
        logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")


def resize_image_to_target(image: Image.Image, target_size: int = 1540) -> Image.Image:
    """
    Resize image so longest dimension is target_size while maintaining aspect ratio.

    LightOnOCR was trained with images at 1540px max resolution and 200 DPI.
    """
    width, height = image.size

    # If image is already smaller, don't upscale
    if max(width, height) <= target_size:
        return image

    # Calculate new dimensions maintaining aspect ratio
    if width > height:
        new_width = target_size
        new_height = int(height * (target_size / width))
    else:
        new_height = target_size
        new_width = int(width * (target_size / height))

    return image.resize((new_width, new_height), Image.Resampling.LANCZOS)


def make_ocr_message(
    image: Union[Image.Image, Dict[str, Any], str],
    resize: bool = True,
    target_size: int = 1540,
) -> List[Dict]:
    """
    Create chat message for OCR processing.

    LightOnOCR was trained with 1540px max resolution at 200 DPI for optimal results.
    """
    # Convert to PIL Image if needed
    if isinstance(image, Image.Image):
        pil_img = image
    elif isinstance(image, dict) and "bytes" in image:
        pil_img = Image.open(io.BytesIO(image["bytes"]))
    elif isinstance(image, str):
        pil_img = Image.open(image)
    else:
        raise ValueError(f"Unsupported image type: {type(image)}")

    # Convert to RGB
    pil_img = pil_img.convert("RGB")

    # Resize to optimal dimensions for LightOnOCR
    if resize:
        pil_img = resize_image_to_target(pil_img, target_size)
        logger.debug(f"Resized image to {pil_img.size}")

    # Convert to base64 data URI
    buf = io.BytesIO()
    pil_img.save(buf, format="PNG")
    data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"

    # LightOnOCR uses message format with empty text prompt before image
    # (matching official demo: text first, then image)
    return [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": ""},
                {"type": "image_url", "image_url": {"url": data_uri}},
            ],
        }
    ]


def create_dataset_card(
    source_dataset: str,
    model: str,
    vocab_size: str,
    num_samples: int,
    processing_time: str,
    batch_size: int,
    max_model_len: int,
    max_tokens: int,
    gpu_memory_utilization: float,
    temperature: float,
    top_p: float,
    target_size: int,
    image_column: str = "image",
    split: str = "train",
) -> str:
    """Create a dataset card documenting the OCR process."""
    model_name = model.split("/")[-1]

    return f"""---
tags:
- ocr
- document-processing
- lighton-ocr
- markdown
- uv-script
- generated
---

# Document OCR using {model_name}

This dataset contains OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using LightOnOCR, a fast and compact 1B OCR model.

## Processing Details

- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Model**: [{model}](https://huggingface.co/{model})
- **Vocabulary Size**: {vocab_size} tokens
- **Number of Samples**: {num_samples:,}
- **Processing Time**: {processing_time}
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}

### Configuration

- **Image Column**: `{image_column}`
- **Output Column**: `markdown`
- **Dataset Split**: `{split}`
- **Batch Size**: {batch_size}
- **Target Image Size**: {target_size}px (longest dimension)
- **Max Model Length**: {max_model_len:,} tokens
- **Max Output Tokens**: {max_tokens:,}
- **Temperature**: {temperature}
- **Top P**: {top_p}
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%}

## Model Information

LightOnOCR is a fast, compact OCR model that excels at:
- ⚑ **Production Speed** - 5.71 pages/second on H100 GPU
- 🎯 **Compact Size** - Only 1B parameters
- πŸ“ **LaTeX formulas** - Mathematical notation in LaTeX format
- πŸ“Š **Tables** - Extracted and formatted as markdown
- πŸ“ **Document structure** - Hierarchy and layout preservation
- 🌍 **Multilingual** - Optimized for European languages
- πŸ”€ **Flexible vocabulary** - 151k/32k/16k token variants

### Vocabulary Variants

- **151k tokens**: Full vocabulary, supports all languages
- **32k tokens**: European languages optimized (~12% faster decoding)
- **16k tokens**: European languages optimized (~12% faster decoding)

## Dataset Structure

The dataset contains all original columns plus:
- `markdown`: The extracted text in markdown format with LaTeX formulas
- `inference_info`: JSON list tracking all OCR models applied to this dataset

## Usage

```python
from datasets import load_dataset
import json

# Load the dataset
dataset = load_dataset("{{output_dataset_id}}", split="{split}")

# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break

# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}")
```

## Reproduction

This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) LightOnOCR script:

```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \\
    {source_dataset} \\
    <output-dataset> \\
    --vocab-size {vocab_size} \\
    --image-column {image_column} \\
    --batch-size {batch_size}
```

## Performance

- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.2f} images/second
- **Benchmark Score**: 76.1% overall (across diverse document types)
- **Optimization**: Native resolution ViT + lightweight decoder

Generated with πŸ€– [UV Scripts](https://huggingface.co/uv-scripts)
"""


def main(
    input_dataset: str,
    output_dataset: str,
    image_column: str = "image",
    batch_size: int = 16,
    vocab_size: str = "151k",
    max_model_len: int = 8192,
    max_tokens: int = 6500,
    temperature: float = 0.2,
    top_p: float = 0.9,
    gpu_memory_utilization: float = 0.8,
    target_size: int = 1540,
    no_resize: bool = False,
    hf_token: str = None,
    split: str = "train",
    max_samples: int = None,
    private: bool = False,
    shuffle: bool = False,
    seed: int = 42,
    output_column: str = "markdown",
):
    """Process images from HF dataset through LightOnOCR model."""

    # Check CUDA availability first
    check_cuda_availability()

    # Track processing start time
    start_time = datetime.now()

    # Enable HF_TRANSFER for faster downloads
    os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

    # Login to HF if token provided
    HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
    if HF_TOKEN:
        login(token=HF_TOKEN)

    # Get model ID from vocabulary size
    if vocab_size not in MODEL_VARIANTS:
        raise ValueError(
            f"Invalid vocab_size '{vocab_size}'. Choose from: {list(MODEL_VARIANTS.keys())}"
        )
    model = MODEL_VARIANTS[vocab_size]
    logger.info(f"Using model: {model} ({vocab_size} vocabulary)")

    # Load dataset
    logger.info(f"Loading dataset: {input_dataset}")
    dataset = load_dataset(input_dataset, split=split)

    # Validate image column
    if image_column not in dataset.column_names:
        raise ValueError(
            f"Column '{image_column}' not found. Available: {dataset.column_names}"
        )

    # Shuffle if requested
    if shuffle:
        logger.info(f"Shuffling dataset with seed {seed}")
        dataset = dataset.shuffle(seed=seed)

    # Limit samples if requested
    if max_samples:
        dataset = dataset.select(range(min(max_samples, len(dataset))))
        logger.info(f"Limited to {len(dataset)} samples")

    # Initialize vLLM model
    logger.info(f"Initializing vLLM with LightOnOCR")
    logger.info("This may take a few minutes on first run...")
    llm = LLM(
        model=model,
        trust_remote_code=True,
        max_model_len=max_model_len,
        gpu_memory_utilization=gpu_memory_utilization,
        limit_mm_per_prompt={"image": 1},  # One image per prompt
        enforce_eager=False,  # Use torch.compile for better performance
    )

    # LightOnOCR recommended sampling parameters
    sampling_params = SamplingParams(
        temperature=temperature,
        top_p=top_p,
        max_tokens=max_tokens,
    )

    logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
    logger.info(f"Output will be written to column: {output_column}")
    if not no_resize:
        logger.info(f"Images will be resized to {target_size}px (longest dimension)")

    # Process images in batches
    all_outputs = []

    for batch_indices in tqdm(
        partition_all(batch_size, range(len(dataset))),
        total=(len(dataset) + batch_size - 1) // batch_size,
        desc="LightOnOCR processing",
    ):
        batch_indices = list(batch_indices)
        batch_images = [dataset[i][image_column] for i in batch_indices]

        try:
            # Create messages for batch
            batch_messages = [
                make_ocr_message(img, resize=not no_resize, target_size=target_size)
                for img in batch_images
            ]

            # Process with vLLM
            outputs = llm.chat(batch_messages, sampling_params)

            # Extract outputs
            for output in outputs:
                text = output.outputs[0].text.strip()
                all_outputs.append(text)

        except Exception as e:
            logger.error(f"Error processing batch: {e}")
            # Add error placeholders for failed batch
            all_outputs.extend(["[OCR ERROR]"] * len(batch_images))

    # Calculate processing time
    processing_duration = datetime.now() - start_time
    processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min"

    # Add output column to dataset
    logger.info(f"Adding '{output_column}' column to dataset")
    dataset = dataset.add_column(output_column, all_outputs)

    # Handle inference_info tracking (for multi-model comparisons)
    inference_entry = {
        "model_id": model,
        "model_name": "LightOnOCR",
        "vocab_size": vocab_size,
        "column_name": output_column,
        "timestamp": datetime.now().isoformat(),
        "temperature": temperature,
        "top_p": top_p,
        "max_tokens": max_tokens,
        "target_size": target_size if not no_resize else "original",
    }

    if "inference_info" in dataset.column_names:
        # Append to existing inference info
        logger.info("Updating existing inference_info column")

        def update_inference_info(example):
            try:
                existing_info = json.loads(example["inference_info"]) if example["inference_info"] else []
            except (json.JSONDecodeError, TypeError):
                existing_info = []

            existing_info.append(inference_entry)
            return {"inference_info": json.dumps(existing_info)}

        dataset = dataset.map(update_inference_info)
    else:
        # Create new inference_info column
        logger.info("Creating new inference_info column")
        inference_list = [json.dumps([inference_entry])] * len(dataset)
        dataset = dataset.add_column("inference_info", inference_list)

    # Push to hub
    logger.info(f"Pushing to {output_dataset}")
    dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)

    # Create and push dataset card
    logger.info("Creating dataset card")
    card_content = create_dataset_card(
        source_dataset=input_dataset,
        model=model,
        vocab_size=vocab_size,
        num_samples=len(dataset),
        processing_time=processing_time_str,
        batch_size=batch_size,
        max_model_len=max_model_len,
        max_tokens=max_tokens,
        gpu_memory_utilization=gpu_memory_utilization,
        temperature=temperature,
        top_p=top_p,
        target_size=target_size,
        image_column=image_column,
        split=split,
    )

    card = DatasetCard(card_content)
    card.push_to_hub(output_dataset, token=HF_TOKEN)

    logger.info("βœ… LightOnOCR processing complete!")
    logger.info(f"Dataset available at: https://huggingface.co/datasets/{output_dataset}")
    logger.info(f"Processing time: {processing_time_str}")
    logger.info(f"Processing speed: {len(dataset) / processing_duration.total_seconds():.2f} images/sec")


if __name__ == "__main__":
    # Show example usage if no arguments
    if len(sys.argv) == 1:
        print("=" * 80)
        print("LightOnOCR Document Processing")
        print("=" * 80)
        print("\nFast, compact 1B OCR model for production workloads")
        print("\nFeatures:")
        print("- ⚑ Fastest processing: 5.71 pages/sec on H100")
        print("- 🎯 Compact: Only 1B parameters")
        print("- 🌍 Multilingual with European language optimization")
        print("- πŸ“ LaTeX formula recognition")
        print("- πŸ“Š Table extraction (markdown format)")
        print("- πŸ”€ 3 vocabulary sizes for speed/quality tradeoffs")
        print("\nExample usage:")
        print("\n1. Basic OCR (full vocabulary):")
        print("   uv run lighton-ocr.py input-dataset output-dataset")
        print("\n2. European languages optimized (faster):")
        print("   uv run lighton-ocr.py docs results --vocab-size 32k")
        print("\n3. Custom batch size for performance:")
        print("   uv run lighton-ocr.py docs results --batch-size 32")
        print("\n4. Test with small sample:")
        print("   uv run lighton-ocr.py large-dataset test --max-samples 50 --shuffle")
        print("\n5. Original image size (no resize):")
        print("   uv run lighton-ocr.py docs output --no-resize")
        print("\n6. Running on HF Jobs:")
        print("   hf jobs uv run --flavor l4x1 \\")
        print("     -e HF_TOKEN=$(python3 -c \"from huggingface_hub import get_token; print(get_token())\") \\")
        print("     -e HF_HUB_ENABLE_HF_TRANSFER=1 \\")
        print("     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \\")
        print("       input-dataset output-dataset --vocab-size 32k")
        print("\n" + "=" * 80)
        print("\nVocabulary Size Options:")
        print("  151k - Full vocabulary (all languages)")
        print("  32k  - European languages (~12% faster)")
        print("  16k  - European languages (~12% faster)")
        print("\nFor full help, run: uv run lighton-ocr.py --help")
        sys.exit(0)

    parser = argparse.ArgumentParser(
        description="Document OCR using LightOnOCR (fast 1B model)",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Vocabulary Size Options:
  151k    Full vocabulary supporting all languages (default)
  32k     European languages optimized (~12% faster decoding)
  16k     European languages optimized (~12% faster decoding)

Examples:
  # Basic text OCR with full vocabulary
  uv run lighton-ocr.py my-docs analyzed-docs

  # Fast processing for European languages
  uv run lighton-ocr.py papers results --vocab-size 32k

  # Test with random sampling
  uv run lighton-ocr.py large-dataset test --max-samples 50 --shuffle

  # Custom batch size for GPU optimization
  uv run lighton-ocr.py dataset output --batch-size 32 --gpu-memory-utilization 0.9
        """,
    )

    parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
    parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
    parser.add_argument(
        "--image-column",
        default="image",
        help="Column containing images (default: image)",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=16,
        help="Batch size for processing (default: 16)",
    )
    parser.add_argument(
        "--vocab-size",
        default="151k",
        choices=list(MODEL_VARIANTS.keys()),
        help="Vocabulary size variant (default: 151k)",
    )
    parser.add_argument(
        "--max-model-len",
        type=int,
        default=8192,
        help="Maximum model context length (default: 8192)",
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=6500,
        help="Maximum tokens to generate (default: 6500)",
    )
    parser.add_argument(
        "--temperature",
        type=float,
        default=0.2,
        help="Sampling temperature (default: 0.2)",
    )
    parser.add_argument(
        "--top-p",
        type=float,
        default=0.9,
        help="Top-p sampling parameter (default: 0.9)",
    )
    parser.add_argument(
        "--gpu-memory-utilization",
        type=float,
        default=0.8,
        help="GPU memory utilization (default: 0.8)",
    )
    parser.add_argument(
        "--target-size",
        type=int,
        default=1540,
        help="Target size for longest image dimension in pixels (default: 1540, matching training)",
    )
    parser.add_argument(
        "--no-resize",
        action="store_true",
        help="Don't resize images (use original size)",
    )
    parser.add_argument("--hf-token", help="Hugging Face API token")
    parser.add_argument(
        "--split", default="train", help="Dataset split to use (default: train)"
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        help="Maximum number of samples to process (for testing)",
    )
    parser.add_argument(
        "--private", action="store_true", help="Make output dataset private"
    )
    parser.add_argument(
        "--shuffle", action="store_true", help="Shuffle dataset before processing"
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed for shuffling (default: 42)",
    )
    parser.add_argument(
        "--output-column",
        default="markdown",
        help="Column name for output text (default: markdown)",
    )

    args = parser.parse_args()

    main(
        input_dataset=args.input_dataset,
        output_dataset=args.output_dataset,
        image_column=args.image_column,
        batch_size=args.batch_size,
        vocab_size=args.vocab_size,
        max_model_len=args.max_model_len,
        max_tokens=args.max_tokens,
        temperature=args.temperature,
        top_p=args.top_p,
        gpu_memory_utilization=args.gpu_memory_utilization,
        target_size=args.target_size,
        no_resize=args.no_resize,
        hf_token=args.hf_token,
        split=args.split,
        max_samples=args.max_samples,
        private=args.private,
        shuffle=args.shuffle,
        seed=args.seed,
        output_column=args.output_column,
    )